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A B S T R A C T   

Most of the past literature on solid-liquid phase change heat transfer modeling focuses on a single phase change 
material (PCM), whereas, a sandwich of two or more PCMs arranged in series may be of interest in several 
applications. The modeling of heat transfer and phase change in such a system is complicated by the presence of 
multiple phase change fronts propagating at the same time. This work presents a theoretical analysis of the 
problem of melting of a two-PCM stack being heated from one end. Depending on whether the lower-melting 
PCM is located next to or away from the heat source, two distinct cases are considered. The propagation of 
the phase change fronts in each case is divided into several stages, each of which is characterized by a distinct 
phase change and/or sensible heating processes. The transient temperature field in each stage is determined in 
the form of infinite series solutions, and the propagation of phase change front over time is then determined 
using energy conservation at the phase change interface. In this manner, explicit expressions are derived for the 
time taken for each layer to completely melt. Results are shown to be in good agreement with finite-element 
simulations, and with the exact Stefan solution under special conditions. Key non-dimensional parameters 
that influence the nature of the two-PCM phase change process are identified, and their impact on phase change 
performance is analyzed. Quantitative predictions are presented for the conditions under which both PCMs finish 
melting at the same time, which is a favorable outcome for efficient energy storage.   

1. Introduction 

Phase change heat transfer during melting and solidification [1,2] 
plays a key role in a number of engineering systems and processes, 
including thermal management [3], energy storage [4] and 
manufacturing [5]. Important performance parameters in such pro-
cesses include total time taken for melting/freezing, total energy 
removed/stored and the efficiency of energy storage [6,7]. Moving 
boundary problems involving the phase change front often appear in the 
analysis of such applications and play a key role in determining these 
performance parameters. 

Accurate theoretical models are critical for developing a funda-
mental understanding of phase change phenomena, and thus for 
designing and optimizing practical energy storage systems. Several 
complications, including moving boundaries, convective flow in the 
melted liquid, phase change over a temperature range and temperature- 
dependent properties result in an inherently non-linear problem [1,2]. 
Exact solutions are available only for very specific, relatively simple 

problems [1,8]. A number of approximate analysis methods have been 
developed for phase change problems, including quasi-steady method 
[2], eigenfunction-based techniques [9–11], integral-based techniques 
[12] and perturbation methods [13]. Most of these methods assume a 
sufficiently slow rate of growth of the melting front, i.e., a small value of 
the Stefan number. A number of numerical simulation techniques have 
also been developed for solving phase change heat transfer problems [2, 
14]. 

While most of the literature in phase change heat transfer considers 
the melting or freezing of a single material, the use of more than one 
phase change materials (PCMs) has also been considered to a limited 
extent. Fig. 1(a) shows an illustration of two PCM slabs arranged in 
series with an external heat source. Second law and exergy analysis 
[15–17] has shown that series arrangement of multiple PCMs with 
different melting temperatures in an energy storage system may result in 
lower exergy loss than a single PCM. The optimum melting temperatures 
of the PCMs based on thermodynamics considerations have been 
determined [15,18]. Motivated by such thermodynamic predictions, the 
use of two or more PCMs in series in an energy storage system has been 
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investigated through experimental measurements relevant to solar 
power plants [19] and thermal control of power electronics [20]. Mea-
surements are available for both cylindrical [21–23] and slab-shaped 
[20,24] PCM geometries. Comparison between single-PCM and 
multi-PCM cases for practical scenarios involving a bed of encapsulated 
spherical capsules has been presented [25]. A multi-PCM energy storage 
problem involves a large number of parameters, several of which are 
difficult to vary independently in an experiment. For example, while 
experiments have been carried out to specifically investigate the effect of 
melting temperatures of three PCMs in a heat storage module [23], it is 
difficult, in general, to identify which non-dimensional parameters may 
be most influential in determining the performance characteristics of a 
multi-PCM energy storage system. 

Despite the importance of theoretical modeling of the phase change 
processes in a multi-PCM energy storage system, there is, in general, a 
lack of literature in this direction. Phase change in a multi-PCM body is 
not a straightforward problem due to the presence of multiple compli-
cations and non-linearities. For example, the simultaneous presence of 
two melting fronts makes the problem considerably complicated. 
Further, depending on the relative rates of melting, thermal conduction 
will occur in melted or unmelted regions in parallel with phase change 
propagation. The phase change process may not be complete in all PCMs 
at the same time. Therefore, shielding effects caused by the melted 
material protecting unmelted material from the hot source (and vice 
versa during the freezing process) must be correctly accounted for. 

Owing to the analytical complications outlined above, most of the 
literature on the analysis of multi-PCM energy systems is limited to 
numerical computation using finite-element [26] and finite-difference 
[27] techniques, and commercially available software [28,29]. Theo-
retical and numerical analysis of a special case containing an infinite 
number of PCMs has been presented [30]. The performance of series and 

parallel arrangements of multiple PCMs has been evaluated numerically 
[31]. The impact of convection in heat exchange with the external heat 
source has been evaluated numerically [32]. 

Despite such literature, an analytical solution for the temperature 
distribution and phase change front propagation in a multi-PCM prob-
lem may be a lot more valuable than numerical simulations in helping 
understand the fundamental nature of such a system. This may help, for 
example, identify key non-dimensional parameters and their impact on 
the phase change process, which may help optimize the performance of 
realistic systems. Key questions that an analytical model may help 
address include determining the layer that will finish melting first, the 
total time taken for melting and an optimal design of the multi-PCM 
stack to achieve desired system-level performance goals such as simul-
taneous completion of melting. While exact analytical solutions for 
phase change problems are available only in limited cases, even an 
approximate analytical solution, valid under specific conditions such as 
small Stefan number may be of much interest for design and 
optimization. 

This work presents theoretical analysis of phase change in two slabs 
of different PCMs arranged in series and heated up by a constant tem-
perature source at one end. Depending on the relative melting temper-
atures and placement of the two PCMs, two separate cases are 
considered. In each case, the melting process is systematically split into 
multiple stages, depending on which PCM has melted and which is still 
melting. Expressions for temperature distributions and rates of phase 
change propagation in both PCMs are derived using the method of 
eigenfunction expansion coupled with energy conservation at each 
phase change front. These theoretical results are used to understand the 
impact of thermophysical properties, relative thicknesses and placement 
of the PCMs on total melting time, as well as to determine the conditions 
in which both melt by the same time. 

2. Problem definition 

Consider the problem of phase change in a composite wall 
comprising two PCMs with distinct thermophysical properties, including 
melting temperature. The geometry of the problem is summarized in 
Fig. 1. The thicknesses of the two layers are L1 and L2, respectively. The 
phase change temperature, thermal conductivity, thermal diffusivity, 
heat capacity and latent heat are denoted by Tf , α, k, Cp and L , with a 
subscript to denote the specific material 1 or 2. Phase change in this 
geometry is driven by the hot wall maintained at a fixed temperature Tw 
and in direct contact with layer 1 starting at t = 0. The other end of the 
geometry is subjected to convective cooling characterized by a 
convective heat transfer coefficient h, which, when set to zero or a very 
large number results in the special cases of adiabatic or isothermal 
boundary, respectively. This problem is posed here as a melting prob-
lem, i.e., Tw > Tf ,1 and Tw > Tf ,2, although a similar technique can be 

Nomenclature 

Bi Biot number 
Cp heat capacity (Jkg− 1K− 1) 
k thermal conductivity (Wm− 1K− 1) 
k̄2 ratio of thermal conductivities 
L layer thickness (m) 
L latent heat of phase change (Jkg− 1) 
Ste Stefan number 
t time (s) 
T temperature (K) 
x spatial coordinate (m) 
α thermal diffusivity (m2s− 1) 
ᾱ2 ratio of thermal diffusivities 

γ non-dimensional interface location 
ϕ non-dimensional melting temperature of higher-melting 

layer 
τ non-dimensional time 
θ non-dimensional temperature 
ξ non-dimensional spatial coordinate 

Subscripts 
A,B,C stages 
f phase change temperature 
w wall 
LS phase change front location 
1,2 layer number  

Fig. 1. (a) Schematic of the problem considered here, showing a stack of two 
PCMs subjected to heating from one end that results in phase change propa-
gation in both layers. (b) Detailed geometry of the problem showing liquid and 
solid phases, as well as the phase change front locations in both layers at a 
specific time. 
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used to analyze the opposite problem of freezing. One-dimensional heat 
diffusion and phase change propagation is assumed. Convective flow 
effects in the newly melted materials are neglected. This is a reasonable 
assumption for several applications in which the Rayleigh number is 
sufficiently small to neglect natural convection. Further, all thermo-
physical properties are assumed to be constant, uniform and indepen-
dent of temperature. This is also a reasonable assumption in cases where 
the temperature rise is small. 

This problem is characterized by two distinct phase change fronts 
that propagate towards the right. Due to the distinct melting tempera-
tures and other thermophysical properties of the two materials, phase 
change in the two layers may propagate at different rates, and either 
simultaneously or in series. The phase change process will continue until 
both materials are completely melted. In general, the interest is in 
determining the temperature distributions T1(x, t) and T2(x,t), as well as 
the locations of the two phase change fronts xLS,1(t) and xLS,2(t), as 
shown in Fig. 1(b). Note that, with reference to Fig. 1(b), xLS,1(t) and 
xLS,2(t) are measured from the left ends of layers 1 and 2, respectively. In 
the coordinate system shown, xLS,1(t) is measured from x = 0 and xLS,2(t)
from x = L1. The total time taken for melting is also a global perfor-
mance parameter of interest. Determining a design that results in 
simultaneous completion of melting in both layers is also of interest. 

This problem is considerably complicated by the presence of two 
distinct but inter-dependent phase change fronts and shielding of the 
phase change front by previously melted material. A robust theoretical 
understanding and modeling of this problem must account for simulta-
neous diffusion and phase change within both materials. While exact 
solutions may exist for simplified problems such as one-dimensional 
phase change propagation in a single PCM [1], in the present case of 
two PCMs, an approximate analytical solution may need to be derived. 

In order to analyze this two-PCM problem, two distinct cases are 
considered separately. In the first case, the melting temperature of the 
first layer next to the hot wall is lower than that of the second layer, i.e., 
Tf ,1 < Tf ,2, and in the second case, Tf ,1 > Tf ,2. Analyses of these cases are 
presented in two sub-sections below. 

3. Solution of Case I: Tf ,1 < Tf ,2 

It is assumed that both materials are initially at a uniform temper-
ature corresponding to the lower of the two melting temperatures, i.e., 
Tf ,1. Since layer 1 melts at a temperature lower than layer 2 and is next to 
the hot source, therefore, layer 1 will begin to melt immediately. The 
melting front in layer 1 will then proceed rightwards until the entire 
layer 1 has melted. Since all regions beyond the melting front of the first 
layer must be at Tf ,1, which is lower than Tf ,2, therefore, no melting will 
occur in layer 2 until all of layer 1 has melted. Afterwards, sensible 
heating of the two layers will occur until the interface temperature 
reaches the melting temperature of the second layer, Tf ,2. At this point, 
the second layer will begin to melt, and heat conducted through the first 
layer will continue to propagate the melting front of the second layer 
rightwards until all of layer 2 has melted. 

It is helpful to split the entire process described above into three 
separate stages, each of which is characterized by distinct physical 
processes governed by a distinct set of equations. During Stage A, only 
layer 1 melts, whereas layer 2 temperature does not rise since the ma-
terial behind the melting front must remain at the initial temperature. 
Stage A is complete when layer 1 is fully melted. This is followed by 
Stage B, during which, heat from the hot wall continues to conduct into 
the two layers, resulting in temperature rise in both layers but no further 
melting. Stage B is complete when the temperature at the interface 
reaches Tf ,2. At this time, layer 2 is ready to melt. In the subsequent 
Stage C, layer 2 melts due to heat conducted into layer 2 from layer 1. 
Each of these Stages is solved in sequence. Temperature field at the end 
of each Stage provides the initial condition for the next Stage. 

Before a mathematical description of each of these Stages is pre-

sented, it is helpful to non-dimensionalize the problem using the 
following scheme: ξ = x

L1+L2
, τ = α1t

(L1+L2)
2, θi =

Ti − Tf ,1
Tw − Tf ,1

, Stei =
Cp,i(Tw − Tf ,1)

L i
, 

ξLS,i =
xLS,i

L1+L2
, ϕ2 =

Tf ,2 − Tf ,1
Tw − Tf ,1

, γ = L1
L1+L2

, ᾱ2 = α2
α1

, k̄2 = k2
k1

; Bi =
h(L1+L2)

k1
. Note 

that i = 1,2. The temperature difference (Tw − Tf ,1) based on the lower of 
the two melting temperatures is used for non-dimensionalization. Based 
on this, the following sub-sections mathematically describe the tem-
perature fields and melting front locations during each of the three 
Stages. 

3.1. Stage A: melting of layer 1 

Since Tf ,1 < Tf ,2, therefore, only layer 1 melts during Stage A, 
because until all of layer 1 has melted, layer 2 temperature can not begin 
to rise above the initial temperature. Therefore, during Stage A, 
θ2(ξ, τ) = 0 throughout and ξLS,2(τ) = 0. Note that ξLS,2 is measured 
relative to the interface located at ξ = γ. On the other hand, temperature 
field in the melted region of layer 1 (0 < ξ < ξLS,1(τ)) satisfies the 
following conservation equation [2] 

∂2θ1

∂ξ2 =
∂θ1

∂τ (1)  

along with the following boundary conditions: 

θ1 = 1, (ξ = 0) (2)  

θ1 = 0,
(
ξ = ξLS,1(τ)

)
(3)  

dξLS,1

dτ = − Ste1

(
∂θ1

∂ξ

)

ξ=ξLS,1

(4) 

The melting problem represented by Eqs. (1)-(4) is a straightforward 
one-dimensional Stefan problem with constant wall temperature, for 
which, the well-known analytical solution is given by [1] 

θ1(ξ, τ) = 1 −

erf

(

ξ
2
̅̅
τ

√

)

erf

(

ξLS,1
2
̅̅
τ

√

) (5)  

in the region 0 < ξ < ξLS,1. The melting front location is given by [1] 

ξLS,1(τ) = 2λ
̅̅̅
τ

√
(6)  

where λ satisfies the equation x⋅erf(x)⋅exp(x2) = Ste1̅̅
π

√ . 
In the remainder of layer 1 beyond the melting front as well as all of 

layer 2, the temperature remains unchanged during Stage A, i.e., 
θ1(ξ, τ) = 0 for ξLS,1(τ) < ξ < γ and θ2(ξ, τ) = 0 for γ < ξ < 1. This com-
pletes the mathematical description of the temperature fields and 
melting front locations during Stage A. This Stage ends at τ = τ*

A when 
the melting front in the first layer reaches the interface between the two 
layers. Mathematically, this may be written as ξLS,1(τ*

A) = γ, or, from Eq. 
(6), τ*

A = γ2/4λ2. Using Eq. (5), the temperature distribution in layer 1 at 
τ = τ*

A, θ*
1,A(ξ) = 1 −

erf(ξλ/γ)
erf(λ) provides the initial condition for Stage B, 

which is described in detail next. 

3.2. Stage B: sensible heating of layers 1 and 2 

In Stage B, sensible heating and temperature rise occurs in both 
layers – layer 1, which is already completely melted and layer 2, which is 
still solid and below its melting temperature. The completion of Stage B 
corresponds to the interface between layers reaching the melting tem-
perature of layer 2, ϕ2, at which point, layer 2 is ready to melt. 

Since no phase change occurs during Stage B, therefore, both melting 
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fronts remain stationary, i.e., ξLS,1(τ) = γ, ξLS,2(τ) = 0 throughout. 
However, the temperature field does evolve due to diffusion of heat into 
the layers. The temperature field in layer 1, θ1 satisfies the conservation 
equation given by Eq. (1) for 0 < ξ < γ, whereas, in the region γ < ξ < 1, 
the temperature field in layer 2, θ2 satisfies a similar equation given by 
[2] 

∂2θ2

∂ξ2 =
1
ᾱ2

∂θ2

∂τ (7) 

The two temperature fields also satisfy boundary and interface 
conditions given by Eq. (2) as well as 

θ1 = θ2, (ξ = γ) (8)  

∂θ1

∂ξ
= k2

∂θ2

∂ξ
, (ξ = γ) (9)  

− k2
∂θ2

∂ξ
= Bi⋅θ2, (ξ = 1) (10) 

The initial condition for this pure-diffusion two-layer problem is 
given by the final temperature at the end of Stage A for layer 1 and zero 
temperature for layer 2, i.e., 

θ1 = θ*
1,A(ξ); θ2 = 0,

(
τ = τ*

A

)
(11) 

This problem can be solved using separation of variables method and 
the use of quasi-orthogonality of multilayer eigenfunctions [14,33]. In 
brief, the temperature fields are first split into two components in order 
to account for the non-homogeneity in the boundary condition. Then, by 

requiring the solution to satisfy the boundary and interface conditions 
given by Eqs. (2) and (8)-(10), it can be shown that the solution is given 
by 

θ1(ξ, τ) = 1 +
k̄2

γ(1 − k̄2) −
k̄2+Bi

Bi

ξ +
∑∞

n=1
cnsin(ωnξ)exp

(
− ω2

n

(
τ − τ*

A

))
(12)    

where the eigenvalues ωn are given by roots of the following eigen-
function 

sin(xγ)cos
(

xγ̅̅ ̅̅
ᾱ2

√

)

−
̅̅̅̅
ᾱ2

√

k̄2
cos(xγ)sin

(
xγ̅̅ ̅̅
ᾱ2

√

)

Bisin
(

x̅̅̅̅
ᾱ2

√

)

+ k̄2̅̅ ̅̅
ᾱ2

√ xcos
(

x̅̅̅̅
ᾱ2

√

)

+

sin(xγ)sin
(

xγ̅̅ ̅̅
ᾱ2

√

)

+
̅̅̅̅
ᾱ2

√

k̄2
cos(xγ)cos

(
xγ̅̅ ̅̅
ᾱ2

√

)

Bicos
(

x̅̅̅̅
ᾱ2

√

)

+ k̄2̅̅ ̅̅
ᾱ2

√ xcos
(

x̅̅̅̅
ᾱ2

√

)

= 0 (14)  

and the coefficients cn are given by 

cn =
1

Nn

∫γ

0

⎛

⎜
⎝θ*

1A(ξ) −

⎛

⎜
⎝1+

k̄2

γ(1 − k̄2) −
k̄2+Bi

Bi

ξ

⎞

⎟
⎠

⎞

⎟
⎠sin(ωnξ)dξ

−
k̄2

ᾱ2

∫1

γ

⎛

⎜
⎝

− (k̄2 + Bi)

Bi
(

γ(1 − k̄2) −
k̄2+Bi

Bi

)

(

1 −
Bi

k̄2 + Bi
ξ
)
⎞

⎟
⎠

[(

sin(ωnγ)cos
(

ωnγ
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)sin

(
ωnγ
̅̅̅̅̅
ᾱ2

√

))

cos
(

ωn
̅̅̅̅̅
ᾱ2

√ ξ
)

+

(

sin(ωnγ)sin
(

ωnγ
̅̅̅̅̅
ᾱ2

√

)

+

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)cos

(
ωnγ
̅̅̅̅̅
ᾱ2

√

))

sin
(

ωn
̅̅̅̅̅
ᾱ2

√ ξ
)]

dξ

(15)  

and the norms Nn are given by   

Since Stage B involves only diffusion while layer 2 is below its 
melting temperature and layer 1 has already fully melted, therefore, the 
melting fronts remain stationary during this Stage. Stage B finishes at 
τ = τ*

B when the temperature at the interface reaches the melting tem-
perature of layer 2, i.e., θ1(γ, τ*

B) = ϕ2. By combining this requirement 
with Eq. (12), it can be shown that τ*

B is given by the root of the following 

equation: 

∑∞

n=1
cnsin(ωnγ)exp

(
− ω2

n

(
τ − τ*

A

))
= ϕ2 − 1 −

k̄2

γ(1 − k̄2) −
k̄2+Bi

Bi

γ (17) 

θ2(ξ, τ) =
− (k̄2 + Bi)

Bi
(

γ(1 − k̄2) −
k̄2+Bi

Bi

)

(

1 −
Bi

k̄2 + Bi
ξ
)

+
∑∞

n=1
cn

[(

sin(ωnγ)cos
(

ωnγ
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)sin

(
ωnγ
̅̅̅̅̅
ᾱ2

√

))

cos
(

ωn
̅̅̅̅̅
ᾱ2

√ ξ
)

+

(

sin(ωnγ)sin
(

ωnγ
̅̅̅̅̅
ᾱ2

√

)

+

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)cos

(
ωnγ
̅̅̅̅̅
ᾱ2

√

))

sin
(

ωn
̅̅̅̅̅
ᾱ2

√ ξ
)]

exp
(
− ω2

n

(
τ − τ*

A

))
(13)   

Nn =

∫γ

0

sin2(ωnξ)dξ

+
k̄2

ᾱ2

∫1

γ

[(

sin(ωnγ)cos
(

ωnγ
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)sin

(
ωnγ
̅̅̅̅̅
ᾱ2

√

))

cos
(

ωn
̅̅̅̅̅
ᾱ2

√ ξ
)

+

(

sin(ωnγ)sin
(

ωnγ
̅̅̅̅̅
ᾱ2

√

)

+

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)cos

(
ωnγ
̅̅̅̅̅
ᾱ2

√

))

sin
(

ωn
̅̅̅̅̅
ᾱ2

√ ξ
)]2

dξ (16)   
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The final temperature fields in the two layers at τ = τ*
B are given by 

θ*
1,B(ξ) = 1 +

k̄2

γ(1 − k̄2) −
k̄2+Bi

Bi

ξ +
∑∞

n=1
cnsin(ωnξ)exp

(
− ω2

n

(
τ*

B − τ*
A

))
(18)  

θ*
2,B(ξ) =

− (k̄2 + Bi)

Bi
(

γ(1 − k̄2) −
k̄2+Bi

Bi

)

(

1 −
Bi

k̄2 + Bi
ξ
)

+
∑∞

n=1
cn

[(

sin(ωnγ)cos
(

ωnγ
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)sin

(
ωnγ
̅̅̅̅̅
ᾱ2

√

))

cos
(

ωn
̅̅̅̅̅
ᾱ2

√ ξ
)

−

(

sin(ωnγ)sin
(

ωnγ
̅̅̅̅̅
ᾱ2

√

)

+

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)cos

(
ωnγ
̅̅̅̅̅
ᾱ2

√

))

sin
(

ωn
̅̅̅̅̅
ᾱ2

√ ξ
)]

exp
(
− ω2

n

(
τ*

B − τ*
A

))

(19)  

3.3. Stage C: sensible heating of layer 1 and melting of layer 2 

At the end of Stage B, the temperature at the interface between layers 
is ϕ2 and layer 2 is now ready to undergo phase change. Further thermal 
conduction causes the initiation of phase change in layer 2. Therefore, 
Stage C is characterized by the melting of layer 2 caused by heat con-
ducted into the layer through the already melted layer 1. Only sensible 
heating occurs in layer 1. Moreover, some heat transfer into the solid 
region of layer 2 beyond its melting front also occurs. 

The problem of phase change of a material mediated by thermal 
conduction through other non-melting layers has been solved recently 
[10,11]. In the present case, at any time, one may consider the melted 
region of layer 2, (γ < ξ < γ + ξLS,2(τ)) to be sandwiched between two 
non-melting regions – layer 1 (0 < ξ < γ) and the unmelted region of 
layer 2 (γ + ξLS,2(τ) < ξ < 1). For convenience, the two regions of layer 2 
are denoted as 2a and 2b, respectively. 

Based on the recently developed technique for solving such problems 
[10,11], expressions for temperature distributions in the three layers are 
written in order to satisfy the respective governing equations. Eigen-
values of the problem and various coefficients appearing in the series 
solution are determined by requiring the solution to satisfy various 
boundary and interface conditions, along with the use of principle of 
quasi-orthogonality of the eigenfunctions. In the present case during 
Stage C, the temperature distribution in layer 1 satisfies Eq. (1) in the 
range 0 < ξ < γ, whereas temperature distribution in layers 2a and 2b 
satisfy Eq. (7) in the range γ < ξ < γ + ξLS,2(τ) and γ + ξLS,2(τ) < ξ < 1, 
respectively. The initial condition for the temperature field comes from 
the temperature field at the end of the previous Stage. 

The problem for layer 2b is uncoupled from the other two layers 
since the boundary conditions for this layer (θ2b = ϕ2 at ξ = γ +ξLS,2 and 
− k̄2

∂θ2b
∂ξ = Bi⋅θ2b at ξ = 1) are completely independent of the other two 

layers. This problem can be solved directly using the method of sepa-
ration of variables, resulting in the following solution for temperature 
field in layer 2b: 

θ2b(ξ, τ) = ϕ2

(

1+
Bi

k̄2 + Bi
(
1 − γ − ξLS,2

)
(
γ + ξLS,2 − ξ

)
)

+
∑∞

n=1
ĉn

[

cos
(

ω̂n
̅̅̅̅̅
ᾱ2

√ ξ
)

− cot
(

ω̂n
̅̅̅̅̅
ᾱ2

√
(
γ + ξLS,2

)
)

sin
(

ω̂n
̅̅̅̅̅
ᾱ2

√ ξ
)]

exp
(

− ω̂2
n

(
τ − τ*

B

))

(20) 

where the eigenvalues ω̂n are roots of 

k̄2x̅̅̅̅
ᾱ2

√ − Bicot
(

x̅̅̅̅
ᾱ2

√

)

cot
(

x̅̅̅̅
ᾱ2

√
(
γ + ξLS,2

)
)+

k̄2x
̅̅̅̅̅
ᾱ2

√ cot
(

x
̅̅̅̅̅
ᾱ2

√

)

+ Bi = 0 (21) 

Since the initial temperature at τ = τ*
B for this problem is given by 

θ*
2,B(ξ), therefore, using the principle of orthogonality, the coefficients ̂cn 

may be written as 

ĉn =
1

N̂ n

∫1

γ+ξLS,2

[

θ*
2,B(ξ) − ϕ2

(

1+
Bi

k̄2 + Bi
(
1 − γ − ξLS,2

)
(
γ + ξLS,2 − ξ

)
)]

[

cos
(

ω̂n
̅̅̅̅̅
ᾱ2

√ ξ
)

− cot
(

ω̂n
̅̅̅̅̅
ᾱ2

√
(
γ + ξLS,2

)
)

sin
(

ω̂n
̅̅̅̅̅
ᾱ2

√ ξ
)]

dξ

(22)  

and 

N̂ n =

∫1

γ+ξLS,2

[

cos
(

ω̂n
̅̅̅̅̅
ᾱ2

√ ξ
)

− cot
(

ω̂n
̅̅̅̅̅
ᾱ2

√
(
γ + ξLS,2

)
)

sin
(

ω̂n
̅̅̅̅̅
ᾱ2

√ ξ
)]2

dξ (23) 

In contrast with layer 2b, the problems in layers 1 and 2a are coupled 
with each other due to the interface conditions at ξ = γ. Three boundary 
and interface conditions for the problem are given by Eqs. (2), (8) and 
(9), respectively. Additionally, temperature at ξ = γ + ξLS,2(τ) must be 
equal to the melting temperature ϕ2. A solution for the two temperature 
fields may be derived by first splitting into two parts to account for the 
non-homogeneity and then writing a series solution for the remainder. 
When inserted into the boundary and interface conditions, this results in 
a set of four homogeneous equations in the coefficients appearing in the 
series solution. The determinant of these equations is then required to be 
zero in order to ensure a non-trivial solution, which results in the 
eigenequation. Finally, the remaining coefficients are determined using 
the initial condition, given by the temperature distribution at the end of 
Stage B, and the principle of quasi-orthogonality. Complete details of 
this technique may be found in a recent paper that solved the problem of 
phase change propagation in a PCM due to heat diffusing through a non- 
melting layer [10]. The final solution is found to be 

θ1(ξ, τ) = 1 −
k̄2(1 − ϕ2)ξ
γk̄2 + ξLS,2

+
∑∞

n=1
cnsin(ωnξ)exp

(
− ω2

n

(
τ − τ*

B

))
(24)  

Table 1 
Summary of governing equations and results for temperature profiles and 
melting front locations in various Stages of the two Cases considered in this 
work.  

Case I: Tf ,1 < Tf ,2  

Governing 
equation 

Temperature 
profile 

Phase change 
front location 

Stage A: Melting of 
layer 1 

(1) (5) (6) 

Stage B: Sensible 
heating of both 
layers 

(1), (7) (12)-(16) No melting occurs 
in this Stage 

Stage C: Melting of 
layer 2 

(1), (7) (20)-(28) (29)  

Case II: Tf ,1 > Tf ,2  

Governing 
equation 

Temperature 
profile 

Phase change 
front location 

Stage A: Melting of layers 
1 and 2 

(1), (7) (30)-(36) (37)-(38) 

Stage B: Melting of layer 2 
(if layer 1 has fully 
melted in Stage A) 

(1), (7) (43)-(47) (48) 

Stage B: Melting of layer 1 
(if layer 2 has fully 
melted in Stage A) 

(1), (7) (49)-(55) (56)  
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θ2a(ξ,τ)=
γ+ξLS,2 − ϕ2γ(1− k̄2)− (1− ϕ2)ξ

γk̄2+ξLS,2
+
∑∞

n=1
cn

(

sin(ωnγ)cos
(

ωn(γ− ξ)
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)sin

(
ωn(γ− ξ)

̅̅̅̅̅
ᾱ2

√

))

exp
(
− ω2

n

(
τ− τ*

B

))

(25)  

where the eigenvalues ωn are roots of 

cot
(

xξLS,2
̅̅̅̅̅
ᾱ2

√

)

+

̅̅̅̅̅
ᾱ2

√

k̄2
cot(xγ) = 0 (26) 

Further, similar to the layer 2b problem, the coefficients cn are ob-
tained using the initial condition at τ = τ*

B as follows: 

cn =
1

Nn

⎡

⎢
⎣

∫γ

0

(

θ*
1,B(ξ) − 1+

k̄2(1 − ϕ2)ξ
γk̄2 + ξLS,2

)

sin(ωnξ)dξ+
k̄2

ᾱ2

∫γ+ξLS,2

γ
(

θ*
2,B(ξ) −

γ + ξLS,2 − ϕ2γ(1 − k̄2) − (1 − ϕ2)ξ
γk̄2 + ξLS,2

)(

sin(ωnγ)cos
(

ωn(γ − ξ)
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)sin

(
ωn(γ − ξ)

̅̅̅̅̅
ᾱ2

√

))

dξ

⎤

⎥
⎦

(27)  

where 

Nn=

∫γ

0

sin2(ωnξ)dξ

+
k̄2

ᾱ2

∫γ+ξLS,2

γ

(

sin(ωnγ)cos
(

ωn(γ− ξ)
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)sin

(
ωn(γ− ξ)

̅̅̅̅̅
ᾱ2

√

))2

dξ

(28) 

Once solved, the rate of growth of the melting front in layer 2 may be 
written as  

The initial condition for Eq. (28) is given by ξLS,2(τ*
B) = 0. Eq. (29) 

provides an explicit expression for the rate of change of ξLS,2 at any time, 
from where, ξLS,2 can be computed as a function of time. This completes 
the solution of the melting problem during Stage C, which finishes at τ =
τ*

C when the melting front in layer 2 reaches the right-side end of the 
geometry, i.e., ξLS,2(τ*

C) = 1 − γ. 
Taken together, the temperature distributions and locations of the 

two melting fronts described above in each Stage completely describe 
the solution for Case I of the two-PCM problem, in which, the material of 
the first layer melts at a temperature lower than that of the second layer. 
The total melting time is given simply by τ*

C. A summary of governing 
equations and equations that describe the temperature field and phase 
change front location during each Stage for this Case is presented in 
Table 1. 

Case II, in which, the melting temperature of the material of the 
second layer is lower is considered in the next sub-section. 

4. Solution of Case II: Tf ,1 > Tf ,2 

In this case, the first layer melts at a higher temperature than the 
second layer. It is helpful to non-dimensionalize this problem slightly 
differently by using Tf ,2 instead of Tf ,1 as follows: θi =

Ti − Tf ,2
Tw − Tf ,2

, Stei =

Cp,i(Tw − Tf ,2)

L i
, ϕ1 =

Tf ,1 − Tf ,2
Tw − Tf ,2

. Note that i = 1,2. Other non-dimensionalization 
definitions are the same as Case I. It is assumed that both layers are 
initially at the lower of the two melting temperatures, i.e., θi(ξ, 0) =

0 (i = 1, 2). 
Unlike Case I where the two layers melt in series, in this Case, 

thermal transport from the hot wall raises the temperature in some re-
gions in both layers to above their respective melting temperature 
immediately after τ = 0. Therefore, the melting processes in the two 
layers proceed in parallel with each other. This makes the mathematical 
analysis for Case II somewhat more complicated compared to Case I. 

Heat transfer and phase change in Case II is divided into two distinct 
Stages – in Stage A, both layers melt simultaneously and by the end of 
Stage A, either layer 1 or layer 2 has melted completely. The specific 
nature of heat transfer and phase change in Stage B is determined by 
which layer has melted completely in Stage A. Therefore, two distinct 
scenarios in Stage B must be considered separately. 

4.1. Stage A: melting of layers 1 and 2 

As soon as the two-layer body is exposed to high temperature on the 
left wall, thermal conduction from the left wall results in the initiation of 
melting in both layers 1 and 2. The two melting fronts simultaneously 
propagate rightwards in both layers until one of the layers is completely 
melted. Stage A of this Case considers this time duration, starting from 
τ = 0 when the heating process begins. During this time, ξLS,1(τ) and 
ξLS,2(τ) represent the locations of the two melting fronts, respectively, 
measured from the left side and from the interface, respectively. 
Accordingly, the entire region may be split into three sub-regions with 

non-zero temperature fields – region 1a comprising the melted region of 
layer 1 (0 < ξ < ξLS,1(τ)), region 1b comprising the solid region of layer 
1 (ξLS,1(τ) < ξ < γ), and region 2 comprising the melted region of layer 2 
(γ < ξ < γ+ ξLS,2(τ)). Note that layer 2 beyond the melting front, i.e., ξ >

γ + ξLS,2(τ) remains at zero temperature and, therefore, does not 
participate in heat transfer. 

In order to determine the temperature fields in these regions, as well 
as the locations of the melting fronts, the governing energy equations 
and associated boundary/interface conditions must be written and 
solved. Firstly, the temperature field in the region 1a, θ1a(ξ, τ), satisfies 
Eq. (1) in the region 0 < ξ < ξLS,1(τ), as well as the boundary conditions 
given by θ1a = 1 at ξ = 0 and θ1a = ϕ1 at ξ = ξLS,1. Finally, this region is 
initially at zero temperature. This problem can be easily solved by first 
splitting into two parts to account for the non-homogeneities in the 

dξLS,2

dτ = − α2Ste2

[(
∂θ2a

∂ξ

)

−

(
∂θ2b

∂ξ

)]

ξ=γ+ξLS,2

= − α2Ste2

[
ϕ2 − 1

γk2 + ξLS,2
+
∑∞

n=1
cn

ωn
̅̅̅̅̅
α2

√

[

− sin(ωnγ)sin
(ωnξLS,2

̅̅̅̅̅
α2

√

)

+

̅̅̅̅̅
α2

√

k2
cos(ωnγ)cos

(ωnξLS,2
̅̅̅̅̅
α2

√

)]

exp
(
− ω2

n

(
τ − τ*

B

))
+ ϕ2

Bi
k2 + Bi

(
1 − γ − ξLS,2

)+
∑∞

n=1
ĉn

ω̂n
̅̅̅̅̅
α2

√

[

sin
(ω̂n

(
γ + ξLS,2

)

̅̅̅̅̅
α2

√

)

+ cot
(

ω̂n
̅̅̅̅̅
α2

√
(
γ + ξLS,2

)
)

cos
(ω̂n

(
γ + ξLS,2

)

̅̅̅̅̅
α2

√

)]

exp
(
− ω̂2

n

(
τ − τ*

B

))
]

(29)   
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boundary conditions, followed by use of the separation of variables 
method. This results in the following temperature distribution in region 
1(a) 

θ1a(ξ, τ) = 1 − (1 − ϕ1)
ξ

ξLS,1
+
∑∞

n=1
ĉnsin(ω̂nξ)exp

(
− ω̂2

nτ
)

(30)  

where ω̂n = nπ
ξLS,1 

and coefficients ĉn are obtained using orthogonality as 
follows: 

ĉn =
2

ξLS,1

∫ξLS,1

0

−

[

1 − (1 − ϕ1)
ξ

ξLS,1

]

sin(ω̂nξ)dξ (31) 

The temperature fields in regions 1b and 2a satisfy the conservation 
equations given by Eqs. (1) and (7) in regions ξLS,1(τ) < ξ < γ and γ < ξ 
< γ + ξLS,2(τ), respectively. Unlike the temperature field in region 1a, 
these temperature fields are coupled with each other through the 
interface conditions. The boundary and interface conditions for these 
regions are given by θ1b = ϕ1 at ξ = ξLS,1, θ2a = 0 at ξ = γ + ξLS,2, θ1b =

θ2a at ξ = γ and ∂θ1b
∂ξ = k̄2

∂θ2a
∂ξ at ξ = γ. Both temperature fields are initially 

zero. In order to derive a solution for this two-layer diffusion problem, a 
substitution may first be carried out to account for the non-homogeneity 
in the boundary condition at ξ = ξLS,1. This may be followed by writing 
series solutions for each temperature field using a single set of eigen-
values, then using the homogenized boundary and interface conditions 
to derive an eigenequation and determine the coefficients in the series 
solution. The last remaining coefficient may then be derived using the 
initial condition and the principle of quasi-orthogonality of eigenfunc-
tions. The details of these mathematical procedures may be found in 
well-known textbooks [14,34]. Following these steps, the final solutions 
for the temperature distributions may be derived as follows 

θ1b(ξ, τ) = ϕ1
k̄2ξ − k̄2γ − ξLS,2

k̄2ξLS,1 − k̄2γ − ξLS,2
+
∑∞

n=1
cnsin

(
ωn
(
ξLS,1 − ξ

))
exp
(
− ω2

nτ
)

(32)  

θ2a(ξ, τ) =ϕ1
ξ − γ − ξLS,2

k̄2ξLS,1 − k̄2γ − ξLS,2
+
∑∞

n=1
cn

(

sin
(
ωn
(
ξLS,1 − γ

))

cos
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos
(
ωn
(
ξLS,1 − γ

))

sin
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

))

exp
(
− ω2

nτ
)

(33)  

where the eigenvalues ωn are given by roots of the following eigeneq-
uation 

cot
(

xξLS,2
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cot
(
x
(
ξLS,1 − γ

))
= 0 (34)  

and the coefficients cn are given by 

cn =

−
ϕ1

Nn

⎡

⎢
⎣

∫γ

ξLS,1

k̄2ξ − k̄2γ − ξLS,2

k̄2ξLS,1 − k̄2γ − ξLS,2
sin
(
ωn
(
ξLS,1 − ξ

))
dξ

+
k̄2

ᾱ2

∫γ+ξLS,2

γ

ξ − γ − ξLS,2

k̄2ξLS,1 − k̄2γ − ξLS,2

(

sin
(
ωn
(
ξLS,1 − γ

))
cos
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos
(
ωn
(
ξLS,1 − γ

))
sin
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

))

dξ

⎤

⎥
⎦

(35)  

and 

Nn =

∫γ

ξLS,1

sin2( ωn
(
ξLS,1 − ξ

))
dξ+

k̄2

ᾱ2

∫γ+ξLS,2

γ

[

sin
(
ωn
(
ξLS,1 − γ

))
cos
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos
(
ωn
(
ξLS,1 − γ

))
sin
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

)]2

dξ

(36) 

Having determined the temperature distributions in each region, as 
given by Eqs. (30), (32) and (33), the principle of energy conservation at 
the two phase change fronts may be used to determine their rates of 
propagation. This may be shown to result in the following ordinary 
differential equations that provide explicit expressions for the rates of 
propagation of the two melting fronts: 

dξLS,1

dτ = − Ste1

(
∂θ1a

∂ξ
−

∂θ1b

∂ξ

)

ξ=ξLS,1

= − Ste1

(
ϕ1 − 1

ξLS,1
+
∑∞

n=1
ĉn ω̂ncos

(
ω̂nξLS,1

)

exp
(
− ω̂2

nτ
)
−

k̄2ϕ1

k̄2ξLS,1 − k̄2γ − ξLS,2
+
∑∞

n=1
cnωnexp

(
− ω2

nτ
)
)

(37)  

dξLS,2

dτ = − ᾱ2Ste2

(
∂θ2a

∂ξ

)

ξ=γ+ξLS,2

= − ᾱ2Ste2

(
ϕ1

k̄2ξLS,1 − k̄2γ − ξLS,2

−
∑∞

n=1
cn

ωn
̅̅̅̅̅
ᾱ2

√

(

sin
(
ωn
(
ξLS,1 − γ

))
sin
(ωnξLS,2

̅̅̅̅̅
ᾱ2

√

)

+

̅̅̅̅̅
ᾱ2

√

k̄2
cos
(
ωn
(
ξLS,1 − γ

))

cos
(ωnξLS,2

̅̅̅̅̅
ᾱ2

√

))

exp
(
− ω2

nτ
)
)

(38) 

Eqs. (37) and (38), along with initial conditions ξLS,1 = 0 and ξLS,2 =

0 at τ = 0 may be used to easily determine the locations of the phase 
change fronts at any time. 

Depending on the relative values of parameters such as the Stefan 
numbers as well as ᾱ2, ϕ1 and γ, the melting process of either layer 1 or 
layer 2 may complete earlier. Therefore, the time at which Stage A 
finishes may be written as τ*

A = min(τ*
1,A, τ*

2,A) where τ*
1,A and τ*

2,A are 
given by the roots of ξLS,1(τ) = γ and ξLS,2(τ) = 1 − γ, respectively. 

The location of the phase change front in the partially melted layer at 
the end of Stage A may be written as ξ*

LS,2A = ξLS,2(τ*
A) if layer 1 is fully 

melted at the end of Stage A (i.e., if τ*
1,A < τ*

2,A) or ξ*
LS,1A=ξLS,1(τ*

A) in case 
layer 2 is fully melted at the end of Stage A (i.e., if τ*

1,A > τ*
2,A). 

If layer 1 is fully melted at the end of Stage A, then the initial con-
dition for the next Stage, which is the temperature at the end of Stage A 
may be written as follows: 

θ*
1,A(ξ) = θ1a

(
ξ, τ*

A

)
0 < ξ < γ (39)  

θ*
2,A(ξ) =

θ2a
(
ξ, τ*

A

)
γ < ξ < γ + ξ*

LS,2A

0 γ + ξ*
LS,2A < ξ < 1

(40) 

In contrast, if layer 2 is fully melted at the end of Stage A, then one 
may write 

θ*
1,A(ξ) =

θ1a
(
ξ, τ*

A

)

θ1b
(
ξ, τ*

A

)
0 < ξ < ξ*

LS,1A

ξ*
LS,1A < ξ < γ

(41)  

θ*
2,A(ξ) = θ2a

(
ξ, τ*

A

)
γ < ξ < 1 (42)  

4.2. Stage B: completion of melting of the partially melted layer 

Depending on the values of τ*
1,A and τ*

2,A, one of the two layers re-
mains incompletely melted at end of the Stage A, while the other has 
melted fully. For example, if τ*

1,A < τ*
2,A, then layer 1 has melted 
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completely and some region of layer 2 is not yet melted. Conversely, if 
τ*

2,A < τ*
1,A, then layer 2 has melted completely and some region of layer 

1 is not yet melted. Since the rest of the phase change process proceeds 
very differently depending on which layers is not fully melted, therefore, 
these two cases must be considered separately. This is addressed in the 
following sub-sections: 

4.2.1. Stage B for τ*
1,A ≤ τ*

2,A: Completion of melting of layer 2 
In this case, layer 1 is fully melted at the start of Stage B. Therefore, 

during Stage B, layer 1 undergoes sensible temperature rise while heat 
conducted into layer 2 through layer 1 results in further propagation of 
the phase change front in layer 2. This problem may be modeled as a 
recently solved encapsulant-PCM problem [10], in which two non-PCM 
encapsulants shield a PCM layer from melting. In this case, the tem-
perature field in the first and second encapsulant layers satisfy Eq. (1) in 
the region 0 < ξ < γ and Eq. (7) in the region γ < ξ < γ + ξ*

LS,2A. The 
temperature field in the region in layer 2 that melts during Stage B is also 
governed by Eq. (7) in the region γ + ξ*

LS,2A < ξ < γ+ ξLS,2(τ). The 
associated boundary and interface conditions are θ1 = 1 at ξ = 0, θ2 = 0 
at ξ = γ + ξLS,2, θ1 = θ2 at ξ = γ and ∂θ1

∂ξ = k̄2
∂θ2
∂ξ at ξ = γ. Similar to the 

technique used in previous sections, the temperature distribution in this 
case can be derived as follows: 

θ1(ξ, τ) = 1 −
k̄2ξ

k̄2γ + ξLS,2
+
∑∞

n=1
cnsin(ωnξ)exp

(
− ω2

n

(
τ − τ*

A

))
(43)  

θ2(ξ, τ) =
γ + ξLS,2 − ξ
k̄2γ + ξLS,2

+
∑∞

n=1
cn

(

sin(ωnγ)cos
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

)

+

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)

sin
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

))

exp
(
− ω2

n

(
τ − τ*

A

))

(44)  

where the eigenvalues ωn satisfy 

cot
(

xξLS,2
̅̅̅̅̅
ᾱ2

√

)

+

̅̅̅̅̅
ᾱ2

√

k̄2
cot(xγ) = 0 (45)  

and the coefficients cn are given by 

and 

Nn=

∫γ

0

sin2(ωnξ)dξ

+
k̄2

ᾱ2

∫γ+ξLS,2

γ

[

sin(ωnγ)cos
(

ωn(ξ− γ)
̅̅̅̅̅
ᾱ2

√

)

+

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)sin

(
ωn(ξ− γ)

̅̅̅̅̅
ᾱ2

√

)]2

dξ

(47) 

As a result, an expression for the rate of phase change front propa-
gation can be written as 

dξLS,2

dτ = − ᾱ2Ste2

(
∂θ2

∂ξ

)

ξ=γ+ξLS,2

= ᾱ2Ste2

(
− 1

k̄2γ + ξLS,2
+
∑∞

n=1
cn

ωn
̅̅̅̅̅
ᾱ2

√

(

− sin(ωnγ)sin
(ωnξLS,2

̅̅̅̅̅
ᾱ2

√

)

+

̅̅̅̅̅
ᾱ2

√

k̄2
cos(ωnγ)cos

(ωnξLS,2
̅̅̅̅̅
ᾱ2

√

))

exp
(

− ω2
n

(
τ − τ*

A

))
)

(48)  

along with the initial condition ξLS,2(τ*
A) = ξ*

LS,2A. 
In this case, Stage B, and therefore, the entire melting process is 

complete when the melting front in the second layer reaches the end of 
the geometry, i.e., at τ = τ*

B where ξLS,2(τ*
B) = 1 − γ. 

4.2.2. Stage B for τ*
2,A ≤ τ*

1,A: Completion of melting of layer 1 
This sub-section considers a scenario where the melting of layer 2 

occurs faster than that of layer 1 during Stage A. As a result, in this case, 
layer 2 has already melted by the end of Stage A, and in Stage B, the 
phase change propagation front in the first layer grows until all of layer 1 
has also melted. 

This problem may be modeled as a three-layer diffusion problem 
along with phase change propagation in the first layer. Heat diffusion 
from the hot wall through the first layer results in further melting, and, 
in addition, there is heat transfer from the phase change front into the 
other two layers as well. For convenience, the melted and unmelted 
regions in layer 1 are denoted as 1a and 1b, respectively, whereas layer 2 
forms the third layer in this problem. The temperature fields in regions 
1a and 1b satisfy Eq. (1) in 0 < ξ < ξLS,1 and ξLS,1 < ξ < γ, respectively. 
The temperature field in the region in layer 2 satisfies Eq. (7) in the 
region γ < ξ < 1. The associated boundary and interface conditions are 
θ1a = 1 at ξ = 0, θ1a = ϕ1 at ξ = ξLS,1, θ1b = ϕ1 at ξ = ξLS,1, θ1b = θ2 at 
ξ = γ, ∂θ1b

∂ξ = k2
∂θ2
∂ξ at ξ = γ and − k̄2

∂θ2
∂ξ = Bi⋅θ2 at ξ = 1. Similar to the 

technique used in previous sections, the temperature distribution in 
layer 1a case can be derived as follows: 

θ1a(ξ, τ) = 1 −
1 − ϕ1

ξLS,1
ξ +

∑∞

n=1
ĉnsin(ω̂nξ)exp

(
− ω̂2

n

(
τ − τ*

A

))
(49)  

where ω̂n = nπ
ξLS,1 

and coefficients ĉn are obtained using orthogonality as 
follows: 

Table 2 
Values of thermophysical properties of the two PCMs used in this work [35,36].   

Octadecane Eicosane 

Thermal conductivity, Wm− 1K− 1 0.25 0.15 
Heat capacity, Jkg− 1K− 1 2300 2210 
Density, kgm− 3 780 785 
Latent heat, Jkg− 1 244,000 247,000 
Phase change temperature, ◦C 28 36  

cn = −
1

Nn

⎡

⎢
⎣

∫γ

0

(

θ*
1,A(ξ) − 1 +

k2ξ
k2γ + ξLS,2

)

sin(ωnξ)dξ +
k2

α2

∫γ+ξLS,2

γ

(

θ*
2,A(ξ) −

γ + ξLS,2 − ξ
k2γ + ξLS,2

)[

sin(ωnγ)cos
(

ωn(ξ − γ)
̅̅̅̅̅
α2

√

)

+

̅̅̅̅̅
α2

√

k2
cos(ωnγ)sin

(
ωn(ξ − γ)

̅̅̅̅̅
α2

√

)]

dξ

⎤

⎥
⎦

(46)   
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ĉn =
2

ξLS,1

∫ξLS,1

0

(

θ*
1,A(ξ) −

(

1 − (1 − ϕ1)
ξ

ξLS,1

))

sin(ω̂nξ)dξ (50) 

The temperature fields in the other two regions are coupled to each 
other through the interface conditions. By solving a two-layer diffusion 
problem for these regions using techniques similar to the one discussed 
in Section 3, the following expressions for the temperature fields in 
layers 1 and 2 may be derived. 

θ1b(ξ, τ) =
ϕ1( − Bik̄2ξ + Bi + k̄2 − Biγ + Biγk̄2)

Bi + k̄2 − Biγ + Biγk̄2 − Bik̄2ξLS,1

+
∑∞

n=1
cnsin

(
ωn
(
ξLS,1 − ξ

))
exp
(
− ω2

n

(
τ − τ*

A

))
(51)  

θ2(ξ, τ) =
ϕ1( − Biξ + Bi + k̄2)

Bi + k̄2 − Biγ + Biγk̄2 − Bik̄2ξLS,1
+
∑∞

n=1
cn

(

sin
(
ωn
(
ξLS,1 − γ

))

cos
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos
(
ωn
(
ξLS,1 − γ

))
sin
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

))

exp
(
− ω2

n

(
τ − τ*

A

))

(52)  

where the eigenvalues ωn satisfy 

sin
(
x
(
ξLS,1 − γ

))
(

cos
(

x(1 − γ)
̅̅̅̅̅
ᾱ2

√

)

−
k̄2x

Bi
̅̅̅̅̅
ᾱ2

√ sin
(

x(1 − γ)
̅̅̅̅̅
ᾱ2

√

))

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos
(
x
(
ξLS,1 − γ

))
(

sin
(

x(1 − γ)
̅̅̅̅̅
ᾱ2

√

)

+
k̄2x

Bi
̅̅̅̅̅
ᾱ2

√ cos
(

x(1 − γ)
̅̅̅̅̅
ᾱ2

√

))

= 0
(53)  

and the coefficients cn are given by 

cn =
1

Nn

⎡

⎢
⎣

∫γ

ξLS,1

(

θ*
1,A(ξ) −

ϕ1( − Bik̄2ξ + Bi + k̄2 − Biγ + Biγk̄2)

Bi + k̄2 − Biγ + Biγk̄2 − Bik̄2ξLS,1

)

sin
(
ωn
(
ξLS,1 − ξ

))
dξ+

k̄2

ᾱ2

∫1

γ

(

θ*
2,A(ξ) −

ϕ1( − Biξ + Bi + k̄2)

Bi + k̄2 − Biγ + Biγk̄2 − Bik̄2ξLS,1

)

(

sin
(
ωn
(
ξLS,1 − γ

))
cos
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos
(
ωn
(
ξLS,1 − γ

))
sin

(
ωn(ξ − γ)

̅̅̅̅̅
ᾱ2

√

))

dξ

⎤

⎥
⎦

(54)  

and  

Thus, the rate of phase change front propagation is given by 

dξLS,1

dτ = − Ste1

(
∂θ1a

∂ξ
−

∂θ1b

∂ξ

)

ξ=ξLS,1

= − Ste1

(
ϕ1 − 1

ξLS,1
+
∑∞

n=1
ĉn ω̂ncos

(
ω̂nξLS,1

)
exp
(

− ω̂2
n

(
τ − τ*

A

))
+

Bik̄2ϕ1

Bi + k̄2 − Biγ + Biγk̄2 − Bik̄2ξLS,1
+
∑∞

n=1
cnωnexp

(

− ω2
n

(
τ − τ*

A

))
)

(56)  

with the initial condition ξLS,1(τ*
A) = ξ*

LS,1A. 
In this case, Stage B, and therefore, the entire melting process is 

complete when the melting front in the first layer reaches the interface 
between layers, i.e., at τ = τ*

B where ξLS,1(τ*
B) = γ. This marks the end of 

the entire melting process in the two-layer geometry from Case II. 
A summary of governing equations and equations that describe the 

temperature field and phase change front location during each Stage for 

Fig. 2. Comparison of the analytical model with finite-element simulations: Phase change front locations in both layers as functions of time. (a) Lower-melting PCM 
adjacent to heat source (Case I), (b) Higher-melting PCM adjacent to heat source (Case II). PCMs are taken to be octadecane and eicosane, with a 44 ◦C temperature 
on the hot wall. Results from finite-element simulations are shown for comparison. 

Nn =

∫γ

ξLS,1

sin2( ωn
(
ξLS,1 − ξ

))
dξ +

k̄2

ᾱ2

∫1

γ

(

sin
(
ωn
(
ξLS,1 − γ

))
cos
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

)

−

̅̅̅̅̅
ᾱ2

√

k̄2
cos
(
ωn
(
ξLS,1 − γ

))
sin
(

ωn(ξ − γ)
̅̅̅̅̅
ᾱ2

√

))2

dξ (55)   
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this Case is presented in Table 1. 

5. Results and discussion 

This section discusses key results based on the theoretical model 
presented in previous sections. First, verification of the theoretical 
model by comparison with numerical simulations is presented. This is 
followed by discussion of typical melting front propagation and tem-
perature distribution plots. The practically important question of the 
total time for melting is addressed. This includes a discussion of condi-
tions in which both layers may finish melting simultaneously. This is 
followed by a discussion of the effect of Stefan numbers on the melting 
process. 

5.1. Verification 

In order to verify the analytical models presented in Sections 2–4, 
results for representative problems are first compared with independent 
finite-element simulations carried out in ANSYS-CFX. For this purpose, 
both materials are modeled as mixtures of solid and liquid phases with a 
certain mixture fraction that varies over space and time. The simulation 
sets up computation of the mixture fraction distribution in addition to 
the temperature distribution at multiple times, thereby determining how 
the phase change front propagates with time. Mesh size and timestep are 
both refined until further refinement does not result in appreciable 
changes in the computed temperature field. Locations of the two phase 
change fronts are determined at each timestep by tracking the location 
at which the volume fraction of solid phase changes from 1 to 0. 

A comparison is carried out for the melting of a two-layer body 
comprising octadecane and eicosane of thicknesses 5.0 mm each, being 
heated up from one side by a 44 ◦C external temperature. Values of 
thermophysical properties of the two PCMs are taken from past litera-
ture [35,36] and are summarized in Table 2. Notably, octadecane melts 
at a lower temperature than eicosane. The Biot number representing the 
convective heat transfer boundary condition at the right end of the ge-
ometry is taken to be 0.5. All non-dimensional parameters used in the 
analytical model are computed on the basis of the dimensional problem 
described above. Fig. 2 presents a comparison between the analytical 
model and simulations in terms of the locations of the two melting fronts 
as functions of time. Plots are presented in non-dimensional form. 
Boundaries between sucessive Stages are indicated by vertical lines. 
Fig. 2(a) presents this comparison for the case where the lower-melting 
octadecane is placed next to the heat source, corresponding to Case I 
(Section 3). The opposite case, in which the higher-melting eicosane is 
placed next to the heat source, corresponding to Case II (Section 4) is 
presented in Fig. 2(b). In both cases, there is very good agreement be-
tween the analytical model and finite-element simulations. In Case I 
presented in Fig. 2(a), the model is able to successfully capture the 

melting of layer 1 first (Stage A), followed by sensible heating of both 
layers with no propagation of the melting front (Stage B), during which, 
neither ξLS,1 nor ξLS,2 change with time, and, finally, the melting of layer 
2 (Stage C). For the parameter values used here, Stage B is found be very 
brief. Similarly, in Case II presented in Fig. 2(b), the model is able to 
successfully capture the simultaneous melting of both layers at early 
times and completion of melting of layer 2 first (Stage A), followed by 
the melting of the remainder of layer 1 (Stage B). 

Further verification of the theoretical model is carried out by 
comparing the predicted temperature distributions at multiple times 
with numerical simulations. Both Cases I and II are considered. For the 
same set of problem parameters as Fig. 2 above, Figs. 3(a) and 3(b) 
present this comparison for Cases I and II, respectively. In each case, the 
temperature distribution is plotted at two times in different Stages of the 
phase change process and compared with numerical simulations. There 
is, in general, very good agreement between the two. The agreement is 
nearly exact for Case I at τ = 0.5, which lies in Stage A of this Case. This 
is because Stage A of Case I is governed by the exact analytical solution 
of the Stefan problem in layer 1, whereas layer 2 does not commence 
melting in this Stage. At other times, several factors likely contribute 
towards the small disagreement between the theoretical model and 
numerical simulations. These include the approximate nature of the 
theoretical model, as well as discretization and other computational 
errors in the numerical simulations. The good agreement in general with 
finite-element simulations shown in Figs. 2 and 3 for both cases 
considered here provide confidence in the accuracy of the analytical 
model presented in this work. 

Further verification of the theoretical model developed here is car-
ried out by considering the special case in which both layers have the 
same thermophysical properties. In such a case, assuming both layers 
are initially at the melting temperature, this problem is expected to 
reduce to the standard one-layer Stefan problem with constant tem-
perature boundary condition, for which, an analytical solution is 
available [2]. A comparison of the predictions of the theoretical model 
with the Stefan solution is presented in Fig. 4. Two different values of the 
Stefan number are considered. As expected, there is exact agreement in 
Stage A of the melting process, during which, the theoretical model 
developed here is based on the Stefan solution. Afterwards, there is a 
minor deviation between the two curves, which is attributed to the 
approximate nature of the analytical technique used here. As expected, 
the deviation is greater at the larger value of Ste considered for this 
comparison. Nevertheless, the good agreement in general indicates that 
the theoretical model developed in this work agrees well with the Stefan 
solution when both layers have the same thermophysical properties. 

5.2. Melting front propagation and temperature distributions 

Representative two-PCM melting problems are solved using the 

Fig. 3. Comparison of the analytical model with finite-element simulations: Temperature distribution in both layers at two different times for the problem considered 
in Fig. 2. (a) Case I, (b) Case II. Results from finite-element simulations are shown for comparison. 
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analytical model presented in Section 2–4. Similar to the previous sub- 
section, octadecane and eicosane are also considered as the two PCMs 
in this analysis. The hot wall temperature that drives phase change is 
taken to be 44 ◦C. Results pertaining to the problem in which the lower- 
melting PCM is placed next to the hot wall (Case I presented in Section 3) 
are discussed next, followed by discussion of the problem in which the 
higher-melting PCM is placed next to the hot wall (Case II discussed in 
Section 4). 

5.2.1. Case I 
For this case, the second layer is taken to be four times as thick as the 

first one, so that γ = 0.8. For the first scenario, in which octadecane is 
placed next to the hot wall, the melting fronts ξLS,1 and ξLS,2 are plotted 
as functions of time in Fig. 5. As expected, due to the lower melting 
temperature of the first layer, in this case, layer 1 is found to start 
melting immediately, whereas layer 2 does not. Melting of layer 1 slows 
down over time due to the well-known shielding of the hot source by the 
already melted liquid in this Stefan problem. Stage A proceeds until τ =
τ*

A, when all of layer 1 has melted, at which point, ξLS,1 = γ while ξLS,2 is 
still zero. Afterwards, as discussed in Section 3.2, there is no melting 
during Stage B, represented by flat ξLS,1 and ξLS,2 curves between τ = τ*

A 

and τ = τ*
B, depicted by dotted vertical lines. After a short Stage B, layer 

2 proceeds to melt during Stage C, and the ξLS,2 curve rises while ξLS,1 

remains flat. The entire melting process finishes at τ = τtotal, when ξLS,2 

becomes equal to 1 − γ. For this case, the numerical values of τ*
A, τ*

B and 
τtotal are found to be 2.23, 2.53 and 8.33, respectively. 

Note that in this case, the two layers melt in series, and, therefore, 
layer 2 will always finish melting later than layer 1. From a practical 
perspective, it is of interest to investigate the conditions in which the 

two layers may finish melting at the same time. This is possible under a 
special case in Case II, which is discussed in more detail in subsequent 
sub-sections. 

In order to illustrate the evolution of the temperature field with time 
in Case I, temperature distributions within both layers are plotted at 
three successive times during Stages A, B and C in Fig. 6 for the same set 
of parameters as the previous Figure. These plots show that layer 1 
(ξ < γ) undergoes melting and subsequent sensible heating during Stage 
A. There is no melting or even sensible heating of layer 2 (ξ > γ) during 
Stage A because the melting front has not yet reached the interface 
between the layers. Even after this occurs at τ = τ*

A, there is still no 
melting of layer 2 in Stage B because the temperature remains below the 
melting temperature of layer 2, ϕ2 shown by a dotted horizontal line. 
Stage B curves in Fig. 6 show only sensible temperature rise in both 
layers, consistent with flat ξLS,1 and ξLS,2 curves shown in Fig. 5 during 
this period. This continues until temperature at the interface, ξLS,1 = γ 
shown by the dotted vertical line in Fig. 6, reaches the melting tem-
perature ϕ2. Finally, during Stage C, it is found that temperature in a 
portion of layer 2 rises above its melting temperature ϕ2 as the melting 
front ξLS,2 propagates until, finally, at τ = τtotal, all of layer 2 has melted 
and temperature at the far end, ξ = 1 becomes ϕ2. 

Taken together, Figs. 5 and 6 illustrate several key characteristics of 
temperature distribution and melting front propagation in both layers 
for Case I where the lower melting material, octadecane in this case, is 
placed next to the hot source. 

Discussion of the melting process for Case II, in which the higher 
melting PCM is placed next to the hot source instead is presented next. 

5.2.2. Case II 
The same set of problem parameters as Section 5.2.1 are considered 

again, including thermophysical properties of the two PCMs. However, 
in this case, the higher melting PCM is placed next to the hot source. 
Melting front propagation plots for two different relative thicknesses γ =

0.2 and γ = 0.6 are presented in Figs. 7(a) and 7(b), respectively. 
Temperature distributions in both layers are plotted at different times 
for these thicknesses in Figs. 8(a) and 8(b). 

As discussed in Section 4, placing the higher-melting eicosane next to 
the heat source results in the simultaneous onset of melting in both 
layers starting at τ = 0, which is confirmed by both Figs. 7(a) and 7(b). It 
is found, as expected, that the initial rate of melting is greater in layer 1, 
which is located directly next to the heat source. Over time, however, 
the rate of melting in layer 2 also rises and catches up with layer 1. Phase 
change and sensible heating occur in both layers during Stage A. For γ =

0.2, it is found that temperature at the interface, ξ = γ reaches the layer 
1 melting point ϕ1 before layer 2 melts completely. Therefore, layer 1 

Fig. 4. Comparison of the theoretical model with the Stefan solution in the case 
of identical properties of both layers, along with Bi = 0. Comparison is pre-
sented for two different values of the Stefan number. 

Fig. 5. Phase change locations in both layers as functions of time for Case I 
(lower-melting PCM adjacent to heat source). Parameter values are: γ = 0.80,
Ste1 = 0.15, Ste2 = 0.14, ᾱ2 = 0.62, k̄2 = 0.60, Bi = 0.60, ϕ2 = 0.50. 

Fig. 6. Temperature distributions at three different times, each during stages A, 
B and C of the melting process shown in Fig. 5 (Case I). Layer thicknesses and 
melting point of the second layer are shown as vertical and horizontal dotted 
lines, respectively. The times shown, from left to right are τ = 0.16, 0.95, 2.23,
2.25, 2.35, 2.53, 3.02, 5.52 and 8.33. 
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finishes its melting process first, as shown at τ = τ*
A indicated by a ver-

tical dotted line in Fig. 7(a), marking the end of Stage A. Subsequently, 
during Stage B, the ξLS,1 plot stays flat, since the melting of layer 1 is 
already complete, whereas the ξLS,2 plot continues to rise due to 
continued melting of layer 2 during Stage B. Eventually, at τ = τtotal, all 
of layer 2 also melts and the process is complete. The temperature plots 
at different times during both stages shown in Fig. 8(a) are consistent 
with the melting front propagation shown in Fig. 7(a). Specifically, 
Fig. 8(a) shows temperature rise above melting temperature for both 
layers during Stage A, followed by continued temperature rise in both 
layers and the melting of layer 2 during Stage B until the ξLS,2 front 
reaches the end of layer 2, indicating completion of the melting process. 

In contrast, in the γ = 0.6 case, in which, layer 1 is relatively thicker, 
the melting process of layer 2 finishes first, as shown in Fig. 7(b). In this 
case, due to the relatively thinner layer 2, the melting front in layer 2 
first reaches the far end (ξLS,2 = 1 − γ), indicating completion of melting 
in layer 2 before layer 1. As shown in Fig. 7(b), at the time when ξLS,2 = 1 
− γ, i.e., completion of melting of layer 2, the value of ξLS,1 is still less 
than γ. The remainder of layer 1 completes its melting in Stage B, during 
which, temperatures in both layers continue to rise, as shown in Fig. 8 
(b), and ξLS,1 continues to grow while ξLS,2 remains constant, as shown in 
Fig. 7(b). This continues until ξLS,1 reaches a value of γ, at which time, 
the melting process is complete. Fig. 7(b) shows that once layer 2 has 
completely melted, the rate of melting of layer 1 increases, because now 
all the heat supplied can be used for melting only layer 1. Also, in Fig. 8 
(b), it may be noted that the value and slope of the temperature distri-
bution at ξ = 1 during Stage B is determined by the Biot number defined 
at that boundary. 

Note that layer 2 melts faster in the γ = 0.6 case despite being farther 
from the heat source because of its lower melting point and relatively 
lower thickness in this case. Between the two cases presented in Figs. 7 
(a) and 7(b), there is likely to exist a certain relative layer thickness γ, at 
which, both layers finish melting simultaneously. This is analyzed in 
more detail in a subsequent sub-section. 

The plots presented in this sub-section illustrate the key phase 
change propagation and temperature rise phenomena based on a sys-
tematic analysis of melting and sensible heating of both layers presented 
in Section 2. The evolution of the temperature fields as well as melting 
front propagation with time presented in these plots are consistent with 
the physical understanding of phase change heat transfer, particularly in 
cases where the material being melted is shielded by material that is 
already melted or is not yet ready to melt due to being supercooled. 
Based on the plots presented in this section, it is also possible to deter-
mine system performance parameters such as total time to melt and total 
energy absorbed, as well as to determine which of the two layers will 
finish melting first. An analysis of such system performance parameters 
is presented next. 

5.3. Total time for completion of melting 

The total time taken for completion of melting is an important per-
formance parameter in practical energy storage problems. Often, only a 
limited amount of time is available for heat transfer and energy storage 
in the PCMs, and, therefore, the two-PCM stack must be designed in 
order that the time taken for complete melting be as close as possible to 
the time available. If the time taken for complete melting is much larger, 
then the system is overdesigned and a large part of the PCM is not being 

Fig. 7. Phase change front locations in both layers as functions of time for Case II (higher-melting PCM adjacent to heat source). (a) and (b) present results for γ = 0.2 
and γ = 0.6, respectively, for which the first and second layers, respectively, finish melting first. Other parameter values are: Ste1 = 0.14, Ste2 = 0.15, ᾱ2 = 1.62, k̄2 

= 1.66, Bi = 0.50, ϕ1 = 0.50. Layer thicknesses and melting point of the first layer are shown as vertical and horizontal dotted lines, respectively. 

Fig. 8. Temperature distributions at three different times each during Stages A and B of a Case II melting process. Results are presented for (a) γ = 0.2 and (b) γ = 0.6 
that result in earlier completion of melting of first and second layer, respectively. Other parameters used here correspond to Fig. 7. Interface between layers and 
melting point of the first layer are shown as vertical and horizontal dotted lines, respectively. The times shown, from left to right, are (a) τ = 0.24, 0.52, 1.08, 1.22,
1.71, and 2.55, (b) τ = 0.77, 1.61, 2.45, 2.59, 3.17 and 4.57. 
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used for energy storage. On the other hand, if the time taken for com-
plete melting is much smaller, then the system fails to store much of the 
available energy in latent form, thereby limiting the effectiveness of 
latent heat storage. 

In order to demonstrate the capability of the analytical model pre-
sented here to answer these important design questions, the time taken 
for melting of the two layers is analyzed as a function of various problem 
parameters. For Case I (lower-melting PCM placed next to the heat 
source), Fig. 9(a) plots the time at which each of the two layers melt as 
functions of the relative layer thickness γ. In this case, the layer 2 curve 
also represents the total time taken for complete melting since layer 2 
always melts later than layer 1. As γ increases, the time taken for layer 1 
to melt increases, due to greater relative thickness of layer 1, whereas 
the time taken for layer 2 to melt reduces. As expected, layer 1 is found 
to always melt earlier than layer 2, even when layer 1 is very thin (large 

γ) because in this Case, layer 1 has a lower melting temperature, and, 
therefore, layer 2 cannot begin to melt until all of layer 1 has melted. In 
other words, decreasing layer 2 thickness reduces total melting time, 
since layer 2 has a higher melting temperature in this case. 

Fig. 9(b) presents a similar analysis for Case II, in which, the lower- 
melting PCM is placed away from the hot source. In this case, as γ in-
creases starting from a small value, both layers first take longer to melt. 
The rate of increase of τtotal with γ for layer 1 is particularly steep because 
of the increased thickness of layer 1 with increasing γ. However, unlike 
Case I shown in Fig. 9(a), in this case, the time taken for layer 2 to melt 
also increases slightly with increasing γ, because of the increased resis-
tance to heat flow to layer 2 through layer 1. This is, however, only a 
weak effect. At a certain layer thickness, γ = 0.33, in this case, the two 
curves in Fig. 9(b) are found to intersect, indicating that both layers 
finish melting at the same time, which is indeed a favorable outcome as 

Fig. 9. Effect of the interface location on melting process: Time for total melting for each layer as functions of relative layer thickness γ. (a) Case I, (b) Case II. Other 
problem parameters correspond to Figs. 5 and 6, respectively. 

Fig. 10. Phase change front locations in both layers as functions of time for the Case II process considered in Fig. 9(b) for three different values of relative layer 
thickness γ, including a case where both layers finish melting at the same time. Other parameter values are: Ste1 = 0.14, Ste2 = 0.15,α2 = 1.62,k2 = 1.66, Bi = 0.50,
ϕ1 = 0.50. 

Fig. 11. Effect of Stefan numbers: Total melting time for each layer in Case I as functions of (a) Ste1 (with Ste2 = 0.14); (b) Ste2 (with Ste1 = 0.15). Other problem 
parameters correspond to Figs. 5 and 7, respectively. 
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it fully utilizes the latent heat storage capability of both layers. Making 
layer 1 thicker than this optimal value results in increased time taken to 
melt layer 1 and a relatively weaker reduction in time taken for layer 2 
to melt. Note that the greater of the two curves in Fig. 9(b) represents the 
total time to melt. Further, note that the nature of curve in Fig. 9(b) at 
small γ is different from that at large γ, with the crossover occurring 
around γ = 0.33. This is because for small values of γ, layer 1 finishes 
melting first, and, therefore, its melting time is governed primarily by 
Stage A of this Case, determined by the equations given in Section 4.1. 
On the other hand, for large values of γ, layer 2 finishes melting first and, 
therefore, the rest of the melting of layer 1 and its total time to melt is 
governed by an entirely different set of equations, given in Section 4.2.2. 
Results presented in Fig. 9(b) for Case II are supplemented with melting 
front propagation plots for three different values of relative layer 
thickness γ in Fig. 10. The thicknesses of the two layers, γ and 1 − γ, 
respectively, are indicated as dotted horizontal lines. As shown in Fig. 10 
(a), when γ is small, i.e., layer 2 is relatively thicker, and thus, layer 1 
melts much faster, while completion of melting of layer 2 occurs much 
later. In contrast, when γ is much larger, as shown in Fig. 10(c), layer 2 
finishes melting first and ξLS,2 remains flat afterwards while layer 1 
finishes melting. Between these two extremes, there exists an interme-
diate value of γ, at which, the melting processes in both layers exactly 
balance each other, so that the phase change fronts in both layers reach 
their respective ends (ξLS,1 = γ and ξLS,2 = 1 − γ) at nearly the same 
time. This case, shown in Fig. 10(b), is the most favorable as it leads to 
the complete utilization of the latent heat storage capacity of both layers 
within the same timeframe. It must be noted that this particular case has 
no Stage B associated with it, as the entire melting completes during 
Stage A. Figs. 9(b) and 10 demonstrate the capability of the analytical 
model to predict such optimal configurations in two-PCM problems. 

5.4. Impact of Stefan numbers 

Stefan number is the key non-dimensional parameter that governs 
the nature of melting and solidification processes [1,2]. In addition to 
the externally imposed temperature at the boundary, the Stefan number 
also includes the heat capacity and latent heat of the material. Due to the 
presence of two distinct materials, the problem considered here contains 
two independent Stefan numbers. In order to understand the impact of 
the Stefan numbers on melting characteristics, the time taken for 
melting for both layers is plotted as a function of Ste1 and Ste2 in Fig. 11 
for Case I, with the same set of parameter values as Fig. 2(a). It is found 
that increasing Ste1 (while holding Ste2 constant reduces the melting 
time for both layer 1 and layer 2 by nearly the same magnitude. Both 
curves are found to level off at large Ste1, likely due to thermal con-
duction within the materials becoming the rate-limiting step when a 
sufficiently large external thermal stimulus is being provided. In 
contrast, Ste2 influences the melting time very differently, as shown in 
Fig. 11(b). As expected, the melting time for layer 2 reduces sharply with 
increasing Ste2, which is expected since Ste2 represents how favorable 
the thermophysical properties of layer 2 are for melting. For example, 
increasing Ste2 may imply reduced latent heat of melting for layer 2, 
which will clearly reduce the melting time for layer 2. In contrast, with 
Ste1 held constant, increasing Ste2 is found to not influence the melting 
time for layer 1. This is also expected since in Case I, the two layers melt 
in series, and, therefore, layer 1, which melts first, is completely unaf-
fected by Stefan number for layer 2. This may also be seen mathemati-
cally through the lack of appearance of Ste2 in Eqs. (1)-(6) that govern 
the melting of layer 1 in Case I. 

In order to further illustrate the impact of Stefan number for Case I, 
Figs. 12(a) and 12(b) present melting front propagation plots for three 
different values of Ste1 and Ste2, respectively. Fig. 12(a) shows that as 
Ste1 increases, the phase change propagation plot becomes steeper, 

Fig. 12. Phase change front locations in both layers as functions of time for Case I process for three different values of (a) Ste1 (with Ste2 = 0.14); b) Ste2 (with Ste1 =

0.15). Other parameter values are: γ = 0.50, ᾱ2 = 0.62, k̄2 = 0.60, Bi = 0.50, ϕ2 = 0.50. 

Fig. 13. Effect of Stefan numbers: Total melting time for each layer in Case II as functions of (a) Ste1 (with Ste2 = 0.15); (b) Ste2 (with Ste1 = 0.14). Values for other 
parameters are: Bi = 0.5, k̄2 = 1.66, ᾱ1 = 1.62, ϕ1 = 0.5, γ = 0.6. 
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resulting in faster completion of the melting process in layer 1, with a 
similar impact on melting curves for layer 2 as well. In contrast, Fig. 12 
(b) shows no impact of Ste2 on the melting of layer 1 at all and a strong 
impact on melting of layer 2, both of which are consistent with Fig. 11 
(b). It may be noted that increasing Ste1 slightly increases the Stage B 
duration, which is the time needed time for the interfacial temperature 
to reach the melting temperature of layer 2, while changing Ste2 does not 
affect the Stage B duration. 

Similar plots for Case II, in which the lower-melting PCM is located 
away from the hot source are presented in Fig. 13 for γ = 0.6. Other 
problem parameter values are the same as Fig. 8. In Case II, both layers 
begin to melt in parallel. Therefore, it is expected that melting time for 
both layers will be sensitive to both Stefan numbers due to the parallel 
nature of the melting processes in the two layers. This is confirmed in 
Figs. 13(a) and 13(b), which present the melting time for both layers are 
functions of Ste1 and Ste2, respectively. As expected, Ste1 influences 
melting in layer 1 more than in layer 2, whereas Ste2 has a similar in-
fluence on both the layers. This is because for the chosen thicknesses, 
layer 1 completely melts only after layer 2 has finished melting. Once 
layer 2 melts, the heat supplied is used to melt layer 1 only. Therefore, 
speeding up the melting of layer 2 also speeds up the melting of layer 1 
indirectly. In both cases, a saturation effect is observed, as expected, in 
that increasing the Stefan number has a reduced influence on melting 
time when the Stefan number is already quite large. This is due to 
thermal conduction in the materials starting to dominate over the phase 
change process in determining the rate of melting. 

While several simplifying assumptions have been made in the theo-
retical model, such as neglecting natural convection and temperature- 
dependent properties, the analytical solution derived here helps un-
derstand the fundamental nature of the two-PCM melting problem, 
including the role of key non-dimensional parameters in this process. 
Note that the present work can be easily extended to cylindrical or 
spherical problems, with appropriate changes in the eigenfunctions that 
appear in several series solutions. Moreover, while presented as a 
melting problem, the solution derived here is equally applicable to the 
reverse problem of solidification of a two-PCM composite wall in contact 
with a cold body. Finally, the technique presented can also, in principle, 
be extended to more than two PCMs arranged in series. However, the 
number of possible arrangements of the PCMs in terms of their melting 
temperatures, and, therefore, the complexity of analysis increases 
rapidly with the number of PCMs. For example, the number of ways in 
which 3 or 4 PCMs can be arranged on the basis of their melting tem-
peratures is 6 or 24, respectively, compared to only two cases needed to 
be considered for the two-PCM problem considered here. 

6. Conclusions 

While theoretical analysis of melting of a single PCM is quite com-
mon, including complications such as non-isothermal heat source, 
temperature-dependent properties and multi-dimensional phase change, 
the key contribution of the present work is the development of a theo-
retical model to predict temperature distribution and phase change 
propagation in a stack of two dis-similar PCMs arranged in series. The 
presence of two different materials leads to considerable complications 
such as two independent Stefan numbers, and series or parallel melting 
in both layers depending on melting temperatures relative to each other. 
This problem is systematically analyzed by considering two separate 
Cases, and multiple stages during each Case over time, some of which 
only involve sensible heating of the two layers. Amongst the key out-
comes of the work presented here includes the identification of condi-
tions in which the thermodynamically favorable simultaneous 
completion of melting in both layers may be accomplished. While the 
accuracy of the underlying eigenfunction series expansion method may 
reduce at large Stefan numbers, nevertheless, the key results derived 
here may be of benefit for a number of practical processes that are 
carried out in sufficiently mild operating conditions. 
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