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A B S T R A C T   

Dissolution of drug from its solid form to a dissolved form is an important consideration in the design and 
optimization of drug delivery devices, particularly owing to the abundance of emerging compounds that are 
extremely poorly soluble. When the solid dosage form is encapsulated, for example by the porous walls of an 
implant, the impact of the encapsulant drug transport properties is a further confounding issue. In such a case, 
dissolution and diffusion work in tandem to control the release of drug. However, the interplay between these 
two competing processes in the context of drug delivery is not as well understood as it is for other mass transfer 
problems, particularly for practical controlled-release considerations such as an encapsulant layer around the 
drug delivery device. To address this gap, this work presents a mathematical model that describes controlled 
release from a drug-loaded device surrounded by a passive porous layer. A solution for the drug concentration 
distribution is derived using the method of eigenfunction expansion. The model is able to track the dissolution 
front propagation, and predict the drug release curve during the dissolution process. The utility of the model is 
demonstrated through comparison against experimental data representing drug release from a cylindrical drug- 
loaded orthopedic fixation pin, where the model is shown to capture the data very well. Analysis presented here 
reveals how the various geometrical and physicochemical parameters influence drug dissolution and, ultimately, 
the drug release profile. It is found that the non-dimensional initial concentration plays a key role in determining 
whether the problem is diffusion-limited or dissolution-limited, whereas the nature of the problem is largely 
independent of other parameters including diffusion coefficient and encapsulant thickness. We expect the model 
will prove to be a useful tool for those designing encapsulated drug delivery devices, in terms of optimizing the 
design of the device to achieve a desired drug release profile.   

1. Introduction 

A sound understanding of drug dissolution [1–3] is of fundamental 
importance in the design and optimization of controlled release tech-
nologies [4–6]. This is particularly true for the case of drugs that are 
loaded in a solid form, since the drug is required to dissolve before it can 
be readily transported and exert its therapeutic effect [5]. The process of 
dissolution has attracted the interest of scientists from a wide range of 
backgrounds for well over a century, dating back to the 1800s, when 
Noyes and Whitney presented the first semi-empirical model of disso-
lution [7]. In subsequent years, several authors presented alternative 

semi-empirical models, attempting to shed light on the underlying 
physical mechanisms of the process [8–10]. Dissolution has remained a 
topic of much research interest, with experimental investigation and 
mathematical modeling of underlying physical processes both needed to 
facilitate greater understanding of controlled drug release. Mathemat-
ical approaches in particular hold many advantages, including but not 
limited to: identifying the relative importance of system parameters in 
governing the dissolution/drug release rate; helping guide the design, 
and reducing the number of experiments and; contributing towards 
minimizing the cost and time associated with physical measurements. 

In the past few decades, increasingly complex mathematical models 
of dissolution have been presented, attempting to provide more accurate 
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descriptions of the process [2,11,12]. These may be roughly separated 
into two types: moving boundary and continuous field descriptions [13]. 
The moving-boundary approach considers a propagation front that 
separates dissolved drug from undissolved drug. This has been applied 
to solid drug formulations [14,15], but has also been considered in the 
context of solid drug contained with a matrix carrier [8,16,17]. Mass 
balance at the dissolution interface, i.e., requiring that the rate of drug 
diffusion away from the dissolution front be balanced by the rate at 
which the solid drug is dissolved provides a mathematical framework for 
determining the rate of propagation of the dissolution front. Such front- 
tracking problems are, in general, non-linear, and several approximate 
solutions have been proposed. For example, assuming the solid drug 
concentration to be much larger than the solubility limit, pseudo-steady 
propagation of the dissolution front has been modeled, resulting in 
approximate but closed-form solutions for the drug release profile for 
flat [8] and spherical [18] drug delivery devices. Several other 
approximate analytical techniques for modeling the propagation of the 
dissolution front have also been proposed, including integral methods 
[19] and series expansions [20]. Most recently, an asymptotic expansion 
of the leading order equations was used to obtain an approximate so-
lution for drug release from a polydisperse granule [16]. Each of the 
techniques discussed above inherently assume that the dissolution front 
moves slowly. 

The alternative continuous field approach, mostly applied to the case 
of drug loaded within an inert matrix, obviates the need for a moving 
boundary by assuming rapid liquid absorption, facilitating dissolution 
throughout the matrix from the onset [2,21–23]. In other words, the rate 
of dissolution at any spatial location is assumed to be proportional to the 
local concentration excess above the solubility limit, following the early 
Noyes–Whitney [7] and Nernst–Brunner approach [24]. In such a case, 
the dissolution process results in an additional term in the diffusion eq. 
[25]. Provided the reaction kinetics parameters are determined 
correctly, such models hold the advantage of being appropriate for a 
wider range of solubilities and dissolution rates. Regardless of the model 
framework, an important, but often overlooked aspect is comparison 
with experimental data, an essential step if the model is to be used in a 
predictive capacity. 

Most of the past work on dissolution modeling in the context of 
controlled drug delivery has focused on a homogeneous (so-called 
monolithic) system, such as a slab or sphere, with drug dispersed within. 
However, there are several scenarios where the drug-loaded region (the 
core) is surrounded or encapsulated by a passive region (the encapsulant) 
whose primary function is to control the release. In particular, drug- 
filled implants, sized typically of the order of several mm or more, 
where solid drug is contained within the structure of the implant itself, 
are emerging in a number of controlled-release applications such as 
coronary drug-eluting stents [26] and antibiotic-eluting orthopedic 
implants [27,28]. These devices utilize the hollow core inside the 
implant as a reservoir for drug delivery without compromising the 
structural integrity of the implant and obviate the need for polymer 
carriers which are often associated with biocompatibility issues and 
and/or delayed healing. In such implants, drug release is typically 
controlled via a porous wall encapsulating the drug reservoir, with the 
nature of the pores, and the thickness of the wall being key design pa-
rameters. Thus, the diffusion of dissolved drug through the porous wall 
is an additional factor in determining the overall dissolution and drug 
release rate that is typically not accounted for by monolithic dissolution 
models. 

The additional complexity of the encapsulating porous wall, exhib-
iting different diffusion properties from the central core, renders an 
analytical solution difficult to achieve. However, similar problems 
occurring in phase change heat transfer [29,30] have been resolved by 
solving the transient diffusion problem using eigenfunction expansion. 
Based on this technique, solutions have been derived to model the 
melting of a spherical phase change material encapsulated within a 
passive material [29], and melting of a flat slab protected by a multi- 
layer wall [30]. Given the close similarity between heat and mass 
transfer, it is conceivable that this technique can also be used to solve a 
drug dissolution problem in the presence of an encapsulant, and, 
therefore, address a key gap in the controlled release modeling litera-
ture. Doing so will help model multilayer drug delivery devices and 
understand the interplay between dissolution and diffusion. While such 
calculations may be carried out successfully using numerical simula-
tions, particularly in complicated geometries [31–34], a theoretical 
approach may offer advantages of improved computational time 
[29,30], as well as a deeper fundamental understanding of transport 
processes and diffusion-vs-dissolution interplay. 

This work presents a front-tracking technique for modeling dissolu-
tion and the resulting drug release from a drug-loaded cylindrical device 
surrounded by a passive porous layer. An eigenfunction-based solution 
for the transient concentration distributions in the two layers is derived, 
which, along with mass conservation at the dissolution front determines 
the rate of propagation of the dissolution front. The model is compared 
against previously reported experimental data encompassing drug 
release from a cylindrical drug-filled orthopedic fixation pin, and good 
agreement is found. Key non-dimensional parameters governing this 
problem are identified, and it is shown that the initial drug concentra-
tion plays a key role in determining whether drug release is dissolution- 
limited, or diffusion-limited. 

2. Problem definition 

A schematic of the problem considered here is presented in Fig. 1. A 
cylindrical device of radius R0 carries a drug within its core at an initial 
concentration B that is larger than the solubility limit S. The drug core is 
surrounded by a porous concentric layer of thickness δ. The entire drug 
delivery device is located in a release medium, into which, the rate of 
drug delivery is of interest. Dissolution of the solid drug begins when the 
device is submerged in the release medium at t = 0. As time passes, the 
dissolution front moves inwards, as characterized by the thickness of the 
dissolved drug region, a(t) measured radially inwards from r = R0. The 
inward propagation of the dissolution front is driven by outwards 
diffusion of dissolved drug from the dissolution front towards the release 

Nomenclature 

a time-varying thickness of the dissolved drug region, 
measured inwards from the outer surface of drug core 
(m) 

B initial drug concentration (kg⋅m− 3) 
c concentration (kg⋅m− 3) 
D diffusion coefficient (m2⋅s− 1) 
f fraction of drug released 
h mass transfer coefficient (m⋅s− 1) 
r radial coordinate (m) 
R0 radius of the drug-loaded core (m) 
S solubility limit (kg⋅m− 3) 
Sh Sherwood number, Sh = hR0/Df 

t time (s) 
δ thickness of the porous wall (m) 
ξ non-dimensional spatial coordinate, ξ = r/R0 
ϕ porosity 
τ non-dimensional time, τ = Df t/R2

0 
θ non-dimensional drug concentration, θi = ci/S (i = f , p)

Subscripts 
p porous wall layer 
f drug-loaded core 
Overbars refer to non-dimensional quantities  
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medium. The interest is in predicting the rate of drug release at the outer 
surface as a function of time during the dissolution process. Once the 
dissolution process is complete, i.e., the dissolution front reaches the 
center of the device, a = R0, further drug delivery is purely diffusive, 
which is a well-modeled process [35] and therefore, not of interest in 
this work. Note that in an extreme scenario, depending on the values of 
various parameters, this problem may be dissolution-limited, in which 
case, most of the diffusion would already be complete by the time the 
drug dissolves completely, or diffusion-limited, in which case, dissolu-
tion occurs so rapidly that most of the drug is released after the 
completion of dissolution. With a view to understanding how the drug 
release may be controlled, it is of interest to examine the conditions in 
which the process is dissolution-limited or diffusion-limited, and to 
determine the impact of various problem parameters on the nature of the 
process. 

A number of assumptions, in common with existing drug delivery 
models, are made in order to solve this problem. Diffusion is assumed to 
be governed by Fick’s second law [35], with isotropic, constant and 
uniform diffusion coefficients in each layer. The device is assumed to be 
axisymmetric and capped at both ends, thereby preventing drug release 
from these areas and ensuring a 1D radial concentration distribution. 
The drug is assumed to be loaded uniformly within the core. Taken 
together, these assumptions ensure that the net flux of drug is only in the 
radial direction towards the release medium, enabling the consideration 
of a one-dimensional model. It is assumed that the materials do not 
erode or swell during the dissolution process, the modeling of which 
would entail solving a problem with two simultaneously moving 
boundaries. It is also assumed that the drug does not interact with the 
pore wall during the diffusion process. Further, it is assumed that there 
are no wettability problems, meaning that the dissolved drug concen-
tration at the dissolution front is equal to the drug solubility. The reader 
is referred to [36] for alternative models that consider the effect of 
poorly wettable solids. 

Based on the physical description of the problem and assumptions 
discussed above, the concentration fields in the dissolved region of the 
core, cf (r, t), and the surrounding porous region, cp(r, t), are governed by 
the following conservation equations written in cylindrical coordinates: 

1
r

∂
∂r

(

r
∂cf

∂r

)

=
1

Df

∂cf

∂t
, R0 − a(t) < r < R0, (1)  

1
r

∂
∂r

(

r
∂cp

∂r

)

=
ϕ
Dp

∂cp

∂t
, R0 < r < R0 + δ. (2) 

Here, ϕ refers to the porosity of the surrounding region. Subscripts f 
and p refer to the fluid-infused region in the cylindrical core and the 
surrounding porous region, respectively. Specifically, Df and Dp refer to 
the diffusion coefficients in the core and the surrounding porous region, 
respectively. Df and Dp are related to each other as Dp/Df = ϕe/λ where 
ϕe is the effective porosity of the porous wall, which, based on past work 
may be assumed to be 90% of ϕ, and λ is the tortuosity [37,38], for 
which, an average value of 3.0 may be assumed [38]. The dissolution 
front is initially located at R0, so that initially, a(0) = 0 and eventually, 
a = R0 when all of the drug core has been dissolved. Under this defini-
tion, the time-varying radial location of the dissolution front is given by 
R0 − a(t). 

The above governing equations are supplemented by the following 
boundary and interface conditions: 

cf = S, r = R0 − a(t), (3)  

cf = cp, r = R0, (4)  

− Df
∂cf

∂r
= − Dp

∂cp

∂r
, r = R0, (5)  

− Dp
∂cp

∂r
= hcp, r = R0 + δ. (6) 

Eq. (3) states that drug concentration at the dissolution front must be 
equal to the solubility of the drug. Eqs. (4) and (5) represent continuity 
of the concentration field and conservation of mass flux at the interface 
between the cylindrical core and the surrounding porous region. Eq. (6) 
models the release of the drug into the surrounding medium, assuming 
drug release governed by the given mass transfer coefficient h. In the 
special case of an infinitely large release medium, h is infinite and eq. (6) 
may be replaced with a zero concentration boundary condition, which is 
typically maintained in in vitro experiments. 

Since a(t) is not known a priori, one further equation is required to 
fully describe this problem. This may be obtained by considering drug 
mass conservation at the dissolution front. Over an infinitesimal time dt, 
the mass of drug released due to the inwards propagation of the drug 
must be balanced by the outwards diffusive flux away from the front. 
This is represented mathematically by 

(B − S)
da
dt

= − Df
∂cf

∂r
, r = R0 − a(t), (7)  

with a(0) = 0. Finally, it is assumed that the porous region does not 
contain any drug at the initial time. 

Non-dimensionalization of the equations above reduces the number 
of parameters and ensures generalization of the results. The following 
transformation is carried out: 

ξ =
r

R0
, τ =

Df t
R2

0
, θf =

cf

S
, θp =

cp

S
, δ̄ =

δ
R0

,

ā =
a
R0

, D̄p =
Dp

Df
, B̄ =

B
S
, Sh =

hR0

Df
.

(8) 

Here, ̄δ is the non-dimensional thickness of the porous region, ̄a is the 
non-dimensional thickness of the dissolved drug region, measured in-
wards from the inner wall of the porous region, B̄ is the initial drug 
concentration in the core relative to its solubility and Sh is the Sherwood 
number that represents mass transfer to the surrounding medium at the 
outer surface. 

Based on eq. (8), the non-dimensional set of equations that govern 
this problem may be written as 

1
ξ

∂
∂ξ

(

ξ
∂θf

∂ξ

)

=
∂θf

∂τ , 1 − ā(τ) < ξ < 1, (9)  

1
ξ

∂
∂ξ

(

ξ
∂θp

∂ξ

)

=
ϕ
D̄p

∂θp

∂τ , 1 < ξ < 1 + δ̄, (10) 

Fig. 1. Transversal cross section schematic of a cylindrical device consisting of 
a drug-filled core of initial radius R0 surrounded by a porous wall of thickness δ. 
The dissolution front, represented by a(t) moves inwards, resulting in onset of 
diffusion in the dissolved region and the porous wall, and eventually, drug 
release into the surrounding release medium. h and B denote the mass transfer 
coefficient to the surrounding release medium and the initial drug concentra-
tion, respectively. Figure not to scale. 
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θf = 1, ξ = 1 − ā(τ), (11)  

− D̄p
∂θp

∂ξ
= Sh θp, ξ = 1 + δ̄, (12)  

θp = θf , ξ = 1, (13)  

D̄p
∂θp

∂ξ
=

∂θf

∂ξ
, ξ = 1, (14)  

dā
dτ = −

1
B̄ − 1

∂θf

∂ξ
, ξ = 1 − ā(τ). (15) 

During the drug release process, the two key performance parame-
ters of interest include the thickness of the dissolved region as a function 
of time, ā(τ), and the cumulative amount of drug delivered into the 
release medium up to a given time, expressed as a fraction of the initial 
drug mass by 

f̄ (τ) =

∫t

0

− Dp

(
∂cp

∂r

)

1+δ
2π(R0 + δ)dt*

πR2
0B

= −

2D̄p(1 + δ̄)
∫τ

0

(
∂θp

∂ξ

)

1+δ̄
dτ*

B̄
.

(16) 

Eqs. (9)-(15) represent a two-layer moving boundary problem driven 
by the non-homogeneity present in eq. (11). Outwards diffusion of the 
drug due to the radial concentration results in inwards propagation of 
the dissolution front until all of the drug core has been dissolved. While 
an exact analytical solution for such moving boundary problems is 
usually available only for the simplest problems, such as the Stefan 
problem [39], an approximate analytical solution may be derived using 
the method of eigenfunction expansion. This method has been used in 
the past for analyzing phase change heat transfer problems [30,40,41], 
including a two-layer problem comprising a phase change material and 
an encapsulant, similar to the present one [29]. 

Since the two-layer diffusion problem contains a non-homogeneity in 
one of the boundary conditions, eq. (11), the solution is first written as a 
sum of two components: 

θf (ξ, τ) = uf (ξ)+wf (ξ, τ), (17)  

θp(ξ, τ) = up(ξ)+wp(ξ, τ). (18)  

where uf and up may be interpreted as the ‘steady state’ component of 

the solution. These variables satisfy 
(

ξu′
f

)′
= 0 and 

(
ξu′

p

)′
= 0, respec-

tively, along with the following boundary conditions: 

uf = 1, ξ = 1 − ā, (19)  

− D̄pu′
p = Sh up, ξ = 1 + δ̄, (20)  

uf = up, ξ = 1, (21)  

D̄pu′
p = u′

f , ξ = 1. (22) 

A solution for uf (ξ) and up(ξ) can be easily found to be 

uf (ξ) = D̄pApln
(

ξ
1 − ā

)

+ 1, (23)  

up(ξ) = Apln

(
ξ

(1 − ā)D̄p

)

+ 1, (24)  

where 

Ap = − Sh

[
D̄p

1 + δ̄
+ Sh ln

(
1 + δ̄

(1 − ā)D̄p

)]− 1

. (25) 

The problem for wf (ξ, τ) and wp(ξ, τ) may then be written as 

1
ξ

∂
∂ξ

(

ξ
∂wf

∂ξ

)

=
∂wf

∂τ , 1 − ā < ξ < 1, (26)  

1
ξ

∂
∂ξ

(

ξ
∂wp

∂ξ

)

=
ϕ
D̄p

∂wp

∂τ , 1 < ξ < 1 + δ̄, (27)  

wf = 0, ξ = 1 − ā, (28)  

− D̄p
∂wp

∂ξ
= Sh wp, ξ = 1 + δ̄, (29)  

wf = wp, ξ = 1, (30)  

D̄p
∂wp

∂ξ
=

∂wf

∂ξ
, ξ = 1. (31) 

The initial conditions for this problem are 

wp = − up(ξ), τ = 0, (32)  

wf = − uf (ξ), τ = 0. (33) 

Eqs. (26)-(33) represent a two-layer diffusion problem with homo-
geneous boundary and interface conditions, and a non-homogeneous 
initial condition. A solution for this problem may be written as follows: 

wf (ξ, τ) =
∑∞

n=1
cn
[
Af ,nJ0(λnξ)+Bf ,nY0(λnξ)

]
exp
(
− λ2

nτ
)
, (34)  

wp(ξ, τ) =
∑∞

n=1
cn

[

Ap,nJ0

(
λnξ
̅̅̅γ√

)

+Bp,nY0

(
λnξ
̅̅̅γ√

)]

exp
(
− λ2

nτ
)
, (35)  

where λn are the eigenvalues and γ =
D̄p
ϕ . J0 and Y0 refer to zero-th order 

Bessel functions of the first and second kind, respectively. Note that the 
eigenfunctions are chosen to satisfy the respective governing equations. 
Relationships between Af ,n and Bf ,n, and between Ap,n and Bp,n may be 
derived on the basis of eqs. (28) and (29), respectively. A relationship 
between Ap,n and Af ,n may also be derived using eq. (30). Finally, the 
substitution of these relationships into eq. (31) may be shown to result in 
the following simplified form for the solution 

wf (ξ, τ) =
∑∞

n=1
cn
[
J0(λnξ)+ sf ,nY0(λnξ)

]
exp
(
− λ2

nτ
)
, (36)  

wp(ξ, τ) =
∑∞

n=1
cnqp,n

[

J0

(
λnξ
̅̅̅γ√

)

+ sp,nY0

(
λnξ
̅̅̅γ√

)]

exp
(
− λ2

nτ
)
. (37) 

The eigenvalues λn are roots of the following eigenequation 

D̄p
̅̅̅γ√ qp,n

[

J1

(
λn
̅̅̅γ√

)

+ sp,nY1

(
λn
̅̅̅γ√

)]

= J1(λn) + sf ,nY1(λn), (38)  

where 

sf ,n = −
J0(λn(1 − ā) )
Y0(λn(1 − ā) )

, (39)  

sp,n =

λnD̄p̅̅γ√ J1

(
λn̅̅

γ√ (1 + δ̄)
)
− Sh J0

(
λn̅̅

γ√ (1 + δ̄)
)

−
λnD̄p̅̅γ√ Y1

(
λn̅̅

γ√ (1 + δ̄)
)
+ Sh Y0

(
λn̅̅

γ√ (1 + δ̄)
) , (40)  

qp,n =
J0(λn) + sf ,nY0(λn)

J0

(
λn̅

γ̅√

)
+ sp,nY0

(
λn̅̅

γ√

). (41) 

Here, J1 and Y1 refer to first order Bessel functions of the first and 
second kind, respectively. 

The last remaining unknown in eqs. (36) and (37), cn, may be 
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determined by the use of quasi-orthogonality of a multilayer diffusion 
problem. In order to do so, one may set τ = 0 in eqs. (36) and (37) and 
use the initial conditions given by eqs. (32) and (33), respectively. The 
equations are then multiplied with ξ

[
J0(λmξ) + sf ,mY0(λmξ)

]
and 

ξϕqp,m

[
J0

(
λm ξ̅̅

γ√

)
+ sp,mY0

(
λm ξ̅̅

γ√

) ]
, respectively, followed by integration 

within the respective region. Upon adding the resulting equations, with 
the use of the orthogonality relationship, one may obtain the following 
expression for cn: 

cn =
− 1
Nn

⎡

⎣
∫1

1− ā

uf (ξ)ξ
[
J0(λnξ) + sf ,nY0(λnξ)

]
dξ 

+ϕ
∫1+δ̄

1

ξup(ξ)qp,n

[

J0

(
λnξ
̅̅̅γ√

)

+ sp,nY0

(
λnξ
̅̅̅γ√

)]

dξ

⎤

⎦, (42)  

where the norm Nn is given by 

Nn =

∫1

1− ā

ξ
[
J0(λnξ) + sf ,nY0(λnξ)

]2dξ

+ ϕ
∫1+δ̄

1

ξ
[

qp,n

[

J0

(
λnξ
̅̅̅γ√

)

+ sp,nY0

(
λnξ
̅̅̅γ√

)]]2

dξ, (43) 

This completes the solution for the concentration distribution. 
Finally, the dissolution front may be obtained by inserting eqs. (23) and 
(37) into eq. (15), resulting in 

dā
dτ = −

1
B̄ − 1

(
∂θf

∂ξ

)

ξ=1− ā

= −
1

B̄ − 1

[
D̄pAp

1 − ā
−
∑∞

n=1
cnλn

[
J1(λn(1 − ā) )

+sf ,nY1(λn(1 − ā) )
]
exp
(
− λ2

nτ
)
]

.

(44) 

Eq. (44) is a relatively simple ordinary differential equation for ā(τ). 
While an analytical integration of eq. (44) is likely not possible, it can be 
easily numerically integrated, in conjunction with the initial condition 
ā(0) = 0. An explicit time stepping technique is used, wherein eq. (44) 
provides the value of dā

dτ at each time in order to determine the value of ā 
at the next time step. The time step is chosen to be small enough such 
that further reduction does not significantly change the results. Once 
solved, an expression for the fraction of drug delivered into the release 
medium can be written, using eq. (16) as 

f̄ (τ) = −
2D̄p

B̄
(1 + δ̄)

[
Ap

1 + δ̄
τ −

∑∞

n=1
cnqp,n

λn
̅̅̅γ√

(

J1

(
λn
̅̅̅γ√ (1 + δ̄)

)

+sp,nY1

(
λn
̅̅̅γ√ (1 + δ̄)

)) (
1 − exp

(
− λ2

nτ
) )

λ2
n

]

. (45)  

3. Results and discussion 

3.1. Problem parameters 

In order to analyze the results from the theoretical model presented 
in Section 2, the values of several non-dimensional parameters must be 
chosen first. In general, the location of the phase change front and 
fraction of drug released as function of time depend on the non- 
dimensional parameters δ̄, D̄p, B̄, Sh as well as the porosity ϕ. Without 
loss of generality, baseline values for these parameters are predomi-
nantly estimated from past work [37], which reported these values 
based on experimental data. The underpinning dimensional parameter 
values are listed in Table 1. The value of the Sherwood number depends 
on the nature of the release medium and mass transfer conditions at the 
outer surface. In general, Sh may vary from 0 to infinity, corresponding 
to an impenetrable and a zero concentration boundary, respectively. A 
baseline value of 2 is listed, but a broader range of values is considered 
in Section 3.6. Note that, in general, the initial drug concentration in the 
core is designed to be much larger than the solubility limit, and the 
encapsulant material is chosen to have low diffusion coefficient. These 
design choices facilitate control of drug release over a sustained period 
of time by slowing down the dissolution and diffusion processes, 
respectively. However, dissolution and diffusion affect each other. 
Therefore, the precise impact of varying these parameters is not known, 
and needs to be determined through systematic analysis of how these 
parameters impact ā and ̄f , based on the theoretical model presented in 
the previous section. Using the baseline values of the non-dimensional 
parameters, a number of analyses are carried out. In order to under-
stand the impact of each parameter on the nature of the dissolution and 
drug release processes, each parameter is varied at a time while holding 
all others constant. These are described in subsequent sub-sections. 

3.2. Effect of number of eigenvalues 

Given the infinite series nature of the solution, it is important to 
understand the minimum number of terms required in the solution, eqs. 
(34) and (35), to obtain reasonably accurate results. The decaying 
exponential term in the time domain in eqs. (34) and (35) indicates that 
an increasing number of terms may be needed to be computed at small 
times, whereas at large times, the time-dependent term in the solution 
may be insignificant, and only a few terms may suffice to get good ac-
curacy. For reasonably large times, only the ‘steady state’ components of 
the solution may be sufficient, and wf (ξ, τ) and wp(ξ, τ) may be ignored 
completely. In order to investigate this for realistic settings, a number of 
calculations are carried out for the different numbers of terms consid-
ered. In each case, the normalized thickness of the dissolved region, ā 
and fraction of drug released, f̄ are computed as functions of time. As 
shown in plots of these quantities in Fig. 2(a) and 2(b), respectively, only 
a single term in the infinite series is sufficient for convergence for all 
considered times and for the baseline parameter set. Note that the time 
period for most drug delivery problems of relevance to enclosed devices 

Table 1 
Baseline values of various dimensional parameters of the problem considered here [27,37,38,42].  

# Parameter Definition Value (Units) Source 

1 Df Diffusion coefficient in fluid-infused core 10− 9 (m2s− 1) – 
2 Dp Diffusion coefficient of porous encapsulant 5.1 ⋅ 10− 11 (m2s− 1) Calculated 
3 ϕ Porosity of encapsulant 0.17 [27] 
4 ϕe Effective porosity 0.153 [37] 
5 λ Tortuosity 3.0 [38] 
6 R0 Radius of the drug core 1.575 (mm) [27] 
7 δ Porous encapsulant thickness 1.6 (mm) [27] 
8 S Solubility 3 (kg ⋅ m− 3) [42] 
9 B Initial drug concentration in core 505.19 (kg ⋅ m− 3) Calculated from [27] 
10 Sh Sherwood number 2.0 Estimated from [27]  
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considered here is quite large. For example, experimental data presented 
by Gimeno, et al. [27], discussed in detail in the next sub-section, is over 
a period of several days. Such a long time period is sufficient for tran-
sient effects to be negligible in the theoretical model. The inclusion of 
additional terms beyond shown in Fig. 2 does not significantly change 
the predicted behavior of the system. Mathematically, this occurs 
because even the smallest eigenvalue of this problem is sufficiently large 
– of the order of 1 or more – due to which, over the time periods of 
interest in practical applications, the transient component of eqs. (34) 
and (35) are negligible due to the exponentially decaying term. This 
results in weak dependence on the number of terms in the infinite series. 
From a computational perspective, this is a helpful result, since the 
larger the number of terms to be computed, the greater is the compu-
tational cost, particularly so in this problem, in which, the eigenvalues 
must be computed at each time due to the changing value of ā. 

3.3. Model comparison with experimental data 

Prior to a comprehensive analysis of a variety of drug release sce-
narios ranging from dissolution-limited to diffusion-limited, it is 
important to first demonstrate that the model is able to correctly capture 
experimental data. Towards this, we consider the study by Gimeno et al. 
[27] who measured drug release from a cylindrical drug-filled ortho-
pedic fixation pin in an in vitro environment. The pins in question con-
tained a porous wall encapsulating the solid drug core, and are, 
therefore, ideal for comparison with the present work. For full details of 
the experiment set-up and procedures, the reader is referred to [27]. 
Briefly, stainless steel porous-walled pins were filled with the drug 
Linezolid in its powdered commercial form Zyvox, then submerged in a 
large volume of simulated body fluid (SBF). Communication with the 
authors revealed that the experiment was performed under agitation. 
The fraction of drug released was measured at various time intervals. 

The model parameters related to the geometry of the device (core 
radius, porous wall thickness) are available from Gimeno et al. [27]. The 
pins are stated as being “loaded with 95-120 mg of lyophilized com-
mercial Linezolid.” A value of 100 mg was assumed, justified from a 
similar study by Gimeno et al. [28], in which, precise drug loading of 
100 mg is stated. The value of the free diffusion coefficient of linezolid is 
not, to the authors’ knowledge, reported in the literature. Therefore, it is 
assumed that Df= 5 ⋅ 10− 10 m2s− 1, a value broadly typical of small 
molecule drugs with similar molar mass. Given that the volume of the 
release medium is considerably larger than the volume of the pin, 
coupled with the fact that the experiments were performed under 
agitation, a high Sherwood number, effectively emulating sink condi-
tions, is reasonable to assume. 

The only remaining parameter is solubility. Gimeno et al. [27] quote 
the aqueous solubility of Linezolid as 3 mg/ml (= 3 kg/m3). According 
to the FDA, Linezolid has an “aqueous solubility of approximately 3 mg/ 
ml” and that Linezolid is “not ionized in aqueous media, including blood 
and urine, with pH>4” [42]. Additionally, according to Pfizer, the 
manufacturer of Zyvox (the commercial name for Linezolid), “The 
aqueous solubility of linezolid is approximately 3 mg/mL, independent 
of pH between 3 to 9.” [43]. In the drug release experiments by Gimeno 
et al. simulated body fluid was used as the release medium, which was 
“prepared according to the method described by Kokubo et al. (1990)”. 
According to Kokubo et al. [44], their simulated body fluid has a pH of 
7.25, similar to human blood plasma. We note, however, that Gimeno 
et al. state that Zyvox “contains 2 mg of linezolid, 45.7 mg of glucose and 
0.38 mg of sodium (as sodium hydroxide). The injection also contains 
sodium citrate, citric acid anhydrous, hydrochloric acid and water for 
injections”. Thus, given that the formulation of linezolid used is mixed 
with other ingredients of higher solubility, and given that the release 
medium is different, we anticipate the solubility will be higher, but we 
are unable to quantify this a priori. This motivates us to treat solubility as 
a fitting parameter when comparing with the experimental data. 

Therefore, an inverse problem is solved, whereby all known pa-

Fig. 2. Effect of number of eigenvalues, N, on: (a) Thickness of the dissolved drug region, and (b) fraction of drug released as functions of time for a representa-
tive problem. 

Fig. 3. Comparison of the drug release profile predicted by the theoretical 
model with experimental data reported by Gimeno et al. [27]. The last three 
experimental data points are not considered in comparison due to reasons 
discussed in Section 3.3. 
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rameters are fixed and S is varied over a physically realistic range in 
order to find the value that best fits experimental data. Examination of 
the experimental data shown in Fig. 3 reveals a largely linear drug 
release through most of the experiment, with a deviation from the linear 
trend at later times (represented by the last three data points). Given the 
mass of drug loaded in the device and the corresponding solubility of the 
drug as stated in Gimeno et al. [27], it is unlikely that this deviation 
arises from the release medium becoming saturated with drug (thereby 
reducing the concentration gradient). Rather, this behavior at later 
times is almost certainly a result of drug being completely dissolved and 
being transported through the device via diffusion only. Since the pre-
sent model is focused on tracking the dissolution front until complete 
dissolution (i.e. it is only valid for the period up until all of the drug has 
been dissolved), it is not appropriate to consider these data points when 
comparing the model with the experimental data. Thus, the last three 
data points are not included in the inverse problem. 

The inverse problem comprises varying S in a reasonable parametric 
range in order to find the value that minimizes the root-mean-square 
(RMS) deviation between the drug release curve predicted by the 
model and experimental data. The RMS error curve is found to have a 
minima at S = 39.00 kg⋅m− 3, which is the value used for comparison. It 
is noted that this value is higher than the reported aqueous solubility of 
pure linezolid, but is not unexpected, given the preceding discussion on 
solubility. Fig. 3 presents the drug release curve predicted by the model 
for this value, along with experimental data. This comparison shows that 
the model is able to capture the experimental data very well, exhibiting 
close agreement through the drug release process during dissolution. 
The R2 value between experimental data and theoretical model is found 
to be 0.997. The very minor discrepancies between the two may be 
attributed to, for example, incomplete details regarding the experi-
mental set up (which may influence Sh) and some uncertainty in the 
initial drug loading. Notwithstanding these minor sources of error, the 
overall agreement between the model and experimental data is very 
good. 

3.4. Dissolution-vs-diffusion trade-offs 

The nature of drug delivery in this problem is governed by the 
interplay between dissolution and diffusion, which are tightly coupled 
with each other. At the initial time, when the entire drug is present in 
solid form, no diffusion is possible within the core and, therefore, no 
drug release occurs. As diffusion in the encapsulant drives the inward 
propagation of the dissolution front, increasingly more drug becomes 
available for diffusion, resulting in an increase in the rate of drug 
released from the outer surface. Eventually, however, the concentration 

gradient within the device reduces, as much of the drug has already been 
delivered, resulting in slowdown in the rate of drug delivered. The rate 
of diffusion drives the dissolution process. In turn, the dissolution pro-
cess enables diffusion by rendering more and more drug diffusible. Due 
to the close coupling between the two processes, the governing non- 
dimensional parameters of this problem must be carefully chosen on 
the basis of the influence of these parameters on both dissolution and 
diffusion, and eventually on the drug release profile. 

In order to carefully investigate these coupled processes, the impact 
of the initial drug distribution, represented by the non-dimensional 
parameter B̄ on dissolution-limited drug delivery characteristics is 
investigated first. For baseline values of other parameters, Fig. 4(a) plots 
the dissolution front as a function of time for different values of B̄. Note 
that large values of B̄ are chosen in order to be consistent with past 
literature [27,28,38], where a large excess of drug is made available 
initially. Fig. 4(a) shows, as expected, that the propagation of the 
dissolution front begins very slowly, and then speeds up. This arises 
because of the slow rate of diffusion at early times, whereas at later 
times, the amount of drug remaining in the solid form reduces, making it 
easier to dissolve. The latter phenomenon explains the very sharp nature 
of the dissolution front propagation curves towards the end of the pro-
cess. Fig. 4(a) also demonstrates strong dependence of the dissolution 
process on the initial concentration B̄. The greater the initial drug 
loading, the slower is the dissolution process, because for the same 
diffusive flux driving the dissolution process, per eq. (15), a larger value 
of B̄ results in lower value of dā/dt. Due to the appearance of B̄ in the 
denominator of eq. (15), a strong dependence of the dissolution process 
on B̄ may be expected, which is confirmed by Fig. 4(b), which plots the 
total dissolution time (i.e., the time taken until all of the drug has dis-
solved) as a function of B̄. Fig. 4(b) shows, as expected, that the total 
dissolution time increases linearly with B̄. 

Fig. 5 investigates the impact of B̄ on the cumulative amount of drug 
released from the device, ̄f , until the end of the dissolution process (i.e. 
until all of the drug within the core has dissolved). Fig. 5(a) plots ̄f as a 
function of τ, up to the corresponding time for complete dissolution, for 
different values of B̄ while all other parameters are held constant. 
Consistent with past measurements [27], a zero-order release is 
observed (i.e. ̄f increases linearly with time), which may be because the 
drug reservoir system is loaded high above the solubility limit. It is 
particularly interesting that the total amount of drug delivered by the 
end of the dissolution process increases with increasing value of B̄. This 
is primarily because larger values of B̄ result in slower dissolution, 
giving more time for the drug to diffuse and be delivered on the outer 
surface. This is further illustrated in Fig. 5(b), which plots the total 

Fig. 4. Effect of non-dimensional initial drug concentration on dissolution process: (a) Dissolution front propagation as a function of τ for different values of B̄, and 
(b) total dissolution time, τc as a function of B̄.
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fraction of drug delivered by the end of the dissolution process, ̄fmax as a 
function of B̄. As expected, this plot shows rapid increase in f̄max with 
increasing B̄ at small values of B̄, whereas, this effect saturates at a value 
close to 1 for large B̄. This is likely because when B̄ is sufficiently large, 
the dissolution process is occurring so slowly – with diffusion relatively 
rapid – that almost all the drug is delivered by the time dissolution is 
complete. The other extreme situation is when B̄ is very close to 1, in 
which case, dissolution occurs very rapidly, and the drug delivery 
characteristics are largely governed by diffusion of fully dissolved drug 
in the device. Drug delivery in this diffusion-limited regime has been 
modeled extensively in past papers [1,3,21,45]. 

In light of the discussion above, B̄ is identified as a key non- 
dimensional parameter that governs the interplay between dissolution 
and diffusion in this problem, therefore strongly influencing drug de-
livery characteristics, which is usually of much practical interest. 

3.5. Effect of encapsulant properties 

The porous encapsulant around the drug core is expected to play a 
key role in drug release, since drug release at the outer surface is 
mediated by diffusion through the encapsulant layer. While in practice, 
the encapsulant may be designed to provide mechanical strength, yet, 
too thick an encapsulant is intuitively expected to result in slowdown of 
the drug release process, which, in some cases, may be desirable, and in 

other cases, undesirable. The two key properties of the porous encap-
sulant that appear in the mathematical model presented here include the 
thickness and the effective diffusion coefficient of drug within the 
encapsulant. These are captured within the non-dimensional parameters 
δ̄ and D̄p, respectively, both of which are expressed relative to that of the 
respective property of the drug core. 

The effect of these parameters on the dissolution front propagation 
and drug release profile is investigated. Firstly, Fig. 6(a) plots the 
thickness of the dissolved drug region ā as a function of time for four 
different encapsulant thicknesses, while all other parameters are held 
constant. A plot of the cumulative fraction of drug released, f̄ , as a 
function of time for the same set of parameters is presented in Fig. 6(b). 
Fig. 6(a) shows that as the encapsulant thickness increases, the disso-
lution front propagates slower and slower. This is explainable on the 
basis of greater resistance to diffusion offered by a thick encapsulant 
layer. The reduced dissolution propagation at large thicknesses is 
particularly noticeable at small times, which is because the initial 
diffusion of dissolved drug from the initial dissolution front at r = R0 
through the thicker encapsulant will take longer. Fig. 6(b) shows that as 
the encapsulant thickness increases, the drug takes longer to release, 
however, the total drug released by the end of the dissolution process 
remains approximately the same, regardless of the encapsulant thick-
ness. This may seem counter-intuitive at first, but is likely due to the 
dependence of the speed of dissolution on diffusion. In other words, 

Fig. 5. Effect of non-dimensional initial concentration on drug release: (a) Fraction of drug delivered as a function of time until the end of the dissolution process for 
different values of B̄, and (b) Total fraction of drug delivered by the end of the dissolution process as a function of B̄. 

Fig. 6. Effect of porous wall thickness: (a) time-varying thickness of the dissolved drug region and (b) cumulative drug released as a function of time. Both are plotted 
for multiple values of the porous wall thickness. 
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while increased encapsulant thickness increases the timescale for 
diffusion, at the same time it slows down dissolution, thereby providing 
more time for drug to diffuse and release on the outer surface while 
dissolution is still ongoing. 

The impact of the other key non-dimensional parameter related to 
the encapsulant, D̄p, is presented in Fig. 7. For four different values of D̄p, 
Figs. 7(a) and 7(b) plot the thickness of the dissolved drug region ā and 
fraction of drug released f̄ as functions of time. As expected, the lower 
the value of D̄p, the slower diffusion is through the encapsulant, and, 
therefore, the slower is the inwards propagation of the dissolution front. 
Changing D̄p does not appear to influence the fraction of drug released 
by the end of the dissolution process, with a rationale similar to that for 
the effect of changing the encapsulant thickness ̄δ. Note that, in contrast 
with the δ̄ case presented in Fig. 6(b), where almost all of the drug had 
been released by the end of the dissolution process, in this case, notably 
less drug has been released by the end of the dissolution process for each 
of the values of D̄p considered here. This implies that under the 
parameter values of Fig. 6, the drug delivery process is not dissolution- 
limited, and that a sizable portion of dissolved drug still remains within 
the core and encapsulant by the time the drug core is completely dis-
solved. Note that a key difference between the parameter sets for Figs. 6 
and 7 is that the value of the initial concentration is B̄ is 40 and 4.0, 
respectively. As discussed in the previous section, B̄ strongly influences 
whether the process is diffusion or dissolution limited, which explains 
the difference in the nature of Figs. 6(b) and 7(b). In contrast with B̄, the 

encapsulant properties δ̄ and D̄p do not play a key role in determining 
whether dissolution or diffusion dominates primarily because, unlike B̄, 
which only influences the dissolution process via eq. (15), δ̄ and D̄p 

equally influence both dissolution and diffusion. 
When the drug release during the inwards propagation of the 

dissolution front is diffusion-limited, such as in Fig. 7, subsequent de-
livery of the remaining drug after completion of dissolution is driven by 
a pure diffusion process, which, for multilayer geometries similar to the 
present work has been addressed in past work [6,29,30,45], and, 
therefore, is not considered here. It is to be noted that the drug con-
centration profile in the core and encapsulant at the end of the disso-
lution process, i.e., τ = τc, serves as the initial condition for the transient 
diffusion process that describes the remaining drug delivery process 
post-dissolution. 

Given the importance of the time for complete dissolution, particu-
larly for modeling the remaining drug release post-dissolution in the 
case of a diffusion-limited process, the impact of encapsulant properties 
on the total dissolution time is investigated next. Keeping other pa-
rameters fixed, the time for complete dissolution τc is plotted as a 
function of encapsulant thickness and encapsulant diffusion coefficient 
in Figs. 8(a) and 8(b), respectively. In each case, curves are plotted for 
two values of the initial drug concentration, B̄ = 40.0 and B̄ = 4.0, that 
represent dissolution-limited and diffusion-limited regimes, respec-
tively. Fig. 8(a) shows, as expected, an increase in τc with increase in δ̄ 
due to the greater resistance to diffusion offered by the thicker 

Fig. 7. Effect of porous wall diffusion coefficient: (a) time-varying thickness of the dissolved drug region and (b) cumulative drug released as a function of time. Both 
are plotted for multiple values of the porous wall diffusion coefficient. 

Fig. 8. Time for complete dissolution as a function of (a) porous wall thickness and (b) porous wall diffusion coefficient.  
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encapsulant. The increase, however, is self-limiting, and the curve in 
Fig. 8(a) is seen to slow down somewhat at large thicknesses, at which 
point, the encapsulant is already very thick, so that the effect of further 
increase in thickness is relatively weaker than when the encapsulant is 
thinner. 

In contrast, the effect of encapsulant diffusion coefficient D̄p shown 
in Fig. 8(b) indicates that D̄p has much stronger impact on the time for 
complete dissolution. Particularly at very small values of the diffusion 
coefficient, the time taken for dissolution to complete increases 
dramatically with D̄p. This is mainly because extremely small D̄p implies 
very large resistance to diffusion, and, therefore, very slow propagation 
of the dissolution front. Unlike the effect of δ̄ shown in Fig. 8(a), D̄p 

appears to have a much stronger impact on the time for complete 
dissolution. 

In both Figs. 8(a) and 8(b), the impact of encapsulant properties on 
dissolution time is similar, regardless of whether the process is 
dissolution-limited (B̄ = 40.0) or diffusion-limited (B̄ = 4.0). As ex-
pected, the time for complete dissolution is lower in both cases when 
diffusion-limited, because a small initial concentration results in a 
faster-propagating dissolution front, per eq. (15). 

3.6. Effect of external conditions 

The impact of the external boundary condition at ξ = 1 + δ̄ on 
dissolution front propagation and drug release is examined next. The 
nature of the external boundary is mathematically represented by the 
Sherwood number, Sh. A very small value of Sh represents an imper-
meable condition, whereas a large value of Sh represents an infinite sink, 
resulting in zero drug concentration at the external boundary. Figs. 9(a) 
and 9(b) plot the thickness of the dissolved drug region ̄a and fraction of 
drug released f̄ as functions of time for multiple values of Sh spanning 
this spectrum. As expected, it is found that Sh impacts the dissolution 
and, consequently, drug release process. At small Sh, only limited 
amount of drug can be released from the outer surface, which slows 
down both dissolution and drug release. The dissolution is affected 
because, per eq. (15), the propagation of the dissolution front is driven 
by outwards diffusion of the drug from the dissolution front towards the 
outer surface, which is severely throttled when Sh is small. As Sh in-
creases, the ā curves become steeper and steeper, indicating faster 
dissolution. However, a saturation effect exists, in that increasing Sh 
beyond a threshold results in only incremental increase in the rate of 
dissolution. This is likely because once the external boundary is suffi-
ciently conducive to drug loss to the ambient, the rate-limiting step 

shifts to diffusion within the core and porous encapsulant, implying that 
further increasing Sh does not significantly affect the dissolution pro-
cess. Similar to Figs. 6(b) and 7(b) related to encapsulant properties, 
Fig. 9(b) indicates that changing Sh does not influence the total fraction 
of drug released up to the end of dissolution process, because this pri-
marily depends on whether the process is dissolution-limited or 
diffusion-limited, which, as shown previously, is governed primarily by 
the initial concentration B̄. 

4. Conclusions 

This work develops a mathematical model that describes controlled 
release from a drug-loaded cylindrical device surrounded by a passive 
porous layer. The analysis presented here uncovers how the various 
geometrical and physicochemical parameters influence drug dissolution 
and, ultimately, the drug release profile. Key non-dimensional param-
eters that influence the drug delivery process are identified. The model is 
compared against experimental data available in the literature, and 
excellent agreement is found, thereby providing confidence in its pre-
dictive capabilities. 

The derivation of the theoretical model is based on the principle of 
mass conservation during an inwards propagating dissolution front. The 
derivation does not rely on results or data from a specific past experi-
ment, and, therefore, is not empirical in nature. As long as the under-
lying assumptions of the model (such as a reasonably slow-moving 
dissolution front, so that the problem is not heavily diffusion-limited) 
remain valid, the model predictions are expected to retain accuracy. 

The fundamental theoretical principles used here may be extended to 
different geometrical configurations and numbers of encapsulating 
layers with potentially different properties. It is expected that the model 
will be useful for those designing such devices, in terms of optimizing 
the design of the device to achieve a desired drug release profile. 
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[28] M. Gimeno, P. Pinczowski, M. Pérez, A. Giorello, M. Martínez, J. Santamaŕıa, 
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