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Heat transfer in a multilayer body plays a key role in design and optimization of several
engineering systems. While the analysis of simple multilayer problems is quite
straightforward, realistic scenarios such as time-dependent boundary conditions result in
significant complications in analysis. This work presents thermal analysis of a one-
dimensional heat-generating multilayer cylinder with time-varying convective heat transfer
at the boundary. Such a scenario may occur in applications such as nuclear reactors, jet
impingement cooling, turbine blade heat transfer, as well as casting and related
manufacturing processes. Analysis is presented for both annular and solid cylinders. A
derivation for the temperature distribution is carried out, using a shifting function to split the
time-dependent boundary condition into two parts, followed by appropriate mathematical
substitution. For particular special cases, the analytical results derived here are shown to
reduce exactly to results from past work. Good agreement of the theoretical results with
numerical simulations is also demonstrated. Thermal response to various realistic time-
dependent boundary conditions is analyzed. This work contributes towards the design of
realistic multilayer problems and may facilitate the optimization of engineering systems
where multilayer thermal conduction plays a key role.
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1 Introduction

Heat transfer in multilayer structures plays a key role in several
engineering systems. For example, semiconductor devices and
systems are often multilayer in nature, and include heat generation
and interfacial thermal resistance [1]. As another example, a nuclear
fuel rod is often designed as a concentric multilayer cylinder, in
which specific layers comprising the nuclear fuel generate heat. In
addition, significant interfacial thermal resistance also often exists
[2]. Other multilayer systems of relevance include insulation
materials [3], aerospace vehicles [4], and biological systems [5].
Further, multilayer diffusive mass transfer is also important in
engineering problems such as air pollution analysis [6] and drug
delivery [7].
The safety and efficiency of engineering systems such as those

cited above depend critically on understanding the nature of
multilayer thermal transport in these systems. Both experimental
and theoretical modeling approaches have been adopted in the past
toward this goal. For example, thermal analysis of a three-
dimensional integrated circuit (3D IC) has been presented [8,9]
and used for designing effective thermalmanagement approaches to
minimize temperature rise [10]. Experimental methods have

significant limitations in terms of the cost and time needed to set
up and carry out measurements, particularly at the design stage,
when quick exploration of a large parameter space is desirable. In
contrast, theoretical and numerical models may facilitate the rapid
prediction of temperature distribution. A key drawback of
theoretical and numerical modeling is the uncertainty associated
with values of thermal properties and other parameters, particularly
when working on new materials.
Several papers have presented multilayer thermal conduction

analysis under a variety of conditions. General solution procedures
have been outlined in several papers and books [11–14], while
solutions for specific problems have also been presented.Multilayer
diffusion with convective cooling boundary conditions has received
special attention in the literature. Such a boundary condition is able
to model a variety of realistic problems. Most of the literature
assumes that convective heat transfer conditions at the boundary do
not change with time or space. For example, closed-form [15] and
iterative [16] solution approaches based on this assumption have
been presented for multilayer 3D ICs. Spatial variation of the
convective heat transfer coefficient h in multilayer problems has
been analyzed [17–19].
The convective heat transfer coefficient h in multilayer problems

may often vary with time. Representative examples include the
cooling of nuclear fuel rods [20], heat transfer due to pulsating flows
[21], and jet impingement cooling [22], where switching the jet on
and off results in a time-dependent h. Analysis of problems with
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time-dependent h is much more complicated than with a constant h,
or a space-dependent h. Numerical and analytical solutions of such
time-dependent problems have been presented for a uniform, single-
layer body. Techniques used in such papers include finite-
differencing [23], Laplace transforms [24], shifting functionmethod
[25,26], and the use of time-dependent eigenvalues [27]. The latter
approach, while powerful and versatile, suffers from challenges
associated with eigenvalue computation.
Most of the literature cited above pertains only to a homogeneous,

single-layer body. In comparison, only limited work has been
presented for multilayer thermal conduction with time-dependent
convective cooling at the boundary. A general procedure for such
problems using the finite integral transform has been presented [13].
Specific solutions for two-layer bodies have been presented [3,28].
More recently, this problem has been solved for a multilayer
Cartesian body [29]. The temperature field in this problem was
derived using the shifting function method. It was shown that the
general solution reduces correctly to well-known expressions for a
homogeneous body.
Since similar problems occur in engineering problems involving

cylinders aswell, it is important to analytically derive the temperature
field in a multilayer cylinder to account for a convective boundary
condition that varies with time, i.e., h(t). This paper addresses this
problem and specifically derives an expression for the transient
temperature field in a one-dimensional multilayer cylinder with a
time-dependent convective heat transfer boundary condition.
Thermal analysis of a multilayer solid cylinder is also presented.
The transient temperature field is derived using the shifting function
method [25] and the orthogonal expansion method [14,30,31]. The
general results derived here are shown to reduce to previously
reported results pertaining to simplified special cases and also agree
well with finite-element computation. Results derived here are used
to analyze the impact of various forms of h(t) on the temperature
distribution. This work advances the fundamental understanding of
multilayer thermal conduction and may help design and optimize a
variety of multilayer engineering devices and systems.

2 Analytical Modeling

2.1 Problem Definition. The problem of interest in this work
comprises a one-dimensionalM-layer, annular cylinder as shown in
Fig. 1(a). Each layer has a thickness of (ri�ri�1) (m), while the inner
radius of the annulus is r0 (m). Each layer generates heat Qi(r,t)
(Wm�3) thatmay varywith space and time. Heat transfer at the inner
and outer boundaries is modeled by constant and time-dependent
convective heat transfer coefficients h1 (Wm�2K�1) and hM tð Þ
(Wm�2K�1), respectively. Thermal conductivity and diffusivity of
the ith layer are denoted by ki (Wm�1K�1) and ai (m2s�1),

respectively. All properties are assumed to be constant and uniform.
Ri (Km

2W�1) denotes the interfacial thermal contact resistance
between adjacent layers, as shown in Fig. 1(a). The initial
temperature field in the cylinder is denoted by Tin(r) (K). The goal
of the analysis is to derive an expression for the transient
temperature rise distribution Ti(r,t) (K) in each layer of the cylinder.
While Fig. 1(a) shows the annular multilayer cylinder problem, a
similar problem involving a multilayer solid cylinder, shown in
Fig. 1(b) is also considered here.

2.2 Annular Cylinder. Based on the problem definition and
assumptions listed above, the governing differential equation for the
ith layer of the multilayer cylinder may be written as

1

ai

@Ti
@t

¼ @2Ti
@r2

þ 1

r

@Ti
@r

þ Qi r, tð Þ
ki

(1)

for i¼ 1,2,…,M.
The following boundary and initial conditions apply

Ti r, tð Þ ¼ Tin rð Þ t ¼ 0ð Þ (2)

k1
@T1
@r

¼ h1T1 r ¼ r0ð Þ (3)

� kM
@TM
@r

¼ hM tð ÞTM r ¼ rMð Þ (4)

At each interface, the heat flux out of one layer must equal heat
flux into the adjacent layer. Additionally, the interfacial thermal
resistance may be used to write a relationship between interfacial
temperatures in the two layers, i.e.

Ti�1 r, tð Þ ¼ Ti r, tð Þ � kiRi
@Ti
@r

r ¼ ri�1; i ¼ 2, 3,…,Mð Þ (5)

ki�1

@Ti�1

@r
¼ ki

@Ti
@r

r ¼ ri�1; i ¼ 2, 3,…,Mð Þ (6)

The following nondimensionalization scheme is used

Bi1 ¼ h1rM
k1

; BiM sð Þ ¼ hM tð ÞrM
kM

; �Qi n,sð Þ ¼Qi r, tð Þr2M
kiTref

;

n¼ r

rM
, ci ¼

ri
rM

; s¼ a1t
r2M

; hin nð Þ ¼ Tin rð Þ
Tref

;

hi n,sð Þ ¼ Ti r, tð Þ
Tref

; di ¼ ai
a1

; ji ¼ ki
k1
; pi ¼ kiRi

rM

(7)

Fig. 1 Schematics of multilayer (a) annular and (b) solid cylinders, within which, thermal conduction with
time-dependent convective heat transfer coefficients is analyzed in this work
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where Tref (K) is an arbitrary nonzero reference temperature.
Based on Eq. (7), the problem can be nondimensionalized to the

following equations for the temperature field

1

di

@hi
@s

¼ @2hi
@n2

þ 1

n
@hi
@n

þ �Qi n, sð Þ (8)

hi n, sð Þ ¼ hin nð Þ s ¼ 0ð Þ (9)

@h1
@n

¼ Bi1h1 n ¼ c0ð Þ (10)

� @hM
@n

¼ BiM sð ÞhM n ¼ 1ð Þ (11)

hi�1 n, sð Þ ¼ hi n, sð Þ � pi
@hi
@n

n ¼ ci�1; i ¼ 2, 3,…,Mð Þ (12)

ji�1

@hi�1

@n
¼ ji

@hi
@n

n ¼ ci�1; i ¼ 2, 3,…,Mð Þ (13)

In order to proceed, the Biot number BiMðsÞ is separated into two
parts

BiM sð Þ ¼ rþ F sð Þ (14)

Here, r ¼ BiMð0Þ is the Biot number at the initial time.
Inserting Eq. (14) in Eq. (11) results in

@hM
@n

þ rhM ¼ �F sð ÞhM n ¼ 1ð Þ (15)

2.2.1 Shifting Function Method [25]. In order to solve
Eqs. (8)–(10), (12)–(13), and (15), the following substitution is
introduced [25,26,29]

hi n, sð Þ ¼ vi n, sð Þ þ f sð Þgi nð Þ (16)

where vi n, sð Þ, gi nð Þ, and f sð Þ are the transformed function, shifting
function, and auxiliary function, respectively. f sð Þ is given by

f sð Þ ¼ �F sð ÞhM 1, sð Þ (17)

Substituting Eq. (16) into Eqs. (8)–(10), (12), (13), and (15), and
using Eq. (17) results in

1

di

@vi
@s

þ f 0gi

� �
¼ @2vi

@n2
þ f g00i þ

1

n
g0i

� �
þ 1

n
@vi
@n

þ �Qi n, sð Þ (18)

vi n, 0ð Þ ¼ hin nð Þ (19)

@vi
@n

� �
n¼c0

þ fg01 c0ð Þ ¼ Bi1v1 c0, sð Þ þ Bi1fg1 c0ð Þ (20)

vi�1 ci�1, sð Þ þ fgi�1 ci�1ð Þ ¼ vi ci�1, sð Þ þ fgi ci�1ð Þ

� pi
@vi
@n

� �
n¼ci�1

þ fg0i ci�1ð Þ
" #

(21)

ji�1

@vi�1

@n

� �
n¼ci�1

þ fg0i�1 ci�1ð Þ
" #

¼ ji
@vi
@n

� �
n¼ci�1

þ fg0i ci�1ð Þ
" #

(22)

@vM
@n

� �
n¼1

þ rvM 1, sð Þ þ f g0M 1ð Þ þ rgM 1ð Þ� � ¼ f (23)

The shifting function giðnÞ may be chosen in order to simplify
Eqs. (18)–(23). Specifically, giðnÞ may be designed in order to
satisfy the following equations:

g00i ¼ a (24)

g01 c0ð Þ ¼ Bi1g1 c0ð Þ (25)

gi�1 ci�1ð Þ ¼ gi ci�1ð Þ � pig
0
i ci�1ð Þ (26)

ji�1g
0
i�1 ci�1ð Þ ¼ jig

0
i ci�1ð Þ (27)

g0M 1ð Þ ¼ 1 (28)

gM 1ð Þ ¼ 0 (29)

Equation (24) has the following general solution [29]

gi nð Þ ¼ a

2
n2 þ binþ ci (30)

where bi and ci are unknown coefficients to be determined.
Equations (25)–(29) represent (2Mþ 1) linear algebraic equations
in an equal number of unknowns, a, bi, and ci. A solution for the
unknowns can be easily determined by using matrix inversion.
The substitution of Eq. (29) into Eq. (16) results in

hM 1, sð Þ ¼ vM 1, sð Þ (31)

Further, substituting Eqs. (17) and (24) into (18) and using Eq.
(31) yields the following partial differential equation

@vi
@s

� di
@2vi

@n2
� di

n
@vi
@n

� gi nð ÞF sð Þv0M 1, sð Þ

þ �gi nð ÞF0 sð Þ þ di
n
F sð Þg0i nð Þ þ diaF sð Þ

� 	
vM 1, sð Þ

¼ di �Qi n, sð Þ

(32)

The properties of the shifting function given by Eqs. (25)–(29)
result in considerable simplification in Eqs. (20)–(23). The
following equations may be obtained

@v1
@n

� �
n¼c0

¼ Bi1v1 c0, sð Þ (33)

vi�1 ci�1, sð Þ ¼ vi ci�1, sð Þ � pi
@vi
@n

� �
n¼ci�1

(34)

ji�1

@vi�1

@n

� �
n¼ci�1

¼ ji
@vi
@n

� �
n¼ci�1

(35)

@vM
@n

� �
n¼1

þ rvM 1, sð Þ ¼ 0 (36)

2.2.2 Orthogonal Expansion Method [14,30,31]. Equations
(32), (19), and (33)–(36) admit the following general solution:

vi n, sð Þ ¼
X1
n¼1

wi,n nð Þqn sð Þ (37)

where the functions wi,n nð Þ are the eigenfunctions, which may be
written as

wi,n nð Þ ¼ li,nJ0 bi,nn

 �þ gi,nY0 bi,nn


 �
(38)
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where

bi,n ¼
ffiffiffiffiffi
d1
di

s
kn (39)

and kn are the eigenvalues.
By requiring that the solution (37) satisfy the boundary conditions

(33)–(36) and using Eq. (39), Eq. (38) may be expressed as follows
[14]:

wi,n nð Þ ¼ Ui,n knð ÞXi,n kn, nð Þ (40)

where the functions Ui,n knð Þ and Xi,n kn, nð Þ are given by

U1,n knð Þ ¼ 1; Ui,n knð Þ ¼ uiui�1…u3u2 i ¼ 2, 3,…,Mð Þ (41)

Xi,n kn, nð Þ ¼ J0

ffiffiffiffiffi
d1
di

s
knn

0
@

1
AþPi,n knð ÞY0

ffiffiffiffiffi
d1
di

s
knn

0
@

1
A (42)

The functions ui appearing in equations above are

ui ¼
Xi�1,n kn, ci�1ð Þ

Xi,n kn, ci�1ð Þ � piX0
i,n kn, ci�1ð Þ (43)

uM ¼ jM�1X
0
M�1,n kn, cM�1ð Þ

jMX0
M,n kn, cM�1ð Þ (44)

The functionPi,n knð Þwhich explicitly appears in Eq. (42) is given
by

P1,n knð Þ ¼ � Bi1J0 knc0ð Þ þ knJ1 knc0ð Þ
Bi1Y0 knc0ð Þ þ knY1 knc0ð Þ (45)

Pi,n knð Þ ¼ �
"
ji

ffiffiffiffiffi
d1
di

s
knJ1

ffiffiffiffiffi
d1
di

s
knci�1

0
@

1
AXi�1,n kn, ci�1ð Þ

þji�1J0

ffiffiffiffiffi
d1
di

s
knci�1

0
@

1
AX0

i�1,n kn, ci�1ð Þ

þ ji�1pi

ffiffiffiffiffi
d1
di

s
knJ1

ffiffiffiffiffi
d1
di

s
knci�1

0
@

1
AX0

i�1,n kn, ci�1ð Þ
#

=

"
ji

ffiffiffiffiffi
d1
di

s
knY1

ffiffiffiffiffi
d1
di

s
knci�1

0
@

1
AXi�1,n kn, ci�1ð Þ

þ ji�1Y0

ffiffiffiffi
d1
di

q
knci�1

� �
X0
i�1,n kn, ci�1ð Þ

þ ji�1pi

ffiffiffiffiffi
d1
di

s
knY1

ffiffiffiffiffi
d1
di

s
knci�1

0
@

1
AX0

i�1,n kn, ci�1ð Þ
#

i ¼ 2, 3, :::,Mð Þ
(46)

PM,n knð Þ ¼ � rJ0

ffiffiffiffiffiffi
d1
dM

s
kn

0
@

1
A�

ffiffiffiffiffiffi
d1
dM

s
knJ1

ffiffiffiffiffiffi
d1
dM

s
kn

0
@

1
A

2
4

3
5


rY0

ffiffiffiffiffiffi
d1
dM

s
kn

0
@

1
A�

ffiffiffiffiffiffi
d1
dM

s
knY1

ffiffiffiffiffiffi
d1
dM

s
kn

0
@

1
A

2
4

3
5

(47)

The eigenvalue kn may be obtained by recognizing that Eq. (46)
with i¼M must yield the same expression as Eq. (47). This can be
shown to result in

� jM

ffiffiffiffiffiffi
d1
dM

s
knJ1

ffiffiffiffiffiffi
d1
dM

s
kncM�1

0
@

1
AXM�1,n kn, cM�1ð Þ

2
4

þ jM�1J0

ffiffiffiffiffiffi
d1
dM

s
kncM�1

0
@

1
AX0

M�1,n kn, cM�1ð Þ

þ jM�1pM

ffiffiffiffiffiffi
d1
dM

s
knJ1

ffiffiffiffiffiffi
d1
dM

s
kncM�1

0
@

1
AX0

M�1,n kn, cM�1ð Þ�=

jM

ffiffiffiffiffiffi
d1
dM

s
knY1

ffiffiffiffiffiffi
d1
dM

s
kncM�1

0
@

1
AXM�1,n kn, cM�1ð Þ

2
4

þ jM�1Y0

ffiffiffiffiffiffi
d1
dM

s
kncM�1

0
@

1
AX0

M�1,n kn, cM�1ð Þ

þ jM�1pM

ffiffiffiffiffiffi
d1
dM

s
knY1

ffiffiffiffiffiffi
d1
dM

s
kncM�1

0
@

1
AX0

M�1,n kn, cM�1ð Þ�

� rJ0

ffiffiffiffiffiffi
d1
dM

s
kn

0
@

1
A�

ffiffiffiffiffiffi
d1
dM

s
knJ1

ffiffiffiffiffiffi
d1
dM

s
kn

0
@

1
A

2
4

3
5=

rY0

ffiffiffiffiffiffi
d1
dM

s
kn

0
@

1
A�

ffiffiffiffiffiffi
d1
dM

s
knY1

ffiffiffiffiffiffi
d1
dM

s
kn

0
@

1
A

2
4

3
5 ¼ 0

(48)

Equation (48) represents the eigenequation, the roots of which
may be computed to determine the eigenvalues. It can be shown that
for the special case of equal properties in all layers, perfect thermal
contact between layers and large Bi1, Eq. (48) correctly reduces to
Eq. (24) of Tu and Lee [26] who analyzed thermal conduction in a
homogeneous annular cylinder with zero temperature on the inner
surface. In fact, when all layers have uniform properties, Pi,n knð Þ
given byEqs. (45)–(47) are identical. In otherwords, in this case, the
eigenequation derived equating Eq. (46) with i¼M and Eq. (47) can
also be obtained by simply Eqs. (45) and (47). Then, the
eigenequation for the problem described by Tu and Lee [26] can
be obtained by setting a very large value of Bi1.
The eigenfunction wi,nðnÞ can be shown to satisfy the following

orthogonality relation

XM
i¼1

ji
di

ðci
ci�1

nwi,m nð Þwi,n nð Þdn ¼ 0

Nn

m 6¼ n

m ¼ n

�
(49)

where Nn represents the norm as follows:

Nn ¼
XM
i¼1

ji
di

ðci
ci�1

nw2
i,n nð Þdn (50)

The integrals above may be evaluated as follows (see details in
Appendix B in Ref. [14])

ðci
ci�1

nw2
i,n nð Þdn ¼ n2w2

i,n

2

� �ci
ci�1

þ n2w02
i,n

2k2n

" #ci
ci�1

(51)

where i ¼ 1, 2,…,M.
By using Eq. (37) in Eq. (32), the following equation may be

derived
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X1
n¼1

wi,n nð Þq0n sð Þ � diw
00
i,n nð Þqn sð Þ � di

n
w0
i,n nð Þqn sð Þ

�

�gi nð ÞF sð ÞwM,n 1ð Þq0n sð Þ�
þ
X1
n¼1

�gi nð ÞF0 sð Þ þ di
n
F sð Þg0i nð Þ þ diaF sð Þ

� 	

wM,n 1ð Þqn sð Þ ¼ di �Qi n, sð Þ

(52)

In order to proceed, a series expansion of di �Qi n, sð Þmaybe carried
out as follows:

di �Qi n, sð Þ ¼
X1
n¼1

wi,n nð Þ/n sð Þ (53)

where/n sð Þ are functions to be determined. For each layer, Eq. (53)
is multiplied by ji

di
nwi,n nð Þ and integrated within each layer,

followed by adding together equations for all layers. Based on the
principle of quasi-orthogonality of eigenfunctions in a multilayer
geometry, this results in

/n sð Þ ¼ 1

Nn

XM
i¼1

ji

ðci
ci�1

n� �Qi n
�, sð Þwi,n n�ð Þdn� (54)

where Nn is the norm given by Eq. (50).
Substituting the series expansion (53) for di �Qi n, sð Þ in Eq. (52)

results in

X1
n¼1

wi,n nð Þq0n sð Þ�diw
00
i,n nð Þqn sð Þ�di

n
w0
i,n nð Þqn sð Þ

�

�gi nð ÞF sð ÞwM,n 1ð Þq0n sð Þ�
þ
X1
n¼1

�gi nð ÞF0 sð Þþdi
n
F sð Þg0i nð ÞþdiaF sð Þ

� 	
wM,n 1ð Þqn sð Þ

¼
X1
n¼1

wi,n nð Þ/n sð Þ

(55)

A term-by-term comparison in Eq. (55) results in

wi,n nð Þq0n sð Þ � gi nð ÞF sð ÞwM,n 1ð Þq0n sð Þ

� diw
00
i,n nð Þqn sð Þ � di

n
w0
i,n nð Þqn sð Þ

þ �gi nð ÞF0 sð Þ þ di
n
F sð Þg0i nð Þ þ diaF sð Þ

� 	
wM,n 1ð Þqn sð Þ

¼ wi,n nð Þ/n sð Þ
(56)

Now, for each i, Eq. (56) is multiplied by ji
di
nwi,n nð Þ, followed by

integration from n ¼ ci�1 to n ¼ ci. The resulting expressions are
added for i¼ 1,2,…,M, resulting in

q0n sð Þ þ k2n � xnF
0 sð Þ þ vnF sð Þ

1� xnF sð Þ qn sð Þ ¼ /n sð Þ
1� xnF sð Þ (57)

where

xn ¼
wM,n 1ð Þ

Nn

XM
i¼1

ji
di

ðci
ci�1

n�gi n�ð Þwi,n n�ð Þdn� (58)

vn ¼
wM,n 1ð Þ

NnXM
i¼1

ji

ðci
ci�1

g0i n
�ð Þwi,n n�ð Þdn� þ a

XM
i¼1

ji

ðci
ci�1

n�wi,n n�ð Þdn�
" #

(59)

By substituting Eq. (37) into Eq. (19) and using the orthogonality
relation, Eq. (49), onemay obtain the associated initial condition for
qn sð Þ as follows:

qn 0ð Þ ¼ 1

Nn

XM
i¼1

ji
di

ðci
ci�1

hi,n n�ð Þn�wi,n n�ð Þdn� (60)

Finally, the solution for qn sð Þ is derived by solving the ordinary
differential Eq. (57)

qn sð Þ¼exp �
ðs
0

k2n�xnF
0 s�ð ÞþvnF s�ð Þ

1�xnF s�ð Þ ds�
 !

qn 0ð Þþ
ðs
0

/n fð Þ
1�xnF fð Þexp

ðf
0

k2n�xnF
0 sð ÞþvnF sð Þ

1�xnF sð Þ ds

 !
df

( )

(61)

Substituting Eqs. (17), (30), (31), (37), (40), and (42) back into
Eq. (16) results in the nondimensional temperature of ith layer in the
multilayer cylinder as follows:

hi n, sð Þ ¼
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ffiffiffiffiffi
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(62)

Note that while the expression for qn sð Þ derived above is quite
extensive, its computation is relatively straightforward. Once the
values of the nondimensional input parameters for a problem are
known, parameters such as Ui,n, Pi,n, and F sð Þ can be easily
computed, based on definitions in preceding equations. These
parameters are then inserted in Eq. (61) in order to determine the
coefficients qn as functions of time. When these parameters are
available in functional form, these calculations, especially the
evaluation of integrals appearing in Eq. (61) may be carried out
symbolically. In contrast, if such data are available in numerical
form, for example, discrete experimental data for the time-
dependent convective heat transfer coefficient, such integration
may necessarily need to be carried out numerically.

2.3 Solid Cylinder. The temperature field of a one-
dimensional multilayer solid cylinder with time-dependent heat
convective coefficients hM tð Þ in the outer surface can be easily
obtained by simplifying the analysis for a one-dimensional multi-
layer annular cylinder presented above. Since the temperature field
of an axisymmetric solid cylinder has zero slope at the center,
therefore, both the governing equations and the solution method-
ology presented above are also applicable for a solid cylinder by
using h1 ¼ 0 and r0 ¼ 0 in Eq. (3), and consequently, Bi1 ¼ 0 and
c0 ¼ 0 in Eqs. (10), (20), (25), and (33).
The temperature field of the multilayer solid cylinder is still

expressed byEq. (62) except for that of the first layer. By letting i¼ 1
in Eqs. (38), (42), and (62), and using Eq. (41), one may obtain the
temperature field of the first layer for the multilayer solid cylinder as
follows
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(63)

Note that the equivalent of Eq. (45) is not needed for the case of a
solid multilayer cylinder.

3 Results and Discussion

3.1 Comparison With Past Work for Special Cases. Two
specific special cases are considered, for which, the temperature
field computed using results from Sec. 2 is compared against results
available from past work as well as a standard theoretical solution.
The first case pertains to a three-layer annular cylinder considered

by de Monte [14], in which, two constant convective heat transfer
boundary conditions were assumed on the inner and outer surfaces.
No internal heat generation and thermal contact resistance were
considered. Compared to this past work, the present work represents
a more generalized treatment of a multilayer geometry. In order to
compare the results of the present workwith [14] for the special case
considered, results from the present work are simplified under the
assumptions of zero heat generation rate and zero interlayer thermal
contact resistance. Under these assumptions, according to the
definition of nondimensional parameters in Ref. [14] and the present
work, one may obtain pi ¼ 0 i ¼ 2, 3ð Þ, kn ¼ bn=c0, r ¼ Bi4=
j3c0ð Þ, c3 ¼ 1, d1 ¼ 1, c0 ¼ 1. Therefore, after suitable manipu-
lation, the coefficients Pi,n (i¼ 1, 2, 3) in Eqs. (45)–(47) may be
shown to reduce to

P1,n knð Þ ¼ � Bi1J0 bnð Þ þ bnJ1 bnð Þð Þ= Bi1Y0 bnð Þ þ bnY1 bnð Þð Þ
(64)
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The eigenfunction given by Eq. (48) is simplified similarly to the
following
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(67)

where the expressions of Bii i ¼ 1, 4ð Þ, bn, ci (i¼ 2, 3, 4), ~Xi,n ciþ1ð Þ
(i¼ 1, 2) and Ki,n ciþ1ð Þ (i¼ 1, 2) may be obtained from Ref. [14].

The above simplified formulas (45)–(48) are identical to equations
(42a), (42b), (42c), and (40) in Ref. [14]. It should be noted that to
explicitly compare the corresponding formulas between the present
work and Ref. [14], Eqs. (45)–(47) are simplified using the
relationship between nondimensional parameters in present work
and [14].
The eigenequation derived above is identical to Eq. (40) of de

Monte, showing that the present work results in identical
eigenvalues as de Monte for the simplified, single-layer conditions
considered in that work. Comparison of the predicted temperature
distribution is also carried out for the above case, with
F sð Þ ¼ 0, BiM sð Þ ¼ r and Qi r, tð Þ ¼ 0. Therefore, the general
temperature distribution given by Eq. (62) reduces to

hi n, sð Þ ¼
X1
n¼1

qn 0ð Þ exp �b2ns
� �

Ui,n knð Þ J0 bnn=
ffiffiffiffi
di

p� �h

þPi,n knð ÞY0 bnn=
ffiffiffiffi
di

p� �� (68)

where qn 0ð Þ is the same as cþn with m¼ n in Eq. (39) by de Monte
[14] after corresponding manipulations. The temperature field for
this special case based on the present work, given by Eq. (68) agrees
exactly with the solution derived by de Monte [14] using the
separation-of-variables method.
Comparison of the predicted temperature distribution is also

carried out for a special case of constant convective heat transfer
coefficient along with a nonhomogeneous initial condition. The
solution to this problem was presented by €Ozışık [12]. In this case,
BiM sð Þ ¼ r andQi r, tð Þ ¼ 0. Therefore, F sð Þ ¼ 0 from Eqs. (7) and
(14) and /n sð Þ ¼ 0 from Eqs. (7) and (54). Therefore, the general
solution given by Eq. (62) reduces to
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where qn 0ð Þ is still given by Eq. (60).
Further, when all layers have the same properties and Bi1 ¼ 1,

Eq. (69) can be simplified as

h n, sð Þ ¼
X1
n¼1

exp �k2ns
� �
Nn

wn nð Þ
ð1
c0

hin n�ð Þn�wn n�ð Þdn� (70)

where

Nn ¼
ð1
c0

n�w2
n n�ð Þdn� (71)

wn nð Þ ¼ J0 knnð Þ � J0 knc0ð Þ
Y0 knc0ð ÞY0 knnð Þ (72)

The temperature field for this special case based on the present
work, given by Eq. (70) agrees exactly with the solution derived by
€Ozışık [12] using the integral transform method.
Finally, comparison with a previously reported special case of a

two-layer solid cylinder with internal heat generation in both layers
and constant convective heat transfer coefficient on the outer surface
is carried out. This problem is a special case of the more generalized
treatment in the present work. A solution for this special case has
been derived in the past [32]. For the same set of parameters reported
in this work (j2 ¼ 0:5, d2 ¼ 0:5, c1 ¼ 0:5, �Q1 ¼ 5:0, �Q2 ¼ 2:0,
Bi ¼ 10), the temperature field is computed using the analytical
model derived in the present work. A comparison between the two is
presented in Fig. 2(a) in terms of nondimensional temperature as a
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function of time at five different locations. Figure 2(a) shows
excellent agreement between the two. The percent error between the
two is plotted in Fig. 2(b), showing that the temperature fields
computed from the two techniques are practically identical. Note
that the differences in nondimensionalization schemes between the
present work and past work are reconciled prior to the comparison
presented in Fig. 2, in which, all nondimensional parameters
correspond to the definitions in the present work.
Note that the comparisons discussed above do not necessarily

establish the universal correctness of the time- and space-dependent
temperature field derived here, but, nevertheless, provide verifica-
tion for special cases that the general problem solved here may
reduce to under certain conditions.

3.2 Comparison With Standard Analytical Solution.
Another comparison is carried out with a special case, for which,
an analytical solution is easily derivable independent of the present
work. The problem considered is that of a single-layer annular
cylinder with constant h1 and hM on the inner and outer surfaces,
respectively, in addition to constant heat generation. For this special
case, the temperature distribution can be readily derived using
separation of variables technique and it is of interest to compare this
with the general model presented above.
In this case, for the analytical solution derived in this work, one

may substitute F sð Þ ¼ 0,Ui,n knð Þ ¼ 1, i ¼ 1 and
ffiffiffiffi
d1
di

q
¼ 1 into

Eq. (62), resulting in the following temperature distribution

h n, sð Þ ¼
X1
n¼1

wn nð Þqn sð Þ (73)

where

wn nð Þ ¼ J0 knnð Þ � knJ1 knc0ð Þ þ Bi1J0 knc0ð Þ
knY1 knc0ð Þ þ Bi1Y0 knc0ð Þ Y0 knnð Þ (74)

Further, the substitution of F sð Þ ¼ 0,Ui,n knð Þ ¼ 1, i ¼ 1, andffiffiffiffi
d1
di

q
¼ 1 in Eq. (62), followed by some mathematical manipulation

results in the following expression for qn sð Þ.

qn sð Þ ¼ qn 0ð Þexp �k2ns
� �

þ
�Q 1� exp �k2ns

� �� �
k2nNn

ð1
c0

n�wn n�ð Þdn�

(75)

Finally, putting r ¼ BiM,
ffiffiffiffi
d1
dM

q
¼ 1, andM ¼ 1 into Eq. (47) and

comparing the resulting expression with Eq. (45) can be shown to
lead to the following eigenequation:

J1 knc0ð ÞY1 knð Þk2n þ Bi1J0 knc0ð ÞY1 knð Þkn
� BiMJ1 knc0ð ÞY0 knð Þkn � Bi1BiMJ0 knc0ð ÞY0 knð Þ
� J1 knð ÞY1 knc0ð Þk2n � Bi1J1 knð ÞY0 knc0ð Þkn
þ BiMJ0 knð ÞY1 knc0ð Þkn þ Bi1BiMJ0 knð ÞY0 knc0ð Þ ¼ 0

(76)

The temperature distribution and eigenequation obtained above
by simplifying the general results are identical to an independent
derivation based on the separation of variables method for this
special case, presented in Appendix A. Note that the integral
appearing in Eq. (75) can be shown to be given byð1

c0

n�wn n�ð Þdn� ¼ J1 knð Þ � c0J1 knc0ð Þ
kn

� knJ1 knc0ð Þ þ Bi1J0 knc0ð Þ
knY1 knc0ð Þ þ Bi1Y0 knc0ð Þ

Y1 knð Þ � c0Y1 knc0ð Þ
kn

� � (77)

3.3 Effect of Number of Terms. The temperature distribution
derived in this work is in the form of an eigenvalue-based series
solution. Therefore, it is important to understand the convergence of
this series and to determine howmany eigenvalues must be used for
a reasonable tradeoff between accuracy and computational cost. In
order to investigate this in the context of the present problem, a
representative three-layer problem is considered. Table 1 presents
the values of various parameters used for this investigation. Figure 3
plots the temperature distribution in space and time for this problem
computed with different number of eigenvalues. These plots show
that the spatial temperature distribution, as well as variation in time,
converges very quickly as the number of eigenvalues increases.
While there is some deviation between curves corresponding to 1
and 5 eigenvalues, the curves corresponding to 5 and 10 eigenvalues
are practically identical. This shows that, for the set of parameters
considered here, only five eigenvalues are sufficient for good
computational accuracy. Note that this is a useful insight since the
general eigenequation for this problem is quite complicated and
determining the eigenvalues may not be straightforward. However,
it is good practice to repeat this exercise to examine the convergence
of the series solution for the specific problem under consideration,

Fig. 2 Comparison of presentworkwith pastwork [32] for a special case: (a) nondimensional temperature as a functionof
time at five different locations for a two-layer solid cylinder problemwith internal heat generation and constant convective
heat transfer coefficient on the outer boundary. Results from present work and past work are both plotted. (b) % error as a
function of time at the five different locations considered in (a).
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especially considering the time domain in which the computation of
temperature is to be carried out. A general eigenvalue convergence
and error analysis for the present work is mathematically difficult
due to the complicated nature of the eigenequation and other results
and is outside the scope of the present work. Please note that here,
eigenvalues are obtained numerically by successively implementing
the Newton Raphson method in regions where the eigenequation
changes sign, and then zooming in, so as to determine the roots of the
eigenequation within the region with increasingly finer accuracy.
The width of the region is taken to be thin enough so as not to miss
roots that may be potentially located very close to each other.

3.4 Effect of Time-Dependent Convective Heat Transfer
Coefficient. The influence of various forms of the time-dependent
convective heat transfer coefficient on the temperature distribution
is investigated next. Linear, sinusoidal, and step function forms of
the time-dependent convective heat transfer coefficient are
considered, as these are some of the most commonly encountered
variations with time observed in practical problems. For example,
sinusoidal functions are investigated in problems with inherent
periodic variation, such as alternating currents or periodic changes
in heat transfer due to blade rotation in turbomachinery [33]. Step
functions may be appropriate in scenarios involving abrupt on/off
action, such as actuation of a switch/valve, or coolant flow failure.
For example, failure of coolant flow in a nuclear reactor may be
modeled as a step-function in h tð Þ, where h tð Þ is a large value due to
forced flow until the time of failure, and, later, h tð Þ is a much lower
value due to natural convection alone after the time of failure [34].
Finally, linear functions may be appropriate in other applications
where the boundary conditions change in a slower, controlled
fashion. For example, thermal loading of an optical fiber has been
modeled as a combination of linear and sinusoidal functions for the
time-dependent convective heat transfer coefficients [35]. Unsteady
cooling of thermoelectric devices has also been modeled with a

linear convective heat transfer coefficient [36]. Similar linear
functions have been extracted from experimental temperature
measurements [37] and have been used in analytical heat transfer
models for flow boiling over a heated tube [20].
A linear convective heat transfer coefficient profile, given by

BiM tð Þ ¼ Aþ B � t is considered first. For a fixed value of A, Fig. 4
plots the temperature on the outer surface of a multilayer cylinder as
a function of time for different values of the slope B. Results
pertaining to a three-layer annular cylinder and a four-layer solid
cylinder are presented in Figs. 4(a) and 4(b), respectively. As
expected, these plots show that the temperature increases at first, due
to the onset of heat generation in the various layers. Since the value
of B is non-negative in each case, therefore, BiM tð Þ increases with
time, resulting in greater coolingwith increasing time.This results in
the temperature profile reaching a peak at a certain time and then
decaying away due tomore andmore effective cooling.As expected,
the peak temperature reached is larger for smaller values of B. In
addition, the peak also occurs at greater times for small B, as it takes
longer for the convective cooling effect to dominate over heat
generation.
The case of sinusoidal convective heat transfer coefficient is

investigated next. For a representative profile BiM tð Þ
¼ BiM,0 1þ cos xtð Þð Þ, Fig. 5 plots the transient temperature on the
outer surface of amultilayer cylinder for different values ofx, while
the amplitude is held constant. Cases for annular and solid cylinder
are presented in Figs. 5(a) and 5(b), respectively. Curves presented
in these figures are found to be consistent with the frequency of the
convective heat transfer coefficient for both annular and solid
cylinders. The peak temperature attained is highest for the smallest
frequency. This is because the smaller the frequency of the function
BiM(t), the longer is the residence time of the function BiM(t) around
its minimum. In other words, the cooling effect of the largest period
of the function BiM(t) near its minimum is the worst. Similarly, the
smaller the frequency of the functionBiM(t), the longer the residence
time of the function BiM(t) around the maximum.

Table 1 Values of various parameters for a three-layer problem solved to demonstrate the capabilities of the analytical model

Parameters

Figure M ri (mm) (i¼ 0, 1, 2..M) Qi (kW/m3) ki (W/(m�K)) ai (mm2/s) h1 (W/(m2�K))

3 3 10, 20, 30, 40 400, 200, 600 1, 2, 3 1, 2, 4 1000
4(a) 3 10, 20, 30, 40 400, 200, 600 1, 2, 3 1, 2, 4 1000
4(b), 5(b) 4 0,10, 20, 30, 40 400, 200, 600, 500 1, 2, 3, 4 1, 2, 4, 3 —
5(a) 3 10, 20, 30, 40 400, 200, 600 1, 2, 3 1, 2, 4 250
6 3 10, 20, 30, 40 600, 600, 600 2, 2, 2 2, 2, 2 500
7 3 10, 20, 30, 40 600, 300, 900 1, 2, 3 1, 2, 4 1000

Fig. 3 Effect of number of eigenvalues considered: (a) T versus r at two different times, (b) T versus t at two different
locations plotted for 1, 5, 10, and 30 eigenvalues. Here, hM(t)5400t/t0 W/(m2�K), where t051000 (m2�K�s)/W, and other
parameters are listed in Table 1.
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Finally, a step function convective heat transfer coefficient is
considered. The Biot number on the outer boundary is assumed to
change from BiM,1 to BiM,2 at t ¼ t1. For fixed value of BiM,1, Fig. 6
plots the temperature profiles at two different locations of an annular
cylinder for different values of BiM,2, including BiM,2 ¼ 0, which
corresponds to adiabatic conditions. Both plots show, as expected,
the same temperature distribution regardless of the value of BiM,2 up
to t ¼ t1, since BiM,1 is fixed. Afterwards, the temperature
distribution varies, with the highest temperature rise obtained for
the worst-case value of BiM,2 ¼ 0, in which case, there is no
convective heat transfer on the outer surface at all. As BiM,2

increases, the temperature profile beyond t ¼ t1 shifts downwards,
and, in the case ofBiM,2 ¼ 10, there is no additional temperature rise,
as an equilibrium is maintained between heat generation and
convective heat removal.

3.5 Effect of Thermal Contact Resistance. The impact of
thermal contact resistance between adjacent layers is investigated
next. For the case of a three-layer annular cylinder, the impact of
accounting for R2 and R3, the contact resistances between layers 1
and 2, and layers 2 and 3, respectively is presented in Fig. 7. While
Fig. 7(a) compares the case of contact resistance with perfect

contact, Fig. 7(b) presents results for different values of the contact
resistance. These plots show, as expected, smooth temperature
distributions for the case of perfect thermal contact, whereas there
are discontinuities at the interface whenever the thermal contact
resistance is nonzero. In Fig. 7(a), the temperature rise for the case of
contact resistance is greater than the perfect contact case for layers 1
and 2, whereas, there is a small reduction in temperature due to
contact resistance for layer 3. This can be explained on the basis of
the different heat generation rates in the three layers, with heat
generation in layer 3 being the largest. In general, layer 2 appears to be
thehottest,which is likelybecause it is farthest away fromeither of the
two cooling boundaries while still generating appreciable heat.
Moreover, Fig. 7(a) shows greater impact of thermal contact

resistance between layers 2 and 3, than between layers 1 and 2. In
order to investigate this further, temperature plots for a number of
thermal contact resistance combinations are presented in Fig. 7(b).
These plots demonstrate that thermal contact resistance between the
first two layers has only a weak impact on the temperature field. For
example, there is negligible change in the temperature curve at
R2 ¼ 0:005Km2/W compared to the perfect contact baseline. Even
for a relatively large value of R2 ¼ 0:5Km2/W, the interfacial
temperature jump is quite small. In comparison, thermal contact
resistance between the two outer layers causes amuch larger jump in

Fig. 4 Effectof linearBiM(t)5A1Bt: Temperatureon theoutersurfaceof (a) anannular three-layercylinderand (b) a four-
layer solid cylinder as a function of time for different values of the slope B, with A510. Problem parameters are given in
Table 1.

Fig. 5 Effect of sinusoidal BiM(t)5BiM,0(11cos(xt)), BiM,0510: Temperature on the outer surface of (a) an annular three-
layer cylinder and (b) a four-layer solid cylinder as a function of time for different values of frequency x. Problem
parameters are given in Table 1.
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the temperature curve, even for relatively small value. As shown in
Fig. 7(b), the analyticalmodel enables evaluation and comparison of
various such combinations of parameter values.

4 Conclusions

The key novelty of the present work is in the development of a
theoretical model that accounts for one-dimensional multilayer
cylindrical thermal conduction in the presence of time-dependent
convective heat transfer coefficient on the outer boundary. While
cases with constant or even spatially varying convective heat
transfer have been addressed before, accounting for time-dependent
convective heat transfer coefficient is a lot more complicated. The
present work generalizes past papers that solved only specific
problems and, as expected, results from the present work correctly
reduce to past results for these special cases. Further, the good
agreement with numerical simulations also increases confidence in
the model presented here.
The present work assumes axisymmetric conditions. While

circumferential variation can, in principle, be accounted for, a vast
majority of problems of engineering interest are axisymmetric in
nature. Further, this work assumes that all properties and parameters
other than the convective heat transfer coefficient on the outer
surface are constant and uniform. This is also a reasonable
assumption for most engineering problems, especially when the
temperature rise is reasonably small.

This work contributes toward an improved understanding of
multilayer thermal conduction. By accounting for time-dependent
convective heat transfer coefficient, the model may accurately
address a number of practical engineering problems where such
variation in time occurs.
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Nomenclature

a, b, c ¼ coefficients in equation (30)
Bi ¼ Biot number
f ¼ auxiliary function

Fig. 7 Effect of interlayer thermal contact resistances R2 and R3 in a three-layer problem: Temperature at t5600s as
functions of location for different values ofR2 andR3. Here, hM(t)5800t/t0 W/(m2�K), where t051000 (m2�K�s)/W, and other
parameters are given in Table 1.

Fig. 6 Effect of step functionBiM(t)5BiM,1 if 0<t<t1, andBiM,2 otherwise: Temperature at (a) centerof thesecond layer and
(b) outer surface of the three-layer bodyas functions of time for different values ofBiM,2. Problemparameters are given in
Table 1. Additionally, t15300s, t25600s, h15500 W/(m2�K), and BiM,1510.
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F ¼ dimensionless time function
g ¼ shifting function
h ¼ convective heat transfer coefficient, W�m�2�K�1

k ¼ thermal conductivity, W�m�1�K�1

p ¼ dimensionless thermal contact resistance
q ¼ dimensionless time-variable function
Q ¼ heat generation rate, W�m�3

�Q ¼ dimensionless heat generation rate
r ¼ space coordinate, m
R ¼ thermal contact resistance, K�m2�W�1

t ¼ time, s
T ¼ temperature, K
v ¼ transformed function

Greek Symbols

a ¼ thermal diffusivity, m2s-1

c ¼ geometric ratio
d ¼ thermal diffusivity ratio
h ¼ dimensionless temperature
j ¼ thermal conductivity ratio
k ¼ eigenvalue
n ¼ dimensionless space coordinate
r ¼ initial value of BiM sð Þ
s ¼ dimensionless time
w ¼ eigenfunction

Subscripts

i ¼ layer number
in ¼ initial state

m, n ¼ integer numbers
ref ¼ reference

Appendix A: Separation of Variables Based Solution for

Special Case in Sec. 3.2

This Appendix briefly presents a derivation of the solution for the
transient temperature distribution for the special case of uniform
heat generation in a single-layer annular cylinder with constant h1
and hM on the inner and outer surfaces, respectively, with which, the
general model presented in this work is compared.
For this problem, based on the separation of variables technique, a

general solution for the transient temperature distribution may be
written as

h n, sð Þ ¼
X1
n¼1

wn nð Þqn sð Þ (A1)

where wn nð Þ are eigenfunctions, which, for the cylindrical problem
are given by a linear combination of zeroth order Bessel functions of
the first and second kind, i.e., wn nð Þ ¼ J0 knnð Þ þ cnY0 knnð Þ. Now,
using the convective boundary condition at the inner surface, it may

be shown that cn ¼ � knJ1 knc0ð ÞþBi1J0 knc0ð Þ
knY1 knc0ð ÞþBi1Y0 knc0ð Þ, and, further, using the

convective boundary condition at the outer surface, the following
eigenequation may be derived:

J1 knc0ð ÞY1 knð Þk2n þ Bi1J0 knc0ð ÞY1 knð Þkn
� BiMJ1 knc0ð ÞY0 knð Þkn � Bi1BiMJ0 knc0ð ÞY0 knð Þ
� J1 knð ÞY1 knc0ð Þk2n � Bi1J1 knð ÞY0 knc0ð Þkn
þ BiMJ0 knð ÞY1 knc0ð Þkn þ Bi1BiMJ0 knð ÞY0 knc0ð Þ ¼ 0

(A2)

This leaves the unknown coefficients qn sð Þ to be determined. This
is carried out by following the method of undetermined parameters.
Briefly, Eq. (A1) is differentiated with respect to time, followed by
substitution of the transient derivative with spatial derivatives using
the governing energy equation. The resulting equation is multiplied
by the eigenfunction wm nð Þ, followed by integration from n ¼ c0 to

n ¼ 1. Mathematical manipulation, including the use of the
boundary conditions may be shown to result in the following
expression for qn sð Þ

qn sð Þ ¼ qn 0ð Þexp �k2ns
� �

þ
�Q 1� exp �k2ns

� �� �
k2nNn

ð1
c0

n�wn n�ð Þdn�

(A3)

This completes the derivation of the solution for this special case,
independent of the general method presented in this work.
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