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A B S T R A C T   

Thermal spreading resistance is encountered during two-dimensional thermal conduction from a hot surface into 
a body. Thermal spreading and the opposite problem of thermal constriction resistance are of much technological 
relevance in the design of heat sinks and thermal spreaders for thermal management of microelectronics and 
other heat-generating devices. Much of the past work in the theoretical analysis of thermal spreading is based on 
a source with given heat flux. In contrast, the isothermal source problem presents difficulties due to the resulting 
mixed nature of the boundary condition, due to which, only approximate solutions are available. This work 
derives the steady-state thermal spreading resistance from an isothermal source into a finite-thickness slab or 
cylinder. The mixed boundary condition is handled by posing it in the form of a spatially varying convective 
boundary condition, with a sufficiently large Biot number over the source to represent its isothermal nature. A 
series solution for the problem is derived, along a sufficient set of linear algebraic equations to determine the 
series coefficients. Results are shown to agree well with finite-element simulations. Results are compared with 
previously-reported approximate solutions within the parametric range of validity of the approximate solutions. 
The impact of key non-dimensional parameters on thermal spreading resistance is quantified. It is shown that 
thermal spreading resistance increases with decreasing size of the isothermal heat source, as expected. A third- 
order polynomial correlation with very good accuracy is proposed. This work advances the theoretical under
standing of a problem for which only approximate solutions have been reported in the past. Results presented 
here offer a practical tool for thermal design and optimization of a variety of practical thermal management 
problems involving spreading or constriction.   

1. Introduction 

Thermal spreading resistance occurs in thermal conduction processes 
when heat from a finite source enters a material of larger size [1,2]. 
Examples include thermal conduction from a semiconductor chip into 
the chip packaging [3] and thermal conduction from a hot body into a 
heat spreader [4]. Conversely, thermal constriction resistance occurs in 
the opposite problem, for example, in the transfer of heat from a large, 
hot body into a heat sink placed on its outer surface [5] and across bolted 
joints [6]. Thermal spreading and constriction play an important role in 
thermal management of microelectronics, both at the device [7] and 
package [3,8] scale, power electronics [9], LEDs [10] and heat sinks [5]. 
Spreading and constriction resistance is also encountered in other en
gineering fields involving potential fields, such as semiconductors [11, 
12] and electromagnetics [13]. 

Spreading and constriction are opposite problems, and, therefore, 
can both be analyzed within a single mathematical framework [1,2]. 

Due to their technological importance, the literature on analysis of 
thermal spreading/constriction resistance spans several decades, start
ing from early papers [14,15] to more recent ones as summarized in 
several review articles and book chapters [1,2]. Thermal spreading has 
been studied in the context of three key geometries – a semi-infinite 
half-space [17], a flux channel [18], and a finite disk/plate [4]. Sche
matics of a finite Cartesian plate with a strip source and a finite cylin
drical disk with a circular source are shown in Fig. 1(a) and 1(b), 
respectively. In both cases, the source is placed symmetrically on the top 
surface of the body. In this scenario, thermal spreading resistance occurs 
due to the two-dimensional nature of the temperature field as heat 
conducts and spreads from the hot source into the larger-sized body 
towards the sink plane [2]. Determining such spreading resistance and 
its dependence on problem parameters is critical for the thermal design 
of such systems. 

In a finite geometry, thermal spreading resistance is defined as the 
difference between the total thermal resistance and the one-dimensional 
thermal resistance present in an equivalent one-dimensional problem 
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[2], and is based on either the maximum or average source temperature. 
In most cases involving the flux channel or finite disk/plate, the side
walls are assumed to be adiabatic, although the analysis of edge cooling 
has gained recent interest [19]. The other end of the geometry away 
from the hot source, often referred to as the sink plane, is usually 
modeled as either isothermal, or with a convective heat transfer coef
ficient. A key geometrical parameter in these problems that determines 
the thermal spreading resistance is the size of the hot source and 
thickness of the slab/cylinder, both of which are usually 
non-dimensionalized by the edge length or radius of the slab/cylinder. 
Additionally, the convective heat transfer coefficient at the sink plane, 
often expressed in the form of a Biot number, is also an important 
parameter. In addition to the symmetric, single-layer geometry depicted 
in Fig. 1(a) and 1(b), analysis of multilayer geometry [20] and 
eccentrically-placed heat sources [21] has also been carried out. 
Orthotropic thermal conduction [16], inter-layer thermal contact 
resistance [22] and spatially-varying convective heat transfer coefficient 
at the sink plane [20] have also been accounted for. 

In most of the past literature, the hot source is modeled as an isoflux 
surface [1,2]. This assumption aligns well with conditions in several 
applications such as microelectronic devices [3,8]. This scenario is also 
convenient to model, since the rest of the source plane is adiabatic, and, 
therefore, a spatially varying heat flux boundary condition – non-zero on 
the source surface and zero elsewhere – can be implemented. In contrast, 
the treatment of an isothermal source is also important because when 
the contact between non-smooth bodies occurs over an area smaller than 
the apparent area of contact due to surface roughness, the thermal 
condition along such an area of contact has been shown to be isothermal 
[23,24]. Therefore, the analysis of spreading resistance problem for an 

isothermal source is important for the study of interfacial heat transfer. 
Unfortunately, an isothermal source results in a mixed boundary con
dition at the source plane that is more difficult to mathematically model. 
At best, an isothermal source has been modeled approximately using a 
variable heat flux distribution that varies spatially as 1̅̅̅̅̅̅̅̅̅̅

a2 − x2
√ , where a is 

the source width and x is the coordinate along the source. This is known 
to result in a nearly isothermal temperature distribution at the source [2, 
15]. Based on this, approximate expressions for the spreading resistance 
have been derived for a number of scenarios such as [2,15]. Such so
lutions are limited to small source width relative to the width of the 
body. An isothermal source problem has been solved using the method 
of conformal mapping, but only for a semi-infinite geometry [24]. A few 
highly mathematical treatments of the mixed problem are also available 
[25,26,27], which are difficult to apply directly to problems of practical 
relevance. 

Despite such work, there remains an active interest in determining 
the thermal spreading resistance for an isothermal source without the 
approximation entailed in the variable heat flux approach in past liter
ature. Doing so may result in models that are not limited in the manner 
that approximate isothermal models are, and may improve the accuracy 
of thermal resistance models. 

This work presents theoretical analysis of thermal spreading from an 
isothermal source into a larger, finite-sized body. Both slab and cylinder 
geometries are considered. In each case, the mixed isothermal-adiabatic 
boundary condition is represented by a spatially-varying convective 
boundary condition, with a sufficiently large convective heat transfer 
coefficient over the source. A series solution for the temperature field is 
written, and coefficients for the series are determined by deriving a 
sufficient number of linear algebraic equations based on the spatially 
varying source convective heat transfer coefficient. Results are found to 
agree well with finite-element simulations, and are compared with 
previously-reported approximate solutions for this problem. Polynomial 
correlations with very small error are proposed for use in thermal design 
and optimization without the need for detailed mathematical analysis. 

2. Problem definition 

Consider the steady state problem of thermal spreading from a hot 
isothermal source into a larger but finite geometry. Two specific prob
lems pertaining to a finite Cartesian slab and a cylindrical disk, each of 
thickness t and uniform, isotropic thermal conductivity k are considered, 
as depicted in Fig. 1(a) and 1(b), respectively. The half-width or radius 
of the slab/cylinder is denoted by A. In the case of the slab, a finite strip 
of half-width a and the same length L as the slab is assumed, whereas in 
the cylinder problem, a hot source of radius a is assumed to be located 
about the same axis as the cylinder, as shown in Fig. 1(a) and 1(b), 
respectively. In both cases, the hot source is located symmetrically 
around the center of the top surface, so that thermal conduction is two- 

Nomenclature 

a Half-width or radius of the hot source (m) 
ā Non-dimensional half-width or radius of the hot source 
A Half-width or radius of the body (m) 
Bisink Biot number at the sink plane 
hsink Convective heat transfer coefficient at the sink plane 

(Wm− 2K− 1) 
k Thermal conductivity (Wm− 1K− 1) 
L Slab length (m) 
q Heat flow rate (W) 
r Coordinate in the radial direction (m) 
Rsp Thermal spreading resistance (KW− 1) 

t Thickness of the body (m) 
t̄ Non-dimensional thickness of the body 
T Temperature (K) 
T∞ Ambient temperature (K) 
T0 Source temperature (K) 
T Temperature (K) 
x Coordinate in the lateral direction (m) 
z Coordinate in the thickness direction (m) 
ξ Non-dimensional coordinate in the lateral/radial direction 
η Non-dimensional coordinate in the thickness direction 
θ Non-dimensional temperature  

Fig. 1. Schematic of the geometry of a finite-thickness (a) slab, and (b) cylinder 
with uniform isothermal source and convective sink. In both cases, the source is 
located symmetrically on the top surface. 
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dimensional and, in the case of the slab, only one half of the body may be 
analyzed based on symmetry. Temperatures of the hot source and the 
ambient are denoted by T0 and T∞, respectively, where T0 > T∞ in the 
thermal spreading problem. The region around the source on the top 
plane as well as the sidewalls are taken to be adiabatic, as is the usual 
case in the literature [1,2]. A general convective heat transfer boundary 
condition, characterized by a convective heat transfer coefficient hsink 
and ambient temperature T∞ is used to represent cooling along the sink 
plane located at z = t. The interest is in determining the temperature 
distribution T(x, z) (slab) or T(r, z) (cylinder) and thus calculate the 
thermal resistance defined as the ratio of temperature difference 
(T0 − T∞) and the total heat flow through the body. While this problem is 
defined here in the form of thermal spreading, the opposite problem of 
thermal constriction (T0 < T∞) can also be analyzed using the same 
framework. 

3. Solution for a finite slab 

The problem of thermal spreading resistance in the finite slab is 
considered first. Based on symmetry about the x = 0 plane, only the 
right half of the problem is considered. Since the source strip is as long as 
the body in the y direction, therefore, this is a two-dimensional problem, 
mathematically described as follows: 

∂2T
∂x2 +

∂2T
∂z2 = 0 (1)  

with the following boundary conditions: 

∂T
∂x

= 0 (x = 0, A) (2)  

T = T0 (0 < x < a)

∂T
∂z

= 0 (a < x < A)
(z = 0) (3)  

− k
∂T
∂z

= hsink(T − T∞) (z = t) (4) 

This problem is non-dimensionalized as follows: 

θ =
T − T∞

T0 − T∞
; ξ =

x
A
; η =

z
A
; ā =

a
A
; t̄ =

t
A
; Bisink =

hsinkA
k

(5)  

which results in the following non-dimensional problem: 

∂2θ
∂ξ2 +

∂2θ
∂η2 = 0 (6)  

with the following boundary conditions: 

∂θ
∂ξ

= 0 (ξ = 0, 1) (7)  

θ = 1 (0 < ξ < ā)
∂θ
∂η = 0(ā < ξ < 1)(η = 0) (8)  

−
∂θ
∂η = Bisink⋅θ (η = t̄) (9) 

The mixed boundary condition represented by Eq. (8) presents dif
ficulties in solving this problem. For example, while the separation of 
variables method can easily solve a problem in which either a heat flux 
or a temperature distribution is specified over the entire η = 0 surface, it 
is much more difficult when temperature is specified over one region of 
the surface and heat flux over the rest. This difficulty has been addressed 
in the past through an approximate technique [2,15], in which, a spe
cific heat flux distribution proportional to 1̅̅̅̅̅̅̅̅̅

ā2 − ξ2
√ known to produce a 

nearly isothermal surface is specified over 0 < ξ < ā instead of an 

isothermal condition. However, the solution so derived is approximate 
and valid only when ̄a is very small. Instead of such an approximation, in 
the present work, the mixed boundary condition at η = 0 is expressed as 
a convective boundary condition over the entire surface using a Biot 
number Bi(ξ) as follows: 

∂θ
∂η = Bi(ξ)⋅(θ − 1) (η = 0) (10)  

where Bi(ξ) is defined as 

Bi(ξ) = Bimax⋅(1 − H (ξ − ā))(η = 0) (11)  

Where H is the Heaviside function. Eq. (11) implies that Bi = Bimax for 
0 < ξ < ā and zero for a < ξ < 1. Choosing Bimax to be sufficiently large 
results in constant temperature over the source (0 < ξ < ā), as desired, 
whereas the zero value of Bi(ξ) defined over ā < ξ < 1 imposes an 
adiabatic condition in the rest of the source plane. In this manner, a 
single convective boundary condition with a spatially varying Biot 
number captures both aspects of the mixed boundary condition – the 
isothermal source and the adiabatic region around the source. 

A solution for this problem is derived next using the separation of 
variables technique. First, a general solution is written in the following 
series form 

θ(ξ, η) = f0(η) +
∑∞

n=1
cos(λnξ)fn(η) (12)  

where, based on the lateral boundary conditions given by Eq. (7), the 
sine term has been dropped, and further, the eigenvalues are λn =

nπ (n = 1,2..∞). Note that f0(η) corresponds to the n = 0 term, which 
must be considered separately due to adiabatic boundary conditions at 
both ends along the η direction [28]. 

Inserting Eq. (12) in the governing energy equation, one may show 
that 

f0(η) = C0η + D0 (13)  

and 

fn(η) = Cncosh(λnη) + Dnsinh(λnη) (n = 1, 2..∞) (14) 

The boundary condition at the sink plane is used next, based on 

which, one may derive D0 = p0C0 and Dn = pnCn, where p0 = −
(

t̄+ 1
Bisink

)

and 

pn = − Bisinkcosh
(λnt̄) + λnsinh(λnt̄)

Bisinksinh(λnt̄) + λncosh(λnt̄)
(n = 1, 2..∞) (15) 

Therefore, the temperature field may be written in the following 
form: 

θ(ξ, η) = C0[η+ p0] +
∑∞

n=1
Cncos(λnξ)[cosh(λnη)+ pnsinh(λnη)] (16) 

Note that the first term in the solution corresponds to the solution of 
the one-dimensional thermal conduction problem without thermal 
spreading if the source were as wide as the body. 

In order to determine the remaining coefficients C0 and Cn that 
appear in the solution, the convective boundary condition at the source 
plane with spatially varying Biot number, given by Eq. (10) is used. 
Inserting Eq. (16) in Eq. (10) results in 

C0 +
∑N

n=1
λnCnpncos(λnξ) = Bi(ξ)

[

p0C0 − 1+
∑N

n=1
Cncos(λnξ)

]

(17)  

where, for practical computation, the infinite series has been truncated 
to a sufficiently large value of N. A total of (N+1) linear algebraic 
equations are then derived in order to determine the (N+1) unknowns 
C0 and Cn (n= 1, 2..N) as follows: First, Eq. (17) is integrated from ξ = 0 
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to ξ = 1. For the form of Bi(ξ) given by Eq. (11), this results in 

C0

[
1

Bimax
− p0ā

]

−
∑N

n=1
Cn

sin(λnā)
λn

= − ā (18) 

Further, Eq. (17) is multiplied by cos(λmξ) (m= 1, 2…N) and then, in 
each case, integrated from ξ = 0 to ξ = 1, leading to   

Eq. (18) and Eq. (19) for m = 1, 2…N constitute a total of N +1 
equations in N + 1 unknowns, which can be easily solved to determine 
C0 and Cn, and hence complete the derivation of the solution. 

Note that the technique used above to determine a sufficient set of 
linear algebraic equations has been used in the past to solve other 
problems with spatially varying convective heat transfer coefficient 
[29–31]. This approach may be interpreted as a generalization of the 
usual procedure of determining coefficients for a constant Biot number 
problem using the principle of orthogonality. In such a case, several 
integrals obtained during the procedure outlined above become zero due 
to the constant Biot number coupled with integral properties of the 
eigenfunctions. This results in explicit expressions for the coefficients 
instead of a set of coupled algebraic equations in the present case of 
variable Biot number. Further note that truncating the infinite series to a 
finite number of terms is no worse than any practical computation of an 
infinite series, in which, only a finite number of terms are computed as 
well, similar to the present work. As shown later, the error can be 
reduced to an acceptable threshold by choosing a sufficiently large value 
of N. 

The isothermal source is modeled here in the form of a convective 
boundary condition with a sufficiently large Bimax. As a result, in order to 
ensure accuracy, Bimax must be chosen to be a large number. In this 
case,Bimax = 1000 is found to be sufficiently large, and further increase 
is not found to change the results significantly. 

Considering only one half of the geometry shown in Fig. 1(a), heat 
flow through the slab, based on the temperature solution is 

q = − k
∫a

0

(
∂T
∂z

)

z=0
Ldx = − kL(T0 − T∞)

[

C0ā+
∑N

n=1
Cnpnsin(λnā)

]

(20) 

Note that while there is a singularity in the heat flux profile along the 
source plane due to the isothermal and adiabatic surfaces next to each 
other, this does not influence the derivation of the heat flux, since the 
integral in Eq. (20) above only goes up to x = a, within which, the heat 
flux is continuous. 

Finally, the thermal spreading resistance is determined by computing 
the total thermal resistance and subtracting the 1D thermal resistance 
comprising conduction resistance through the body and boundary 
convective resistance. This results in the following expression for the 
non-dimensional thermal spreading resistance of half of the geometry 
shown in Fig. 1(a). 

kLRsp = −

[

C0ā +
∑N

n=1
Cnpnsin(λnā)

]− 1

+ p0 (21) 

Eq. (21) shows that, as expected, the non-dimensional spreading 
resistance depends on ̄a, the source half-width, ̄t, the body thickness and 
Bisink that represents convective conditions at the sink plane. Note that 

the thermal spreading resistance from Eq. (21) pertains to one half of the 
geometry shown in Fig. 1(a) in which the thermal conduction problem is 
solved above. If considering the entire geometry, total heat flow through 
the body will be twice as given by Eq. (20), and therefore, the thermal 
spreading resistance will be half of that calculated from Eq. (21). 

While the result derived here predicts the spreading resistance for 
any source width ā, it is instructive to examine Eq. (21) in limiting 
conditions as ā→1. In such a case, Eq. (18) shows that C0 = p− 1

0 since 
sin(λn) = 0. Further, from Eq. (19), Cm = 0 (m = 1, 2…N). Substituting 
in Eq. (21), it is found that kLRsp→0 as ā→1. This limiting result is ex
pected because as the source size approaches that of the body itself, 
there is no longer any thermal spreading, the temperature field is purely 
one-dimensional, and, therefore, the spreading resistance becomes zero. 
Therefore, the result derived here correctly reduces to an expected result 
in a limiting case. 

4. Solution for a finite cylinder 

A similar problem for thermal spreading resistance in a finite cylin
der is shown schematically in Fig. 1(b). The non-dimensional coordinate 
ξ for this problem is defined as ξ = r

A instead of ξ = x
A in the slab problem. 

Definitions for all other non-dimensional parameters remain the same. ̄a 
represents the non-dimensional radius of the source instead of the half- 
width in the slab problem. Since the solution procedure for this problem 
is similar to the slab problem, only the final expressions for the tem
perature field and thermal spreading resistance are provided here for 
brevity. The non-dimensional temperature distribution, comprising 
Bessel functions of the first kind instead of cosine functions is given by 

θ(ξ, η) = Ĉ0(η+ p0) +
∑∞

n=1
ĈnJ0(μnξ)(cosh(μnη)+ pnsinh(μnη)) (22)  

Where J0 is the zeroth-order Bessel function of the first kind [32], and μn 
are roots of J1, the first-order Bessel function of the first kind. Note that, 
similar to the slab problem, the series solution may be truncated to a 
finite number of terms, N, for computational purposes, and the co
efficients may be determined by solving the following set of algebraic 
equations 

Ĉ0

[
1

2Bimax
− p0

ā2

2

]

−
∑N

n=1
Ĉn

āJ1(λnā)
λn

= −
ā2

2
(23)   

− p0C0
sin(λmā)

λm
+ Cm

[
λmpm

2Bimax
−

ā
2
−

sin(2λmā)
4λm

]

−
∑N

n=1 n∕=m

Cnλnsin(λnā)cos(λmā) − λmcos
(λnā)sin(λmā)

λ2
n − λ2

m
= −

sin(λmā)
λm

(19)   

− Ĉ0p0
āJ1(λnā)

λn
+ Ĉm

[
λmpmJ2

0(λm)

2Bimax
−

ā2

2
(
J2

0(λmā)+ J2
1(λmā)

)
]

−
∑N

n=1 n∕=m

ĈnāλnJ1(λnā)J0(λmā) − λmJ1
(λmā)J0(λnā)

λ2
n − λ2

m
= −

āJ1(λmā)
λm

(24)   
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This may be shown to result in the following expression for the 
thermal spreading resistance for a finite-thickness cylinder: 

2πkARsp = −

[

Ĉ0
a2

2
+ a

∑N

n=1
ĈnpnJ1(λna)

]− 1

+ 2p0 (25) 

Similar to the discussion at the end of the previous Section, it can be 
shown here that as ā→1, the thermal spreading resistance approaches 
zero due to the one-dimensional nature of the temperature field in this 
limiting case. 

5. Results and discussion 

5.1. Convergence of the series solution 

A fundamental premise of the theoretical technique used here is to 
represent the mixed isothermal-adiabatic boundary condition with a 
spatially varying convective boundary condition, and then to derive 
algebraic equations for the series coefficients. Therefore, it is important 
to determine how the number of terms considered affects the accuracy of 
the computed solution. In order to do so, a relative error δ(N) =

|Rsp(N)− Rsp,∞ |

Rsp,∞
× 100 is defined as the % deviation between the thermal 

spreading resistance with a finite number of terms, N, compared to one 
computed with a very large number of terms, in this case, 200 terms. The 
convergence of δ with increasing N must be examined in order to 
determine the number of terms needed to obtain a desired level of ac
curacy. 

For the slab problem, Fig. 2(a) plots δ as a function of N for two 
different values of the source strip width ā. Other problem parameters 
are t̄ = 0.4, Bisink = 1000. Fig. 2(a) indicates somewhat slow conver
gence of the series solution. For example, at ā = 0.1, more than 37 and 
64 terms are needed for the computed thermal spreading resistance to be 
within 10% and 5%, respectively, of the value computed with a very 
large number of terms. Convergence analysis for the cylinder problem, 
shown in Fig. 2(b) for the same set of non-dimensional parameters, also 
shows similar characteristics, with 70 and 111 terms needed in order for 
the error to be within 10% and 5%, respectively, for ā = 0.1. In both 
problems, results for the two source widths shown are quite similar. 

Note that slow convergence of the series solution is not necessarily a 
significant computational hindrance, since the eigenvalues for this 
problem are independent of all problem parameters and can be 
computed quite easily, given by roots of the cosine function and first- 
order Bessel function of the first kind for the slab and cylinder prob
lems, respectively. Moreover, solving a set of linear equations is 

computationally inexpensive even when the number of equations is a 
few hundred. It is found in this work that the thermal spreading resis
tance can be calculated within less than 0.2 s even with 200 terms and no 
computational optimization. 

Based on the results shown in Fig. 2, all subsequent analyses pre
sented here are carried out with 200 terms. 

5.2. Effect of Bimax 

Another key feature of the theoretical methodology used in this work 
is to represent the mixed boundary condition with a single convective 
boundary condition containing a spatially-varying Biot number. In order 
to satisfy the isothermal portion of the boundary condition over 
0 < ξ < ā, the Biot number is taken to be Bimax, the value of which must 
be sufficiently large to force isothermal conditions in that region. 
Therefore, the value of Bimax may impact the computed thermal 
spreading resistance, and it is important to determine how large Bimax 
should be in order to accurately represent isothermal conditions. To 
investigate this, Fig. 3(a) presents a plot of the computed thermal 
spreading resistance at one particular set of parameters (̄t = 1.2, Bisink =

1000) as a function of Bimax. Curves are presented for three different 
values of ā. In addition, for ā = 0.6, Fig. 3(b) plots the computed tem
perature distribution along the source plane for four different values of 
Bimax. Fig. 3 shows that for each thickness considered, the value of 
spreading resistance has significant error when Bimax is relatively small, 
and converges beyond a value of around Bimax = 100. Similarly, with 
Bimax = 100, the computed temperature distribution is within a few % of 
the expected value of 1.0 in the isothermal region, with even greater 
accuracy at Bimax = 1000. Therefore, a value of Bimax = 1000 is used in 
this work in order to ensure that the isothermal conditions are being 
correctly satisfied. 

5.3. Comparison with finite-element simulations 

For verification of the theoretical model presented here, results are 
compared with finite-element simulations using a commercially avail
able software. This comparison is presented in terms of temperature 
distribution along the thickness (η) and lateral (ξ) directions in Fig. 4(a) 
and 4(b), respectively. In each case, results are presented for both slab 
and cylinder problems. Other problem parameters are ā = 0.1, ̄t = 0.4 
and Bisink = 2.0. For both slab and cylinder problems, Fig. 4 shows 
excellent agreement between the present work and finite-element sim
ulations, in both thickness and lateral directions. In particular, the 
present work is found to correctly capture constant temperature 

Fig. 2. Convergence of the series solution: Deviation of the computed thermal spreading resistance from the converged value as a function of number of terms for two 
different values of ā for (a) slab, and (b) cylinder. Other parameters are t̄ = 0.4, Bisink = 1000. 
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Fig. 3. Effect of Bimax: (a) Thermal spreading resistance as a function of Bimax for three different values of ā and for t̄ = 1.2, Bisink = 1000. (b) Temperature dis
tribution along the source plane for four different values of Bimax. Other parameters are ā = 0.6, t̄ = 1.2, Bisink = 1000. 

Fig. 4. Comparison of the present technique with finite-element simulations: (a) Temperature as a function of η at the center line (ξ = 0), (b) Temperature as a 
function of ξ at the source plane (η = 0). Results from the present work and a finite-element simulation are plotted for both slab and cylinder problems. Problem 
parameters are ā = 0.1, t̄ = 0.4, Bisink = 2.0. 

Fig. 5. Comparison of the present technique with past work: Spreading resistance as a function of source size ā for two different values of ̄t: (a) Slab, (b) Cylinder. For 
comparison, results from past approximate solutions ([2] and [15], respectively) are also presented. The sink plane is taken to be isothermal for this comparison. 
Results from a numerical simulation are also shown. 
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condition along the lateral direction up to ξ = ā, corresponding to the 
isothermal source. The worst-case deviation between the present work 
and finite-element simulations is found to be less than 1%, which in
creases confidence in the theoretical derivation carried out here. 

5.4. Comparison with past work 

It is of interest to also compare results from the present work with 
approximate solutions available from past work. While most of the past 
literature on thermal spreading resistance modeling is based on an iso
flux source, the case of an isothermal source has been addressed only in a 
limited number of papers. An exact solution is available only for a semi- 
infinite flux tube, which is an extreme case of the present work (̄t→∞) 
[21]. For the finite geometry considered here, the problem of isothermal 
source and the subsequent mixed boundary condition has been solved 
approximately by representing the isothermal source with a 
spatially-varying heat flux proportional to 1̅̅̅̅̅̅̅̅̅̅

ā2 − ξ2
√ . It has been shown that 

such a heat flux produces an approximately isothermal distribution 
along the source [2,15]. Based on this, the following approximate ex
pressions for the non-dimensional thermal spreading resistance have 
been derived: 

For the slab problem [2], 

kLRsp =
1

āπ2

∑∞

n=1

sin(λnā)
n2 J0(λnā)

λn + Bisink⋅tanh(λnt̄)
λn⋅tanh(λnt̄) + Bisink

(26) 

For the cylinder problem [15] with isothermal sink conditions, 

2πkARsp =
4
ā2

∑∞

n=1
J1
(μnā)sin(μnā)

μ3
n⋅J1(μn)

tan(μnt̄) (27) 

Comparison between results from the present work and the 
approximate results cited above is presented in Fig. 5(a) and 5(b) for the 
slab and cylinder problems, respectively. For reference, results from a 
numerical simulation are also presented. In each case, the non- 
dimensional thermal spreading resistance is plotted as a function of 
the source size ā. Plots are presented for two different values of the 
thickness t̄. For both slab and cylinder geometries, Fig. 5 shows good 
agreement between the solution derived here and the approximate so
lution from past work based on heat flux approximation of the 
isothermal source. Both models predict similar trends, and the small 
difference between the two is likely due to the approximate nature of 
previously available results, Eqs. (26) and (27). There is good 

agreement, in general, with results from numerical simulations. 

5.5. Typical temperature distribution colorplots 

Based on the solution for the temperature distribution derived in 
Sections 3 and 4, colorplots of the temperature field are presented in 
Figs. 6 and 7 for the slab and cylinder problems, respectively. In each 
case, colorplots are presented for two cases – ā = 0.1 and ā = 0.6. 
Isotherm curves corresponding to θ = 0.9, 0.7, 0.5, 0.3 and 0.1 are also 
plotted in order to illustrate the two-dimensional nature of heat flow. 

In each case, as expected, temperature is highest at the source and 
gradually reduces with increasing ξ and/or η. The temperature distri
bution is found to be flat at both ξ = 0 and ξ = 1, consistent with 
adiabatic boundary conditions at the two ends. At the source plane, 
temperature is found to be very close to 1 up to ξ = ā in each case, 
representative of the isothermal source. Isotherms close to the source are 
found to be curved in nature, indicating thermal spreading, and become 
flatter as one approaches the sink plane. Isotherm lines along the ξ di

Fig. 6. Colorplots of computed temperature distribution in the finite slab for 
(a) ā = 0.1, (b) ā = 0.6. Other parameters are ̄t = 0.4, Bisink = 1000. Isotherms 
corresponding to θ = 0.9, 0.7, 0.5, 0, 3, 0.1 are also shown. 

Fig. 7. Colorplots of computed temperature distribution in the finite cylindrical 
disk for (a) ā = 0.1, (b) ā = 0.6. Other parameters are ̄t = 0.4, Bisink = 1000. 
Isotherms corresponding to θ = 0.9, 0.7, 0.5, 0, 3, 0.1 (top to down) are 
also shown. 

Fig. 8. Effect of source width on thermal spreading resistance: Spreading 
resistance as a function of source size ā for multiple values of t̄ with Bisink =

1000 for the slab problem. 
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rection are closer to each other for ̄a = 0.1 compared to ̄a = 0.6, which is 
indicative of greater thermal spreading in the lateral direction when the 
source is relatively small in size. This confirms that Rsp is larger for 
smaller values of ā. This is investigated in more detail in a subsequent 
sub-section. 

5.6. Effect of non-dimensional parameters on spreading resistance 

The non-dimensional thermal spreading resistance derived in this 
work depends on three key non-dimensional parameters - ā, the non- 
dimensional source half-width/radius, t̄, the non-dimensional body 
thickness, and Bisink, the Biot number governing convective heat 
removal at the sink plane. It is instructive to further understand how the 
thermal spreading resistance depends on these parameters. 

The dependence of thermal spreading resistance on ā is examined 
first. Fig. 8 plots kLRsp as a function of ā for four different slab thick
nesses. In each case, a large value of Bisink, consistent with isothermal 
conditions is assumed. It is found that in each case, the spreading 
resistance reduces as ā increases. This is expected since large ā corre
sponds to reduced opportunity for heat to spread, and, thus, a more one- 
dimensional flow of heat. The spreading resistance is also found to in
crease with increasing slab thickness. This may also be attributed to 
increased two-dimensionality of the temperature field for larger thick
ness slabs, where, the greater thickness facilitates greater spreading of 
heat. Note that Fig. 8 exhibits a saturation in terms of the impact of ̄t, in 
that while t̄ = 0.1 and t̄ = 0.3 curves are quite distinct, the curves at 
subsequently larger values of ̄t are much closer to each other, implying 
that the thermal spreading resistance becomes increasingly insensitive 
to ̄t for thick slabs. 

The effect of ̄t on spreading resistance can also be observed explicitly 
in Fig. 9, where the spreading resistance is plotted as a function of ̄t for 
four different source half-widths. It is found, as expected that thermal 
spreading resistance increasing with t̄, rapidly at first, and then satu
rating at larger values of ̄t. The thermal spreading resistance for small ̄t is 
quite low, simply because a thin slab does not provide sufficient space 
for thermal spreading before the heat reaches the sink plane. On the 
other hand, the saturation at large t̄ occurs mainly due to one- 
dimensional heat flow becoming increasingly dominant as the slab be
comes thicker. Finally, as expected, Fig. 9 shows larger thermal 
spreading resistance at smaller ā, which is consistent with Fig. 8. 

Finally, the impact of convective conditions at the sink plane is 
presented in Fig. 10, in which, the thermal spreading resistance is 

plotted as a function of Bisink. The lower and upper ends in Bisink in 
Fig. 10 are representative of adiabatic and isothermal conditions, 
respectively. Fig. 10 shows that thermal spreading resistance reduces 
with increasing Bisink, including a strong saturation at large Bisink as 
conditions become more and more isothermal. Thermal spreading 
resistance is large at small Bisink because it suppresses thermal dissipa
tion at the sink, resulting in reduced heat flow in steady state, and, 
therefore, greater thermal resistance. As Bisink increases, heat dissipation 
at the sink improves, allowing more flow of heat overall, and, therefore, 
reduced thermal spreading resistance. Finally, for sufficiently large 
values of Bisink, sink conditions are nearly isothermal, which is the best- 
possible heat dissipation scenario. As a result, further increase in Bisink 
does not appreciably reduce the thermal spreading resistance any more. 

While Figs. 8–10 are presented for a finite-thickness slab, similar 
plots and parametric dependence is observed for the case of a finite- 
thickness cylinder as well. 

5.7. Polynomial correlation for thermal spreading resistance 

Thermal spreading resistance curves computed using the theoretical 
model presented here may be fitted with polynomial functions to result 
in approximate correlations that may be easier for an end-user for 
thermal design instead of the detailed calculations presented here. Since 
the thermal spreading resistance in this problem is a function of ā, ̄t and 
Bisink, these correlations are developed for the spreading resistance as a 
function of ā, for multiple values of t̄ and Bisink. In each case, the 
computed curve for spreading resistance as a function of ā is fitted with 
the following correlation for the slab: 

kLRsp = c0 + c1ā + c2ā2 + c3ā3 (28) 

Values of c0, c1, c2 and c3 are reported in Table 1. Similar data for the 
cylindrical geometry are reported in Table 2. Except one case, the worst- 
case error over a range of 0.1 < ā < 0.5 for slab and 0.2 < ā < 0.5 for 
cylinder is found to be lower than 5% throughout. The error can be 
further reduced as desired by fitting with a higher-order polynomial. 

Eq. (28) along with data in Tables 1 and 2 is expected to be a useful 
tool for a thermal designer without needing to enter into the mathe
matical details of the theoretical model presented here. For parameter 
values other than those listed in Tables 1 and 2, a MATLAB code for 
calculating the coefficients is available at https://github.com/jainau 
taedu/Rsp2023a (Slab) and https://github.com/jainautaedu 
/Rsp2023b (Cylinder). The code has been tested within the parameter 

Fig. 9. Effect of slab thickness on thermal spreading resistance: Spreading 
resistance as a function of slab thickness ̄t for multiple values of ā with Bisink =

1000 for the slab problem. 

Fig. 10. Effect of sink plane convective condition on thermal spreading resis
tance: Spreading resistance as a function of sink Biot number Bisink for multiple 
values of ā with t̄ = 0.5 for the slab problem. 
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range in Tables 1 and 2 and verified to produce results with lower than 
5% error. 

6. Conclusions 

The key contribution of this work is in deriving a theoretical solution 
for the problem of thermal spreading resistance in a finite-thickness 
body with an isothermal source. In contrast, past work in this direc
tion has mostly assumed an isoflux source. The limited available past 
work on an isothermal source is based on an approximate solution of the 
problem using a flux distribution that produces a nearly, but not exactly, 
isothermal source. Moreover, past work is also often limited in other 
ways, such as requiring a small source, and, in the case of available 
results for a cylinder, an isothermal sink instead of more general 
convective conditions. Comparison of the present results with such past 
work shows similar trends, with greater accuracy expected from the 
present results. 

Expressions for the non-dimensional thermal spreading resistance for 
slab and cylinder geometries may be helpful for design and optimization 
of thermal systems in which thermal spreading or constriction play an 
important role. The third-order polynomial fits of key results may be of 
particular interest to end-use designers, as these correlations may 
facilitate thermal design without the need for detailed mathematical 
calculations and with reasonable accuracy. 
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