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a b s t r a c t 

The thermal management challenge in microelectronic chips is exacerbated by their multilayer architec- 

ture and manufacturing processes that introduce non-uniform thermal contact resistance between adja- 

cent layers. Most of the past work on development of thermal models to predict temperature distribu- 

tion in microelectronic chips either does not account for such thermal contact resistance at all, or simply 

assumes it to be spatially uniform. This work presents an exact analytical solution for the transient tem- 

perature distribution in a multilayer chip with non-uniform thermal contact resistance between layers 

as well as dynamic, non-uniform heat generation. The problem is solved by first carrying out a Laplace 

transformation and then implementing a series solution, the coefficients of which are determined by 

solving a set of algebraic equations derived from the non-uniform thermal contact resistances between 

adjacent layers. While the problem is solved for a general M -layered chip, the solution for the practical 

case of a two-layer chip is also provided. Results indicate that the temperature distribution and its evolu- 

tion over time is determined by the nature of the non-linear thermal contact resistance, and its overlap 

with the dynamic heat loads imposed on the chip. The impact of these and other relevant parameters is 

examined in detail. Results presented here improve the fundamental understanding of thermal transport 

modeling in multilayer semiconductor chips, with possible applications in other multilayer engineering 

systems as well. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Thermal management of microelectronic devices remains a 

ong-standing technological challenge [ 1 , 2 ]. Heat generation dur- 

ng device operation, for example, due to transistor switching or 

urrent flow through a resistive interconnect must be adequately 

issipated in order to avoid performance reduction and reliabil- 

ty problems at elevated temperature [ 1 , 2 ]. Examples of heat re-

oval technologies in microelectronic devices and systems range 

rom air cooling with the aid of heat sinks for relatively low power 

hips [2–5] to heat pipes [4] , vapor chambers [6] , immersion cool- 

ng [7] and related technologies for high power chips. The increase 

n device density with successive technology nodes and the intro- 

uction of new architectures and packaging technologies continues 

o exacerbate the thermal management challenge [8–10] . Thermal 

anagement is particularly challenging for multilayer semiconduc- 

or architectures such as three-dimensional integrated circuits (3D 

Cs) [11] where heat generation in multiple parallel transistor lay- 
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rs results in overlap of heat maps. Moreover, the limited thermal 

ccess to intermediate layers in a 3D IC makes heat removal even 

ore challenging. 

A considerable amount of literature already exists on experi- 

ental and theoretical investigation of thermal management of 3D 

Cs. A number of experimental methods for cooling of 3D ICs have 

een reported. Some of these include single and two-phase liquid 

ooling [ 8 , 9 ], thermal management using TSVs [ 8 , 12 , 13 ] and cool-

ng through air gaps [ 8 ]. On the other hand, available theoretical 

odels for heat transfer in 3D ICs include thermal resistance net- 

ork based models [1] , detailed analytical models [14–16] , numer- 

cal models [ 17,18 ] and coupled thermal-electrical models [ 19 ]. Al- 

orithms to integrate thermal modeling within various aspects of 

he 3D IC design process, including thermally aware floorplanning 

 20,21 ], via placement [ 22 ], routing [ 23 ] and performance analysis

 24 ] have been reported. Thermomechanical simulations to predict 

nd minimize the undesirable effect of thermomechanical stress in 

he vicinity of a through-Silicon via (TSV) have also been reported 

 25 ]. 

Similar to other semiconductor devices, spatial distributions of 

eat generation, or power maps on a 3D IC are highly dynamic, 
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Nomenclature 

Bi Biot number, Bi = 

hz M 
k M 

ḡ non-dimensional thermal contact resistance, 

ḡ m 

(η) = 

R m (y ) k M 
z M 

h convective heat transfer coefficient (Wm 

−2 K 

−1 ) 

k thermal conductivity (Wm 

−1 K 

−1 ) 

k̄ non-dimensional thermal conductivity, k̄ m 

= 

k m 
k M 

M number of layers 

N number of eigenvalues 

q ′′ heat flux (Wm 

−2 ) 

q̄ non-dimensional heat flux, q̄ (η) = 

q ′′ (y ) z M 
k M ( T re f −T amb ) 

ˆ q Laplace transform of the heat flux 

R spatially varying thermal contact resistance 

(Km 

2 W 

−1 ) 

s Laplace variable 

T temperature (K) 

θ non-dimensional temperature, θm 

= 

T m −T amb 
T re f −T amb 

t time (s) 

w width in the y direction (m) 

w̄ non-dimensional width in the y direction, w̄ = 

w 

z M 
y, z spatial coordinates (m) 

α diffusivity (m 

2 s −1 ) 

ᾱ non-dimensional diffusivity, ᾱm 

= 

αm 
αM 

γ non-dimensional interface location, γm 

= 

x m 
z M 

λ non-dimensional eigenvalue in η direction 

η, ξ non-dimensional spatial coordinates, η = 

y 
z M 

; ξ = 

z 
z M 

ˆ θ Laplace transform of the temperature field 

τ non-dimensional time, τ = 

αM t 

z 2 
M 

Subscripts 

amb ambient 

m layer number 

ref reference 

in initial 

epending on how the various components of a highly heteroge- 

eous architecture are being used over time. While the simplest 

D IC thermal models are steady state in nature [ 26 , 27 ], transient

odels that account for such dynamic heat generation have also 

een reported [ 28 ]. 

A key feature of much consequence to thermal management 

hat is somewhat unique to 3D ICs is the thermal contact resis- 

ance between adjacent layers. In a non-monolithic 3D IC, indi- 

idual layers are fabricated separately and bonded to each other 

hrough a variety of techniques such as dielectric bonding [ 29 ] 

nd metal bonding [ 30 ]. Most commonly, bond pads on the mat- 

ng surfaces of two die/wafers are aligned and pressed against each 

ther at high temperature and pressure, resulting in bonding me- 

iated by the formation of intermetallic eutectics in the bond pads 

 30 ]. From a heat transfer perspective, such bonding is never ther- 

ally perfect, and, therefore, introduces a thermal contact resis- 

ance between layers that depends strongly on the nature of the 

onding process and the bond pad materials. Moreover, a large 

raction of the mating surface does not contain bond pads, and, 

herefore, such vacant space also contributes towards thermal re- 

istance. Limited experimental measurements of such inter-layer 

hermal contact resistance indicate values in the range of 10 −5 

m 

2 /W [ 17 , 31 ], which clearly indicates the importance of modeling

uch contact resistance when computing or simulating the temper- 

ture field in the 3D IC. 
2 
Since such bond pads also facilitate electrical interconnection 

etween layers, therefore, the density of such bond pads is not 

niform throughout the mating surface. For example, bond pads 

ith larger size and area density are designed in regions that 

equire extensive interconnection between layers. Bond pads and 

SVs must also compete with other components for a limited avail- 

ble space during the floorplanning process. 

The discussion above clearly implies that thermal contact resis- 

ance between adjacent layers in a 3D IC is spatially distributed in- 

tead of being uniform. In conjunction with the heat load on each 

ayer that varies with time, this presents a significant challenge 

n thermal modeling of a multilayer 3D IC. While thermal models 

ith dynamic heat load are commonly available in the literature 

1] , the modeling of thermal contact resistances between layers is 

ither absent altogether, or, at best, is modeled only as uniform. In 

rder to minimize errors that may arise from such approximations, 

here is clearly a need for thermal modeling that accounts for both 

ynamic heat load as well as spatially varying thermal contact re- 

istances between layers. Some literature is available on the mod- 

ling of spatially varying interfacial thermal contact resistance or 

onvective heat transfer coefficient at a boundary [ 15 , 32 ]. However, 

uch models are typically steady state in nature, and extension to 

ransient analysis is of much importance in order to account for 

he dynamic nature of heat generation in a 3D IC. 

This work presents Laplace transform based analysis of tran- 

ient thermal conduction in a multilayer 3D IC with dynamic, non- 

niform heat generation and spatially distributed thermal contact 

esistance between layers. Analysis is presented for a general M - 

ayer geometry with results also presented for a special case of 

wo-layer 3D IC. Closed form expressions for the temperature field 

n the Laplace domain are derived in the form of eigenfunction- 

ased infinite series, the coefficients of which are determined by 

olving a set of algebraic equations derived from the spatial vari- 

tion of heat flux and thermal contact resistance. Results indicate 

hat the interaction between the dynamic heat load and spatially 

arying thermal contact resistance determines the nature of the 

emperature field. Results derived in this work are expected to aid 

he thermal design of 3D ICs and other multilayer structures with 

ignificant contact resistance, towards improved performance and 

eliability. 

The key novelty of the present work is in developing an analyt- 

cal model to compute the transient temperature distribution in a 

ultilayer body, accounting for spatially varying contact resistance 

etween layers, which is a realistic condition encountered in 3D 

Cs. The transient temperature distribution derived here can not be 

etermined by a straightforward extension of past work, which ei- 

her is limited to steady state [15] , treats the contact resistance as 

onstant [16] or does not account for contact resistance at all [ 33 ].

olving the transient problem defined here necessitates developing 

nd solving a transient thermal model, which is the key contribu- 

ion of the present work. 

. Problem definition 

Fig. 1 (a) depicts the schematic of the M -layer semiconductor 

evice of width w being considered in this work. Analysis is pre- 

ented here for a 2D chip for mathematical simplicity, although 

xtension to a 3D geometry is straightforward. In general, each 

ayer may be a distinct material, with given thermal properties. 

he sidewalls are assumed to be adiabatic, which is justified due to 

he relatively small thickness of the semiconductor chip, which re- 

ults in minimal heat loss from the sides. Additionally, modern mi- 

roprocessor chips usually have multiple cores and other functional 

locks, resulting in spatially varying, dynamic hotspots depending 

n the workload. In order to model this, a dynamically switching 

nd spatially varying heat load q ′′ (y, t) is assumed on the bottom 
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Fig. 1. Schematics of (a) a general M -layer semiconductor device and (b) the specific case of a two-layer semiconductor device. 
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ace of the geometry. It is reasonable to model this as a boundary 

ondition since heat generation in a typical semiconductor device 

ccurs in a very thin region at the top of the substrate. Heat gener-

tion in only one plane is modeled here, since, based on linearity 

f this problem, the effects of heat generation in multiple planes 

an be computed separately and simply added linearly. The multi- 

ayer device is assumed to be convectively cooled on the top sur- 

ace, modeled by a constant and uniform convective heat transfer 

oefficient h . The bottom and top faces are referred to as the heat 

ux face and heat dissipation face, respectively. The total thickness 

f the multilayer body is z M 

, with the thickness of the m 

th layer

eing z m 

− z m −1 . As shown in Fig. 1 (a), in order to model the spa-

ially varying nature of bonding between adjacent die, a thermal 

ontact resistance R m 

(y ) is assumed at the interface between ( m -

) th and m 

th die. 

The interest here is to derive expressions for the transient tem- 

erature distribution in the M -layer body, and specifically to un- 

erstand the impact of the dynamically varying heat load q ( y, t ) 

nd thermal contact resistance R m 

(y ) on the thermal performance 

f the device. Based on the problem definition above, the following 

overning energy conservation equations for each layer and bound- 

ry conditions may be written 

m 

(
∂ 2 T m 

∂y 2 
+ 

∂ 2 T m 

∂z 2 

)
= 

∂T m 

∂t 
( m = 1 , 2 ..M ) (1) 

k 1 
∂T 1 
∂z 

= q ′′ ( y, t ) ( z = 0 ) (2) 

 M 

∂T M 

∂z 
+ h ( T M 

− T amb ) = 0 ( z = z M 

) (3) 

∂T m 

∂y 
= 0 ( y = 0 , w ) (4) 

Based on the spatially varying thermal contact resistance, the 

nterface conditions are given by 

 m 

= T m +1 − k m 

∂T m 

∂z 
R m 

( y ) ( z = z m 

) ( m = 1 , 2 ..M − 1 ) (5) 

 m 

∂T m 

∂z 
= k m +1 

∂T m +1 

∂z 
( z = z m 

) ( m = 1 , 2 ..M − 1 ) (6) 

Finally, the initial condition for the problem is given by 

 m 

= T m, in ( t = 0 ) ( m = 1 , 2 ..M − 1 ) (7) 
3 
here T m,in is a uniform initial temperature that the device is at 

rior to the onset of heat dissipation. 

Non-dimensionalization for this problem is carried out using 

he following scheme:. 

m 

= 

T m 

− T amb 

T re f − T amb 

, ξ = 

z 

z M 

, η = 

y 

z M 

, τ = 

αM 

t 

z 2 
M 

, γm 

= 

z m 

z M 

, w̄ 

= 

w 

z M 

, ̄k m 

= 

k m 

k M 

, ᾱm 

= 

αm 

αM 

, θm,in = 

T m,in −T amb 

T re f − T amb 

, q̄ ( η, τ ) 

= 

q ′′ ( y, t ) z M 

k M 

(
T re f − T amb 

) , ̄g m 

( η) = 

R m 

( y ) k M 

z M 

, Bi = 

hz M 

k M 

(8) 

here T re f is a reference temperature. 

Based on this, the following set of non-dimensional equations 

ay be written: 

¯ m 

(
∂ 2 θm 

∂ξ 2 
+ 

∂ 2 θm 

∂η2 

)
= 

∂θm 

∂τ
( m = 1 , 2 ..M ) (9) 

k̄ 1 
∂θ1 

∂ξ
= q̄ ( η, τ ) ( ξ = 0 ) (10) 

¯
 M 

∂θM 

∂ξ
+ Bi · θM 

= 0 ( ξ = 1 ) (11) 

∂θm 

∂η
= 0 ( η = 0 , w̄ ) ( m = 1 , 2 ..M ) (12) 

m 

= θm +1 − k̄ m 

∂θm 

∂ξ
ḡ m 

( η) ( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (13) 

¯
 m 

∂θm 

∂ξ
= k̄ m +1 

∂θm +1 

∂ξ
( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (14) 

m 

= θm,in ( τ = 0 ) ( m = 1 , 2 ..M ) (15) 

The existence of a general dynamically switching and spatially 

arying heat load precludes the use of separation of variables tech- 

ique for solving this problem. Instead, a solution is derived in the 

aplace domain. Laplace transformation of Eqs. (9) –(14) , along with 

he use of the initial condition from Eq. (15) results in the follow- 

ng governing equation and boundary conditions in the Laplace do- 

ain. 

¯ m 

( 

∂ 2 

 

θm 

∂ξ 2 
+ 

∂ 2 

 

θm 

∂η2 

) 

= s 

 

θm 

− θm,in ( m = 1 , 2 , 3 ... M ) (16) 
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F

k 1 
∂ ̂  θ1 

∂ξ
= 

ˆ q ( η, s ) ( ξ = 0 ) (17) 

∂ ̂  θM 

∂ξ
+ Bi ̂  θM 

= 0 ( ξ = 1 ) (18) 

∂ ̂  θm 

∂η
= 0 ( η = 0 , w̄ ) ( m = 1 , 2 ..M ) (19) 

ˆ 
m 

= 

ˆ θm +1 − k̄ m 

∂ ̂  θm 

∂ξ
ḡ m 

( η) ( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (20) 

¯
 m 

∂ ̂  θm 

∂ξ
= k̄ m +1 

∂ ̂  θm +1 

∂ξ
( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (21) 

In the equations above, ˆ θm 

and ˆ q are the temperature field and 

eat flux, respectively, in the Laplace domain and s is the Laplace 

ariable. 

In order to solve this set of equations, a transformation is first 

arried out as follows 

ˆ θm 

= 

ˆ u m 

( η) + 

ˆ φm 

( ξ , η) (22) 

This transformation, when used in Eq. (16) results in two inter- 

inked problems. The first problem in ˆ u m 

(η) may be written as: 

¯ m 

d 2 ˆ u m 

dη2 
= s ̂  u m 

− θm,in (23) 

ubject to 

d ̂  u m 

dη
= 0 ( η = 0 , w̄ ) (24) 

A solution for ˆ u m 

(η) is given by 

ˆ 
 m 

( η) = 

θm,in 

s 
(25) 

On the other hand, the ˆ φm 

( ξ , η) problem is given by 

¯ m 

(
∂ 2 ˆ φm 

∂ξ 2 
+ 

∂ 2 ˆ φm 

∂η2 

)
= s ̂  φm 

( m = 1 , 2 ..M ) (26) 

k 1 
∂ ˆ φ1 

∂ξ
= 

ˆ q ( η, s ) ( ξ = 0 ) (27) 

∂ ˆ φM 

∂ξ
+ Bi ̂  φM 

= −Bi ̂  u M 

( η) ( ξ = 1 ) (28) 

∂ ˆ φm 

∂η
= 0 ( η = 0 , w̄ ) ( m = 1 , 2 ..M ) (29) 

ˆ φm 

+ 

ˆ u m 

( η) = 

ˆ φm +1 + 

ˆ u m +1 ( η) − k̄ m 

∂ ˆ φm 

∂ξ
ḡ m 

( η) ( ξ = γm 

) 

( m = 1 , 2 ..M − 1 ) (30) 

¯
 m 

∂ ˆ φm 

∂ξ
= k̄ m +1 

∂ ˆ φm +1 

∂ξ
( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (31) 

A solution for Eq. (26) may be written as follows: 

ˆ φm 

( ξ , η) = 

N ∑ 

n =0 

( A m,n cosh ( ω m,n ξ ) + B m,n sinh ( ω m,n ξ ) ) cos ( λn η)

( m = 1 , 2 ..M ) (32)

here, using the governing equations, it can be shown that ω m,n = 

 

λ2 
n + 

s 
ᾱm 

. 

In Eq. (32) , the sine term is not considered based on the adia-

atic boundary condition at η = 0 , and the η-direction eigenvalues 

n = 

nπ
w̄ 

are obtained using the boundary condition at η= ̄w . The 
4 
olution for ˆ φm 

given by Eq. (32) involves 2( N + 1) M unknowns - 

 m,n and B m,n . Boundary conditions and interface conditions along 

he layered direction are used one by one in order to derive a set 

f 2( N + 1) M linear algebraic equations, from which, these un- 

nowns may be determined in order to complete the solution of 

he problem. By inserting the form of the solution for ˆ φm 

given by 

q. (32) in Eq. (27) , one may write 

N 
 

 =0 

(
−k 1 ω 1 ,n B 1 ,n 

)
cos ( λn η) = 

ˆ q ( η, s ) (33) 

Multiplying Eq. (33) with cos ( λn ′ η) , where n ′ = 0 , 1 , 2 , .., N and

ntegrating from η = 0 to η = w̄ results in a total of N + 1 equa-

ions as follows: 

 n ′ 
(
−k 1 ω 1 ,n B 1 ,n 

)
= 

w ∫ 
0 

ˆ q ( η, s ) cos 
(
λn ′ η

)
dη

(
n 

′ = 0 , 1 , 2 , .., N 

)
(34) 

here N n ′ = 

w̄ ∫ 
0 

cos 2 ( λn ′ η) dη. 

The next N + 1 equations are obtained by a similar treatment 

f Eq. (28) , resulting in 

N n ′ [ ( Bi cosh ( ω M,n ′ ) + ω M,n ′ sinh ( ω M,n ′ ) ) A M,n ′ + ( Bi sinh ( ω M,n ′ ) 

+ ω M,n ′ cosh ( ω M,n ′ ) ) B M,n ′ ] 

= −Bi 

w̄ ∫ 
0 

cos (λn ′ η) ̂  u M 

( η) dη
(
n 

′ = 0 , 1 , 2 , .., N 

)
(35) 

Finally, the remaining 2( N + 1)( M -1) equations are derived 

rom interface conditions given by Eqs. (30) and (31) . The use 

f Eq. (32) in these equations, followed by multiplication with 

os (λn ′ η) and integration from η = 0 to η = w̄ results in 

N n ′ ( A m,n ′ cosh ( ω m,n ′ γm 

) + B m,n ′ sinh ( ω m,n ′ γm 

) ) 

= N n ′ ( A m +1 ,n ′ cosh ( ω m +1 ,n ′ γm 

) + B m +1 ,n ′ sinh ( ω m +1 ,n ′ γm 

) ) 

+ 

w̄ ∫ 
0 

(
ˆ u m +1 ( η) − ˆ u m 

( η) 
)

cos (λn ′ η) dη

−
N ∑ 

n =0 

k̄ m 

ω m,n ( A m,n sinh ( ω m,n γm 

) + B m,n cosh ( ω m,n γm 

) ) 

×
w̄ ∫ 

0 

ḡ m 

( η) cos (λn η) cos ( λn ′ η) dη
(
n 

′ = 0 , 1 , 2 , .., N 

)
(36) 

nd 

k̄ m 

ω m,n ′ ( A m,n ′ sinh ( ω m,n ′ γm 

) + B m,n ′ cosh ( ω m,n ′ γm 

) ) N n ′ 

= k̄ m +1 ω m +1 ,n ′ ( A m +1 ,n ′ sinh ( ω m +1 ,n ′ γm 

) 

+ B m +1 ,n ′ cosh ( ω m +1 ,n ′ γm 

) ) N n ′ 
(
n 

′ = 0 , 1 , 2 , .., N 

)
(37) 

Eqs. (34) –(37) represent a sufficient set of linear equations in 

nknowns A m,n and B m,n ( n = 0 , 1 , 2 , .., N; m = 1 , 2 , ..M) . These

quations are easily solved computationally to complete the solu- 

ion of the problem in the Laplace domain. Inverse Laplace trans- 

ormation of this solution is carried out numerically to determine 

he solution for θ ( ξ , η, τ ) . While a number of inversion algorithms 

re available [ 34–36 ], the present work utilizes Hollenbeck’s algo- 

ithm [ 34 ]. 

. Special case – two-layer body 

The special case of a two-layer 3D IC, shown schematically in 

ig. 1 (b) is of particular interest due to its appearance in practical 
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roblems, as well as its relevance for several past papers on mul- 

ilayer two-dimensional heat transfer problems [ 15 , 33 ]. This sec- 

ion summarizes the solution for the two-layer problem, based on 

he solution methodology discussed in the previous section. In this 

ase, the temperature fields of layers 1 and 2 in the Laplace do- 

ain are given by: 

ˆ 
1 ( ξ , η) = 

θ1 ,in 

s 
+ 

n = N ∑ 

n =0 

( A 1 ,n cosh ( ω 1 ,n ξ ) 

+ B 1 ,n sinh ( ω 1 ,n ξ ) ) cos ( λn η) (38) 

ˆ 
2 ( ξ , η) = 

θ2 ,in 

s 
+ 

n = N ∑ 

n =0 

( A 2 ,n cosh ( ω 2 ,n ( 1 − ξ ) ) 

+ B 2 ,n sinh ( ω 2 ,n ( 1 − ξ ) ) ) cos ( λn η) (39) 

here 

 1 ,n = 

− ∫ w 

0 
ˆ q ( η, s ) cos ( λn η) dη

k 1 ω 1 ,n N n 

(40) 

 2 ,n = 

Bi 

[ 
N n A 2 ,n + 

∫ w 

0 
ˆ u 2 ( η) cos ( λn η) dη

] 
ω 2 ,n N n 

(41) 

Further, the 2( N +1) unknowns A 1 ,n and A 2 ,n ( n = 0 , 1 , 2 , .., N)

ay be derived from the following set of linear equations: 

N n ′ 

(
A 1 ,n ′ 

[
k̄ 1 ω 1 ,n ′ sinh ( ω 1 ,n ′ γ1 ) 

]
+ A 2 ,n ′ [ ω 2 ,n ′ sinh ( ω 2 ,n ′ ( 1 − γ1 ) ) + Bi cosh ( ω 2 ,n ′ ( 1 − γ1 ) ) ] 

+ 

Bi cosh ( ω 2 ,n ′ ( 1 − γ1 ) ) 
∫ w̄ 

0 
ˆ u 2 ( η) cos (λn ′ η) dη

N n ′ 

− cosh ( ω 1 ,n ′ γ1 ) 
∫ w̄ 

0 
ˆ q ( η, s ) cos (λn ′ η) dη

N n ′ 

)
= 0 (42) 

A 1 ,n ′ 
[
N n ′ cosh 

(
ω 1 ,n ′ γ1 

)]
+ 

N ∑ 

n =0 

A 1 ,n k 1 ω 1 ,n sinh ( ω 1 ,n γ1 ) 

w ∫ 
0 

g 1 ( η) cos ( λn η) cos 
(
λn ′ η

)
dη

+ A 2 ,n ′ 

[
−N n ′ cosh 

(
ω 2 ,n ′ ( 1 − γ1 ) 

)
− Bi N n ′ 

ω 2 ,n ′ 
sinh 

(
ω 2 ,n ′ ( 1 − γ1 ) 

)]

= 

w ∫ 
0 

cos 
(
λn ′ η

)(
ˆ u 2 ( η) − ˆ u 1 ( η) 

)
dη

+ 

Bi sinh ( ω 2 ,n ′ ( 1 − γ1 ) ) 
∫ w 

0 
ˆ u 2 ( η) cos 

(
λn ′ η

)
dη

ω 2 ,n ′ 

+ 

sinh 

(
ω 1 ,n ′ γ1 

) ∫ w 

0 
ˆ q ( η, s ) cos 

(
λn ′ η

)
dη

k 1 ω 1 ,n ′ 

+ 

N ∑ 

n =0 

cosh ( ω 1 ,n γ1 ) 
∫ w 

0 
ˆ q ( η, s ) cos ( λn η) dη

N n 

×
w ∫ 
0 

g 1 ( η) cos ( λn η) cos 
(
λn ′ η

)
dη

(43

here both Eqs. (42) and (43) may be written for n 
′ = 0 , 1 , 2 , . . . N.

. Results and discussion 

.1. Convergence of the infinite series solution 

Since the present work derives a system of linear equations in 

he Laplace domain, it is important to test for convergence. For a 

iven number of layers, the number of terms considered in series, 
5 
governs convergence. Based on this, Fig. 2 illustrates the impact 

f N on the computed temperature distribution. For this analysis, 

he representative heat load q̄ at ξ= 0 is initially constant with a 

agnitude of 1.0 until τ= 0.4. At τ= 0.4, the magnitude of heat load 

oubles between η= 0.4 ̄w and η= 0.6 ̄w , thereby creating a hotspot. 

he thermal contact resistance ḡ 1 has a magnitude of 0.5 between 

= 0.4 ̄w and η= 0.6 ̄w , and 0.1 elsewhere. Other problem parameters 

re Bi = 2 , γ1 = 0 . 5 , w̄ = 2 , k̄ 1 = 4 , ᾱ1 = 1 . 8 . The initial condition

or this and all subsequent analyses presented in this Section is 1.0, 

nless specified otherwise. Fig. 2 (a) presents a plot of temperature 

s a function of time at ξ= 0.75 and η= ̄w /2 for multiple values of

 . Similarly, Figs. 2 (b) and 2(c) present temperature fields as func- 

ions of ξ and η, respectively, at τ= 0.6. In Fig. 2 (b), η= ̄w /2, while

n Figure 2(c), ξ= 0. In each plot, convergence in the temperature 

rofile is observed beyond N = 15, with the N = 15 and N = 20

urves being practically coincident. Therefore, a value of N = 20 

s used for all subsequent analyses presented here, although it is 

oted that a greater number may be needed in case the tempera- 

ure distribution is desired at very small times. In general, for any 

articular problem of interest, it is recommended to determine the 

cceptable value of N through convergence analysis. 

.2. Numerical validation 

A comparison between the analytical solution presented here 

nd finite-element based numerical simulations is carried out. For 

his purpose, numerical simulations are carried out in ANSYS-CFX, 

ith a mesh count of around 16,0 0 0. Mesh independence and 

imestep convergence of the numerical model is ensured before 

he comparison. For a problem with the same parameters as Fig. 2 , 

ig. 3 presents a comparison between the present work and nu- 

erical simulations. Fig. 3 (a) presents the temperature as a func- 

ion of time at the midpoints of layers 1 and 2. At τ= 0.1, 0.2, 0.6

nd 1.0, Fig. 3 (b) plots temperature as a function of ξ at η= w /2,

hereas Fig. 3 (c) plots temperature as a function of η at ξ= 0.25. 

hese plots show that the present analytical work agrees very well 

ith numerical simulations, and is able to capture both spatial and 

ransient variation of the temperature field. The worst-case error 

etween the two is less than 1%. 

Note that the theoretical technique developed here compares 

avorably with numerical simulations in terms of computational 

ost. Each temperature computation is found to take around 1.8 s 

n a four-core 2.8 GHz desktop computer. A numerical simulation 

akes at least tens of seconds, without even accounting for time 

aken for mesh generation. Another advantage of the theoretical 

echnique is that temperature at any desired time can be directly 

alculated, whereas a numerical simulation typically must slowly 

arch forward in time, starting from the initial time, thereby fur- 

her increasing the computation cost. Finally, the theoretical results 

resented here can be easily implemented in a standard program- 

ing language and not need proprietary commercial software that 

umerical simulations often rely upon. 

In addition to comparison with finite-element simulations, plots 

n Fig. 3 also highlight key features of the temperature field and its 

ependence on the heat flux and thermal contact resistance func- 

ions. For example, curves in Fig. 3 (a) show that temperature in 

ayer 1 begins to rise much more rapidly around τ= 0.4, which is 

n line with the switching of the heat load at that time. On the 

ther hand, the temperature in layer 2 initially drops, and then 

tarts to rise at τ= 0.4 as a result of the switching. The initial drop

n the temperature of layer 2 is due to effective cooling at the ξ= 1

oundary, coupled with shielding from the heat flux by the interfa- 

ial thermal contact resistance. In Fig. 3 (b), it can be observed that 

emperature distribution in layer 1 keeps increasing with time. The 

hange in the slope of the temperature distributions closer to the 

= 0 boundary at τ= 0.6 and τ= 1.0 essentially indicates switching 
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Fig. 2. Effect of N on temperature profiles: (a) θ as a function of τ at ξ = 0 . 75 and η = w̄ / 2 for multiple number of eigenvalues; (b) θ as a function of ξ at τ = 0 . 6 and 

η = w̄ / 2 for multiple number of eigenvalues; (c) θ as a function of η at τ = 0 . 6 and ξ = 0 for multiple number of eigenvalues. Problem parameters are Bi = 2 , γ1 = 0 . 5 , 

w̄ = 2 , k̄ 1 = 4 , ᾱ1 = 1 . 8 . The heat flux q̄ (η) is 1, when τ ≤ 0 . 4 . The heat flux q̄ (η) has a value of 2 between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and 1 elsewhere, when τ > 0 . 4 . 

Thermal contact resistance ḡ 1 (η) has a value of 0.5 between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and 0.1 elsewhere. 

Fig. 3. Numerical validation of present work: (a) θ as a function of τ at ( ξ = 0 . 25 , η = w̄ / 2 ) and ( ξ = 0 . 75 , η = w̄ / 2 ); (b) θ as a function of ξ at τ = 0 . 1 , 0 . 2 , 0 . 6 , 1 and 

η = w̄ / 2 for multiple number of eigenvalues; (c) θ as a function of η at τ = 0 . 1 , 0 . 2 , 0 . 6 , 1 and ξ = 0 . 25 for multiple number of eigenvalues. Problem parameters, heat flux 

q̄ (η) and thermal contact resistance ḡ 1 (η) are identical to Fig. 2 . 
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f the heat load. The initial reduction in temperature in layer 2 

an also be observed in the τ= 0.1 and 0.2 curves in Fig. 3 (b). Once

he switching occurs, heat penetration into layer 2 begins to dom- 

nate, resulting in temperature rise in layer 2, as seen in the τ= 0.6

nd 1.0 curves. Fig. 3 (c) shows a peak in the temperature distri- 

ution between η= 0.4 w and η= 0.6 w at ξ= 0.25 before switching, 

hich is due to the spatially varying thermal contact resistance. 

fter switching, the peak temperature in the same region is mainly 

mpacted by the hotspot and thermal contact resistance. Further, 

he difference between the peak and minimum temperatures goes 

p, which is a direct effect of the hotspot caused by the increased 

eat flux. 

.3. Comparison with past work 

The present work models a realistic heat dissipation scenario in 

 multilayer semiconductor device, and is capable of capturing the 

ffects of a general, dynamically switching heat load, along with 

he presence of a spatially varying thermal contact resistance be- 

ween the layers. It is helpful to compare the present work with 

esults from a past paper that addressed the special case of steady 

tate temperature distribution in a similar problem [15] . For the 

ame heat load and thermal contact resistance distributions, re- 

ults from the present work are expected to evolve with time and 

ventually align with the results from the past work at large times, 

hen the system approaches steady state. To confirm this, the 

ransient temperature field is computed using the present model, 

or parameter values consistent with the past work. Specifically, 

he heat flux q̄ has values of 0.2 between η= 0.4 ̄w and η= 0.6 ̄w ,

nd 0.0 elsewhere. Thermal contact resistance has values of 0.5 be- 
6 
ween η= 0.4 ̄w and η= 0.6 ̄w , and 0.1 elsewhere. The Biot number 

s Bi = 1 and the width is w̄ = 5, while all the other problem pa-

ameters are identical to Fig. 2 . Temperature of layer 1 at ( ξ= 0.25,

= 0.2 ̄w ) and ( ξ= 0.25, η= 0.5 ̄w ) is presented as a function of time

n Fig. 4 (a). On the other hand, Fig. 4 (b) presents temperature dis- 

ribution along the η direction at ξ= 0.25 at various times. In addi- 

ion to the time-varying curves from the present work, these Fig- 

res also present the corresponding steady state curves based on 

he past steady state work [15] . It can be seen in Fig. 4 (a) that as

ime increases, the transient temperature profile computed from 

he present work correctly approaches the steady-state value for 

oth locations considered here. Similarly, in Fig. 4 (b), the temper- 

ture distribution is found to gradually decay and align well with 

he steady state temperature distribution at large time. 

The good agreement between the computed transient tempera- 

ure field at large field with independently computed steady state 

eld is encouraging. A number of analyses based on the transient 

odel are carried out next in order to study the nature of temper- 

ture field in the multilayer device, particularly the impact of var- 

ous aspects of the heat load and thermal contact resistance func- 

ions. 

.5. Illustrative colorplots 

Fig. 5 presents representative colorplots of the temperature field 

t multiple times for a representative problem, in which, the heat 

oad initially has a magnitude of 5.0 between η= 0.4 ̄w and η= 0.6 ̄w ,

nd 1.0 everywhere else. Switching takes place at τ= 0.4, when the 

eat load between η= 0.4 ̄w and η= 0.6 ̄w turns off, and increases 

verywhere else to a magnitude of 5.0. Such a change in the heat 
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Fig. 4. Comparison with past work [15] : (a) θ as a function of τ at ( ξ = 0 . 25 , η = 0 . 2 ̄w ) and ( ξ = 0 . 25 , η = w̄ / 2 ); (b) θ as a function of η at τ = 1 , 5 , 8 , 20 and ξ = 0 . 25 . 

Problem parameters are Bi = 1 , γ1 = 0 . 5 , w̄ = 5 , k̄ 1 = 4 , ᾱ1 = 1 . 8 . The heat flux q̄ (η) has a value of 0.2 between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and zero elsewhere. Thermal 

contact resistance ḡ 1 (η) is identical to Fig. 2 . 

Fig. 5. Representative colorplots at: (a) τ = 0 ; (b) τ = 0 . 2 ; (c) τ = 0 . 8 ; (d) τ = 1 . Problem parameters are Bi = 1 , γ1 = 0 . 5 , w̄ = 2 , k̄ 1 = 4 , ᾱ1 = 1 . 8 . The heat flux q̄ (η) is 5 

between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and 1 elsewhere, when τ ≤ 0 . 4 . The heat flux q̄ (η) has a value of zero between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and 5 elsewhere, when τ > 0 . 4 . 

Thermal contact resistance ḡ 1 (η) is identical to Fig. 2 . 
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oad may model, for example, dynamic reallocation of computa- 

ional workload that occurs commonly on multicore chips [ 28 ]. The 

iot number is taken to be Bi = 1 , while all other problem parame-

ers, including the thermal contact resistance function are identical 

o Fig. 2 . Fig. 5 (b) shows a hotspot between η= 0.4 ̄w and η= 0.6 ̄w

t ξ= 0, consistent with the heat flux profile. After the dynamic 

witching of heat load, the location of the hotspot is expected to 

hange, and this is clearly captured in Fig. 5 (c) and 5(d). As ex- 

ected, the plots show two hotspots in line with heat flux profile 

fter the switching. Additionally, the colorplots display heat pen- 

tration into layer 2 from the regions corresponding to the lower 

hermal contact resistance, as expected. 

.4. Effect of dynamic switching of heat load 

For a representative two-layer problem, Fig. 6 presents the ef- 

ect of dynamic switching of heat load on the temperature field. 

emperature as a function of time at two locations 1A ( ξ= 0.4, 

= 0.5 ̄w ) and 1B ( ξ= 0.4, η= 0.2 ̄w ) in layer 1 and at two locations
7 
A ( ξ= 0.75, η= 0.5 ̄w ) and 2B ( ξ= 0.75, η= 0.2 ̄w ) in layer 2 is plot-

ed in Fig. 6 (a), while temperature along the η direction at the heat 

ux face is plotted in Fig. 6 (b). For this analysis, the problem pa-

ameters, including the heat flux and thermal contact resistance 

unctions are identical to the ones used in Fig. 5 . 

Fig. 6 (a) shows that the temperature profile at 1B is ini- 

ially lower than the temperature profile at 1A, as expected. Once 

witching occurs at τ= 0.4, temperature at 1B begins to rise rapidly 

nd eventually crosses over the temperature curve for the other 

oint. Furthermore, temperature rises at an increased rate at both 

oints, but it must be noted that the 1B curve lies above the 1A 

urve, which is a direct consequence of the heat load switching. On 

he other hand, at both points in layer 2, the temperature initially 

rops due to cooling from the ξ= 1 boundary, followed by a rise at 

bout the same rate until the switching. The rise in temperature 

fter an initial drop is due to initial dominance of heat penetra- 

ion from layer 1, followed by diffusion. Afterwards, temperature 

ise is slightly steeper at 2B than at 2A. This is attributable to the 

igher heat load around Point 2B coupled with a lower thermal 
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Fig. 6. Effect of dynamic heat load switching: (a) θ as a function of τ at ( ξ = 0 . 4 , η = w̄ / 2 ), ( ξ = 0 . 4 , η = 0 . 2 ̄w ), ( ξ = 0 . 75 , η = w̄ / 2 ) and ( ξ = 0 . 75 , η = 0 . 2 ̄w ); (b) θ as a 

function of η at τ = 0 . 1 , 0 . 2 , 0 . 8 , 1 and ξ = 0 . Problem parameters, heat flux q̄ (η) and thermal contact resistance ḡ 1 (η) are identical to Fig. 5 . 

Fig. 7. Effect of peak heat flux: (a) θ as a function of τ at ξ = 0 . 75 and η = w̄ / 2 for multiple values of q̄ max ; (b) θ as a function of η at τ = 0 . 8 and ξ = 0 for multiple 

values of q̄ max . Heat flux q̄ (η) has a peak value of q̄ max between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and 1 elsewhere. Problem parameters are Bi = 1 , γ1 = 0 . 5 , w̄ = 2 , k̄ 1 = 4 , ᾱ1 = 1 . 8 . 

Thermal contact resistance ḡ 1 (η) has a value of 5 between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and 0.1 elsewhere. 
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ontact resistance. In Fig. 6 (b), which presents temperature distri- 

ution along η at the heat flux face, the temperature distribution is 

ound to keep rising, as expected, but there is also a switch in the 

eak temperature location. After the heat load turns off between 

= 0.4 ̄w and η= 0.6 ̄w , the temperature field dips in this region, 

nd temperature everywhere else rises due to the increasing heat 

oad. 

.6. Effect of peak heat flux 

In order to investigate the effect of peak heat flux, the heat flux 

¯ is assumed to have a hotspot q̄ max between η= 0.4 ̄w and η= 0.6 ̄w 

nd a value of 1.0 elsewhere. The temperature field is computed 

or multiple values of q̄ max , while all other problem parameters are 

aken to be the same as Fig. 6 . The thermal contact resistance also

tays unchanged for all the cases with a magnitude of 5.0 between 

= 0.4 ̄w and η= 0.6 ̄w . Elsewhere along the interface, the contact 

esistance has a magnitude of 1. Fig. 7 (a) plots temperature as a 

unction of time at the midpoint of layer 2, while Fig. 7 (b) plots

emperature as a function of η at the heat flux face and at τ= 0.8.

ig. 7 (a) clearly shows, as expected, that the peak heat flux magni- 

ude has a profound effect on the temperature profile even in layer 

. There exists a threshold time until which, the cooling coupled 

ith thermal contact resistance shielding dominates the penetra- 

ion of heat from layer 1. As q̄ max goes up, this threshold time is 
8 
ound to go down. Further, the rate of temperature rise also goes 

p as the peak heat flux magnitude goes up. Similarly, Fig. 7 (b) 

hows that the peak temperature goes up with increasing value of 

¯ max , as expected. 

.7. Effect of contact resistance magnitude and contact resistance 

nterface location 

Another important parameter of this multilayer device problem 

s the contact resistance, which is mainly characterized by its mag- 

itude and location. Therefore, the impact of thermal contact resis- 

ance is analyzed in two parts. 

The effect of the magnitude of the contact resistance is ana- 

yzed from the perspectives of both layers 1 and 2. Figs. 8 (a) and

 (a) plot temperatures at the midpoints of layers 1 and 2, respec- 

ively, as functions of time. These plots are supplemented by tem- 

erature profiles along the η direction at τ= 0.8 and at ξ= 0 and 

= 0.6 in Figs. 8 (b) and 9(b), respectively. The heat flux is q̄ = 20

etween η= 0.4 ̄w and η= 0.6 ̄w , and q̄ = 1 elsewhere. The contact re- 

istance ḡ 1 is a top hat function as shown in the inset. All other 

roblem parameters for this analysis are identical to the ones used 

n Fig. 6 . Cases associated with ḡ 1 ,max = 1, 5, 20 and 100 are pre-

ented in Figs. 8 and 9 . These plots clearly show that the effect of

he contact resistance magnitude is stronger in layer 2 than layer 

. Fig. 9 (a) shows that the threshold time at which temperature in 
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Fig. 8. Effect of peak contact resistance in layer 1: (a) θ as a function of τ at ξ = 0 . 25 and η = w̄ / 2 for multiple values of ḡ 1 ,max ; (b) θ as a function of η at τ = 0 . 8 and 

ξ = 0 for multiple values of ḡ 1 ,max . Problem parameters, heat flux q̄ (η) and thermal contact resistance ḡ 1 (η) are identical to Fig. 9 . 

Fig. 9. Effect of peak contact resistance in layer 2: (a) θ as a function of τ at ξ = 0 . 75 and η = w̄ / 2 for multiple values of ḡ 1 ,max ; (b) θ as a function of η at τ = 0 . 8 and 

ξ = 0 . 6 for multiple values of ḡ 1 ,max . Thermal contact resistance ḡ 1 (η) has a peak value of ḡ 1 ,max between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and 0.1 elsewhere. Problem parameters are 

Bi = 1 , γ1 = 0 . 5 , w̄ = 2 , k̄ 1 = 4 , ᾱ1 = 1 . 8 . The heat flux q̄ (η) has a value of 20 between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and 1 elsewhere. 
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ayer 2 starts to rise goes up as ḡ 1 ,max increases. Moreover, beyond 

 certain value of ḡ 1 ,max , the shielding effect seems to be signifi- 

antly weakened. This is because beyond a certain value of ḡ 1 ,max , 

ost of the heat is able to diffuse into layer 2 only through re-

ions with lower contact resistance. An increase in the value of 

¯ 1 ,max beyond this point will result in nearly zero heat flux through 

he region corresponding to ḡ 1 ,max , which is an indication of ex- 

remely large contact resistance. The shielding effect of contact re- 

istance is also seen in Fig. 9 (b). As ḡ 1 ,max increases, the minimum 

emperature along the η direction reduces proportionally. Similar 

o Fig. 9 (a), however, the reduction is less and less significant as 

¯ 1 ,max increases. Increase in ḡ 1 ,max is expected to raise the temper- 

ture of layer 1 region associated with ḡ 1 ,max due to an increase 

n heat flow obstruction by the thermal contact resistance. Based 

n this, the temperature profiles in Fig. 8 (a) and 8(b) are found to

hift slightly upwards as ḡ 1 ,max goes up. 

As the shift in the observed peak temperature at the heat flux 

ace with an increase in ḡ 1 ,max is not very significant, the effect of 

he relative thickness of the two layers, as represented by the non- 

imensional parameter γ1 is studied in Fig. 10 (a) and 10(b). The 

nalysis is carried out by plotting temperature as a function of η at 

he heat flux face and at τ= 0.8 for multiple values of γ1 . In both

gures, the heat flux profile and other problem parameters used 

re identical to the ones used in Figs. 8 and 9 . In Fig. 10 (a), the

hermal contact resistance is ḡ = 0.5 between η= 0.4 ̄w and η= 0.6 ̄w , 
1 

9 
hereas in Fig. 10 (b), ḡ 1 = 100 between η= 0.4 ̄w and η= 0.6 ̄w . In

oth cases, the contact resistance has a magnitude of 0.1 else- 

here. Figs. 10 (a) and 10(b) show that the peak temperature shifts 

p significantly as the contact resistance interface is brought closer 

o the heat flux face. The shift in case (b) is greater than in case (a),

s expected, due to a higher contact resistance magnitude. There- 

ore, it can be concluded that the distance between the contact 

esistance interface and heat flux face plays a key role on the peak 

emperature. However, one must also consider that the significant 

hift in peak temperature is due to a reduction in the amount of 

aterial available for heat diffusion in layer 1. 

.8. Effect of Biot number 

Finally, the effect of Biot number is analyzed by computing 

emperature as a function of time at the midpoint of layer 2. Fig. 11

resents these plots for two specific cases. In the first case, q̄ max 

nd ḡ 1 ,max values are 0.2 and 0.5, respectively, whereas in the sec- 

nd case q̄ max and ḡ 1 ,max are much larger, 20 and 100, respec- 

ively. In both the cases, ḡ 1 ,max and q̄ max are between η= 0.4 ̄w and 

= 0.6 ̄w . The heat flux q̄ is zero everywhere else in the first case, 

hereas q̄ is 1.0 everywhere else in the second case. On the other 

and, ḡ 1 = 0.1 everywhere else in both cases. Other problem param- 

ters are identical to that of Fig. 8 . The strong impact of Biot num-

er on the temperature profiles is evident from Fig. 11 (a) and 11(b). 
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Fig. 10. Effect of interface location on peak temperature: (a) θ as a function of η at τ = 0 . 8 , ξ = 0 for multiple values of γ1 and ḡ 1 ,max = 0 . 5 ; (b) θ as a function of η at 

τ = 0 . 8 , ξ = 0 for multiple values of γ1 and ḡ 1 ,max = 100 . Thermal contact resistance ḡ 1 (η) has a peak value of ḡ 1 ,max between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and 0.1 elsewhere. 

The heat flux q̄ (η) is 20 between η = 0 . 4 ̄w and η = 0 . 6 ̄w , and 1 elsewhere. Problem parameters are identical Fig. 9 . 

Fig. 11. Effect of Biot number: (a) θ as a function of τ at ξ = 0 . 75 , η = w̄ / 2 for multiple values of Bi , ḡ 1 ,max = 0 . 5 , q̄ max = 0 . 2 , ḡ 1 ,min = 0 . 1 and q̄ min = 0 ; (b) θ as a function of τ

at ξ = 0 . 75 , η = w̄ / 2 for multiple values of Bi , ḡ 1 ,max = 100 , q̄ max = 20 , ḡ 1 ,min = 0 . 1 and q̄ min = 1 . Heat flux q̄ (η) and thermal contact resistance ḡ 1 (η) have a peak value of q̄ max 

and ḡ 1 ,max between η = 0 . 4 ̄w and η = 0 . 6 ̄w , respectively. For case (a) and case (b), q̄ (η) and ḡ 1 (η) are equal to ḡ 1 ,min and q̄ min elsewhere, respectively. Problem parameters 

are γ1 = 0 . 5 , w̄ = 2 , k̄ 1 = 4 , ᾱ1 = 1 . 8 . 
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or example, in Fig. 11 (a), as the Biot number increases, the over- 

ll rate of cooling goes up, with a particularly significant jump be- 

ween Bi = 1 and Bi = 5. Beyond Bi = 5, there is only a slight change in

he overall rate of cooling, which is likely because Bi = 5 is close to

he limiting isothermal condition. In each case, the initial drop in 

emperature is heavily dictated by the magnitude of the Biot num- 

er until a certain time. This initial drop in temperature is par- 

icularly significant for a large Biot number, due to more effective 

ooling. This effect corresponds to the time taken from heat to dif- 

use from layer 1 to the midpoint of layer 2. Afterwards, the rate 

f cooling reduces and then remains nearly constant. On the other 

and, in Fig. 11 (b), due to the larger magnitude of heat flux and

ontact resistance, the temperature initially drops and then rises 

or each case. As the Biot number is increased, the cooling is en- 

anced, as expected. Also, the threshold time for which the cooling 

ominates heat penetration from layer 1 goes up, as Biot number 

s increased. 

.9. Illustration with a practical problem 

The capability of the theoretical model developed here is illus- 

rated by solving a practical problem of thermal transport in a het- 

rogeneously integrated two-die stack comprising Si and Si/Ge sub- 
10 
trates of thickness 1 mm each and width 10 mm. The interest is 

n determining the peak temperature rise in response to a heat- 

ng pulse of magnitude 400 W/cm 

2 lasting 0.4 s. Two locations of 

he heating pulse at one end are considered, as illustrated in the 

nset of Fig. 12 – between x = 1.0 mm and x = 1.5 mm (Case A)

nd between x = 4.5 mm and x = 5.0 mm (Case B). The convec-

ive heat transfer coefficient at the other end is 200 Wm 

−2 K 

−1 . In

ach case, the thermal contact resistance between the two layers 

s 5.0 μKm 

2 W 

−1 between x = 4.0 mm and x = 6.0 mm, and 10 0 0

Km 

2 W 

−1 elsewhere, which represents a significant increase in in- 

erfacial conduction in the middle region due to the presence of 

igh-density TSVs. The ambient as well as the initial temperature 

s taken to be 298 K, and the interest is in determining the peak 

emperature rise in both cases. Results are plotted in Fig. 12 in 

erms of peak temperature as a function of time. It is found that 

ase A incurs greater temperature rise than Case B, which may be 

ue to increased two-dimensionality of heat flow in Case A, due 

o non-alignment between the heat source and the low resistance 

egion at the interface. This results in additional thermal spread- 

ng resistance. In contrast, heat flow is a lot more one-dimensional 

n Case B, which, as a result has relatively lower temperature rise. 

his plot illustrates the capability of the theoretical model devel- 

ped to solve practical thermal design problems that are not solv- 
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Fig. 12. Peak temperature as a function of time for a practical two-layer 3D IC 

problem comprising Si and Si/Ge substrates. Two different heat flux distributions 

are considered, for which, the parameter values are listed in Section 4.9 . Inset plots 

illustrate the heat flux distributions as well as the thermal contact resistance distri- 

bution between the two layers. 
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ble using past work, such as papers that solve steady state prob- 

ems [15] . 

. Conclusions 

The key contribution of this work is a robust analytical thermal 

odel capable of accounting for complex, realistic phenomena that 

ccur in practical multilayer semiconductor devices such as 3D ICs. 

 dynamically switching and spatially varying heat load, as well as 

 spatially varying interfacial thermal contact resistance are mod- 

led. The analytical model presented in this work generalizes much 

f the past work, where the contact resistance is either modeled as 

 constant or is absent altogether. This model may help correctly 

redict the dynamic thermal performance of 3D ICs under realistic 

oad conditions. The modeling framework presented here is equally 

pplicable for other multilayer problems in semiconductor thermal 

anagement, such as a multilayer heat spreader on top of a mi- 

roelectronics chip. 

While presented in the context of a two-dimensional problem, 

xtension to a 3D problem is quite straightforward, and will in- 

olve an additional set of eigenfunctions. Realistic heat loads based 

n power maps from actual 3D ICs may be easily implemented in 

rder to predict the thermal performance of the 3D IC. 
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