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a b s t r a c t 

Thermal management and energy storage problems often utilize extended surfaces, also known as fins 

for enhanced heat transfer. While thermal conduction is usually the dominant mode of heat transfer in 

a solid fin, the use of porous fins that include advective thermal transport due to porous fluid flow has 

also been investigated. In particular, the steady state thermal performance of a porous fin with pressure- 

driven radially outwards flow has been studied. While such results are helpful for studying problems that 

are inherently steady state in nature, such results do not readily apply to problems where heat removal 

or energy storage occurs only over a short period of time. This work presents transient thermal analysis 

of a porous fin with radial porous fluid flow driven by a pressure gradient. It is shown that the transient 

temperature field in the fin is governed by a transient convection-diffusion-reaction (CDR) equation, the 

solution for which is derived in the form of Bessel functions. Based on this solution, the evolution of fin 

performance with time is examined. Comparison of heat removed by the porous fin with a baseline case 

without any fin is carried out. The time taken to reach steady state is calculated. Key non-dimensional 

parameters appearing in this problem are identified and their impact on fin performance over time is 

investigated. Since fin porosity improves advective thermal transport but suppresses diffusive transport 

at different rates at different times, therefore, it is shown that for a given operating time, there may exist 

an optimal porosity that maximizes the rate of heat removal. It is shown that the operating time period 

of the fin plays a key role in determining whether fin porosity strongly impacts heat removal rate or 

not. Consequently, it is shown that it is important to consider transient effects in determining whether 

the use of a porous fin is beneficial at all, and, if so, what is the optimal fin porosity to use. This work 

contributes towards porous fin theory, and offers practical design guidelines for improving and optimizing 

the transient performance of porous fins. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat transfer enhancement through extended surfaces, also re- 

erred to as fins is a well-studied topic in heat transfer with a 

ong research history [ 1 , 2 ]. One of the first analysis of extended

urface heat transfer was presented more than a century ago [3] . 

undamentally, a fin offers increased surface area for heat transfer, 

hich, under well-designed conditions results in greater heat re- 

oval rate than without the fin [1] . Fins are used universally, with 

eat transfer enhancement in heat exchanger tubes [4] and cool- 

ng of semiconductor chips [5] being two representative examples. 

n addition to thermal management, the use of fins has also been 

idely investigated for improving latent energy storage by improv- 

ng the rate at which heat is transferred into a bed of phase change

aterial [6] 
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A large body of literature already exists on the use of analyti- 

al methods to determine the temperature distribution in a fin to- 

ards improving and optimizing fin performance. In general, the 

rinciple of energy conservation is used to model heat transfer in 

 fin while accounting for factors such as fin shape [7] and flow 

onditions around the fin [8] . Doing so results in differential equa- 

ions of varying complexity [ 1 , 2 ], based on which, the temperature

istribution, and thus, various fin performance parameters such as 

n effectiveness and fin efficiency can be derived [9] . Similar lit- 

rature is also available in the field of fin-based enhancement of 

atent energy storage, wherein optimization of fin shape and size 

as been carried out to maximize energy delivered by the fin into 

 bed of phase change material [6] . The use of entropy minimiza- 

ion techniques [ 10 , 11 ] and constructal design [12] to optimize fin

esign can also be found in the literature. While such optimiza- 

ion has typically been limited to fins of manufacturable shapes, 

opology optimization of fins has also attracted much recent at- 

ention, due to the ability to print structures of arbitrary shapes 

https://doi.org/10.1016/j.ijheatmasstransfer.2023.124435
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijhmt
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Nomenclature 

R 0 fin base radius (m) 

Ā Péclet number 

B̄ ratio of convective heat removal and diffusion terms 

Bi tip Biot number at the fin tip 

c f fluid heat capacity (Jkg −1 K 

−1 ) 

c s solid heat capacity (Jkg −1 K 

−1 ) 

h convective heat transfer coefficient around the fin 

(Wm 

−2 K 

−1 ) 

h tip convective heat transfer coefficient at the fin tip 

(Wm 

−2 K 

−1 ) 

k e f f effective thermal conductivity (Wm 

−1 K 

−1 ) 

k f fluid thermal conductivity (Wm 

−1 K 

−1 ) 

k s solid thermal conductivity (Wm 

−1 K 

−1 ) 

L fin radial length (m) 

L̄ non-dimensional fin radial length 

r radial coordinate (m) 

t time (s) 

T temperature (m) 

T ∞ 

ambient temperature around the fin (K) 

T ∞ ,tip ambient temperature at the fin tip (K) 

T b fin base temperature (K) 

U velocity (m) 

w fin height (m) 

w̄ non-dimensional fin height 

�p pressure difference (Pa) 

K permeability (m 

2 ) 

μ viscosity (kgm 

−1 s −1 ) 

ξ non-dimensional radial coordinate 

φ porosity 

ρ f fluid density (kgm 

−3 ) 

ρs solid density (kgm 

−3 ) 

θ non-dimensional temperature 

θ∞ ,tip non-dimensional fin tip temperature 

τ time (s) 

sing additive manufacturing. Analysis is available for a number 

f non-standard fin shapes such as tree-like [13] , fractal fins [14] , 

radient fins [15] and irregularly-shaped topology optimized fins 

16] . While the modeling of conduction and convection usually re- 

ults in linear equations, other complications, such as temperature- 

ependent [17] or spatially-varying [18] thermal properties and ra- 

iation [19] introduce non-linearities into the problem, making it 

ore difficult to solve. 

Most of the literature on theoretical heat transfer analysis 

n fins addresses non-porous fins, in which, conduction is the 

nly heat transfer mechanism available within the fin. A rela- 

ively smaller body of literature has addressed thermal transport 

n porous fins. In most such cases, buoyancy-driven cross-flow of 

 fluid is assumed to permeate the fin, resulting in additional heat 

emoval from the fin [20] . The governing equation in such a case 

as been shown to be non-linear [21] , and a number of analytical 

22–24] and numerical [ 20 , 21 , 25 ] techniques have been used to de-

ermine and optimize fin performance. Porous fin performance un- 

er local thermal non-equilibrium conditions [26] and in natural 

onvection conditions [ 27 , 28 ] has been analyzed. The effect of ra-

iation [29] , temperature-dependent properties [30] and heat gen- 

ration [31] in porous fins has been accounted for. Porous fin per- 

ormance has been compared with solid fins [ 32 , 33 ]. In addition,

ecently, steady-state thermal analysis of a porous fin with radially 

utwards porous fluid flow, driven by a radial pressure gradient 

as been reported [33] . A key advantage of this porous fin con- 

guration is that the porous flow is pressure-driven, resulting in 
2 
reater flow speed and thus greater advective heat removal than 

uoyancy-driven flow. Advective heat removal in such a fin may 

omplement or even exceed the underlying conductive heat trans- 

er [33] . A porous fin effectiveness has been defined for character- 

zing thermal performance of such a porous fin compared to an 

quivalent non-porous fin [33] . In such a case, the porosity of the 

n becomes an important design choice due to its opposite effects 

n conductive and advective heat removal mechanisms. 

While most of the past theoretical heat transfer analysis for fins 

as addressed steady-state performance, in certain scenarios, tran- 

ient performance of the fin may also be important. For example, 

emiconductor chip thermal management is a highly transient pro- 

ess [34] , depending on how power dissipation on the chip varies 

ver time. Often, a large amount of heat needs to be dissipated 

n a short period, followed by a period of inactivity. Similarly, sev- 

ral energy storage problems occur over a limited time duration, 

overned by how long the heat source is available [6] . To ana- 

yze and optimize such problems, it is important to comprehen- 

ively understand how fin heat transfer evolves with time prior to 

eaching steady state. Unfortunately, commonly available steady- 

tate models are not sufficient to address this important need. In- 

tead, the transient governing energy equations must be written 

nd solved. Specifically, in the case of a porous fin with radially 

utwards flow, while recent work has presented steady-state ther- 

al analysis [33] , transient performance of the porous fin is not 

et fully understood. Important questions related to transient per- 

ormance include the time taken to reach steady state, and how 

n performance parameters such as fin effectiveness evolve before 

teady state is reached. From a design perspective, it is of interest 

o determine whether an optimal fin porosity exists that may max- 

mize total heat removal over a given short period of time prior to 

eaching steady state. Towards this, an analytical approach is much 

ore desirable than numerical simulations, due to the fundamen- 

al insights offered by analytical solutions, such as the identifica- 

ion of important non-dimensional parameters. 

This work presents theoretical analysis of transient heat transfer 

erformance of a porous fin, in which, a pressure gradient drives 

adially outwards porous flow. An exact solution for the fin tem- 

erature distribution based on Bessel functions of non-zero order 

s derived. Expressions for fin effectiveness, as well as porous fin 

erformance relative to an equivalent non-porous fin, both as func- 

ions of time are derived. The time taken to reach steady state is 

nalyzed. It is shown that under certain conditions, there exists an 

ptimal fin porosity that maximizes total heat removal over a given 

perating time period. Below a threshold time period, however, the 

se of a porous fin is not beneficial. The dependence of these key 

etrics on various non-dimensional parameters of the problem is 

nalyzed. Results presented here contribute towards an improved 

nderstanding of a novel class of porous fins, with possible appli- 

ations in both energy storage and thermal management. 

. Problem definition 

Consider the transient thermal transport problem associated 

ith heat removal from a hot, constant temperature surface by a 

orous fin. This problem is defined in cylindrical coordinates, in 

hich, a radial fin of constant thickness removes heat from a hot, 

nnular cylinder, as shown in the schematic presented in Fig. 1 (a). 

n addition to conventional conductive heat removal through the 

n, its porous nature additionally enables advective heat removal 

ue to radially outwards porous flow through the fin. Such a flow 

ould be driven by, for example, a pressure gradient between fluid 

nside the cylinder and the tip of the fin. Other flow mechanisms 

uch as electro-osmotic flow may also be possible, but are not ex- 

licitly considered here. Both conductive and advective heat re- 

oval mechanisms are closely related to the fin porosity, since 
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Fig. 1. (a) Schematic and (b) Cross-section of a porous fin with pressure gradient driven radially outwards flow through the fin that provides an additional mechanism for 

heat removal from the fin base. 
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orosity affects both effective thermal conductivity that drives con- 

uctive heat removal, as well as the radially outwards flow field 

hat drives advective heat removal. 

While a previous work has analyzed this problem in steady 

tate [33] , there are several practical applications where heat trans- 

er by the fin occurs only over a limited time. An example includes 

hermal management of a semiconductor chip or a Li-ion battery, 

here, in both cases, heat generation occurs only for a relatively 

hort period of time, during which, the fin may not reach steady 

tate. As another example, fin-based enhancement of latent energy 

torage in a phase change material (PCM) around a hot source is 

lso a transient process, depending on how long the hot source, 

uch as solar heat, is available. It is important to develop a tran- 

ient thermal model to predict porous fin performance as a func- 

ion of time, since previously developed steady state models do not 

ddress this need. 

A schematic of the porous fin is shown in Fig. 1 (a), along with a

ross-section view in Fig. 1 (b). A transverse radial fin is attached to 

he outer surface of a hot hollow cylinder of radius R 0 . The outer 

adius and width of the fin are R 0 + L and w , respectively. The fin

ase is assumed to remain at a fixed temperature T 0 . The fin is

omposed of a porous material and sealed on the top and bot- 

om surfaces, so that a pressure gradient driven radially outwards 

uid flow from the base of the fin, r = R 0 to its tip r = R 0 + L is

stablished. Along the length of the fin, heat loss to the surround- 

ngs occurs through convective heat transfer, represented by a con- 

ective heat transfer coefficient h along with freestream tempera- 

ure T ∞ 

. For generality, separate values of convective heat transfer 

oefficient h tip and freestream temperature T ∞ ,tip are assumed at 

he fin tip. Thermal conductivity, heat capacity and density are de- 

oted by k , c and ρ , respectively, with subscripts s and f for the 

olid and fluid components of the fin, respectively. Porosity and 

ermeability of the fin material are denoted by φ and K , respec- 

ively. The entire fin is assumed to be initially at a temperature 

 ∞ 

. For a given time period, the interest is in determining the heat 

emoved by the fin through both conductive and advective mech- 

nisms, and to develop an understanding of how to design the fin, 

or example, how to choose the fin porosity in order to maximize 

eat removal over a given time period. Such a performance evalua- 

ion of the fin first requires determining the transient temperature 

eld in the fin. 

A number of assumptions are made in order to carry out this 

nalysis. The fin is assumed to be axisymmetric, which is usually 

he case in most practical problems. All thermal and flow prop- 

rties, as well as those associated with the porous material, such 

s porosity and permeability are assumed to be uniform and inde- 

endent of temperature. This is a reasonable assumption when the 

hange in temperature is small enough for variation in properties 

o be negligible [35] . The thermal field is assumed to evolve over 

ime in a steady flow field, which is also a standard assumption in 

onvective heat transfer analysis [36] . Finally, consistent with stan- 
3

ard porous flow analysis, the flow field is assumed to be laminar 

nd Darcian, which is reasonable for flows at relatively low veloc- 

ty [37] . As a result, an expression for the steady velocity field may 

e derived as follows [ 33 , 37 ] 

 ( r ) = 

K · �p 

μ · ln 

(
R 0 + L 

R 0 

)
· r 

(1) 

Note that the 1 /r dependence of the velocity field helps con- 

erve mass. 

Based on the assumptions listed above, the temperature field 

n the porous is spatially one-dimensional, in the radial direction 

nly. The general energy conservation equation that governs the 

ransient temperature field T ( r, t ) may be written as 

k e f f 

r 

∂ 

∂r 

(
r 
∂T 

∂r 

)
− φρ f c f 

r 

∂ 

∂r 
( r · T · U ( r ) ) − h 

w 

( T − T ∞ 

) 

= ( ρc ) e f f 

∂T 

∂t 
(2) 

here ( ρc ) e f f = [ φρ f c f + ( 1 − φ) ρs c s ] and the three terms on the 

eft hand side represent diffusion, advection and convective heat 

emoval, respectively, in an infinitesimal fin element. The boundary 

onditions and initial condition for the temperature field are 

 = T b ( r = R 0 ) (3) 

k e f f 

∂T 

∂r 
= h tip 

(
T − T ∞ ,tip 

)
( r = R 0 + L ) (4) 

 = T ∞ 

( t = 0 ) (5) 

here k e f f is the effective thermal conductivity of the porous 

edium. In general, k e f f may be obtained based on an appropri- 

te average of the solid and fluid thermal conductivities, in which, 

he porosity plays a key role. A commonly used weighted aver- 

ge based on porosity, i.e., k e f f = φk f + ( 1 − φ) k s [37] is adopted

n this work. 

In order to simplify this problem and to ensure the generality 

f the solution derived, it is cast in non-dimensional form using 

he following variables and parameters: 

= 

r 

R 0 

; τ = 

k e f f t 

( ρc ) e f f R 

2 
0 

; θ = 

T − T ∞ 

T b − T ∞ 

; Ā = 

K · ρ f c f · �p · φ
μ · ln 

(
R 0 + L 

R 0 

)
k e f f 

;

B̄ = 

hR 

2 
0 

k e f f w 

; L̄ = 

L 

R 0 

; Bi tip = 

h tip R 0 

k e f f 

; θ∞ ,tip = 

T ∞ ,tip − T ∞ 

T b − T ∞ 

(6) 

Here, ξ and τ are the non-dimensional spatial and time coor- 

inates, respectively. θ is the non-dimensional temperature. Bi tip 

nd θ∞ ,tip are the Biot number and non-dimensional tip temper- 

ture that represent the convective boundary condition at the tip. 
¯
 is the non-dimensional fin length. Ā and B̄ are non-dimensional 

arameters that represent the rates of advective heat transfer 
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hrough the fin and convective heat loss from the fin surface, re- 

pectively, both expressed relative to the rate of conductive heat 

ransfer. Note that the fin width w appears within B̄ . 

This results in the following non-dimensional transient energy 

onservation equation 

1 

ξ

∂ 

∂ξ

(
ξ
∂θ

∂ξ

)
− Ā 

ξ

∂θ

∂ξ
− B̄ θ = 

∂θ

∂τ
(7) 

Eq. (7) represents a transient Convection-Diffusion-Reaction 

CDR) equation [38–40] . The non-dimensional temperature field is 

lso subject to the following boundary conditions and initial con- 

ition 

= 1 ( ξ = 1 ) (8) 

∂θ

∂ξ
= Bi tip 

(
θ − θ∞ ,tip 

) (
ξ = 1 + L̄ 

)
(9) 

= 0 ( τ = 0 ) (10) 

. Solution of the problem 

Due to the non-homogeneity appearing in the boundary con- 

ition given by Eq. (8) , one may first substitute θ ( ξ , τ ) = v (ξ ) +
 ( ξ , τ ) , where v and u are the steady state and transient com-

onents, respectively, of the temperature distribution. By inserting 

his form of θ in the governing equation and boundary conditions, 

ne may write the following differential equation for v (ξ ) : 

1 

ξ

d 

dξ

(
ξ

dv 

dξ

)
− A 

ξ

dv 

dξ
− B v = 0 (11) 

ubject to the following boundary conditions: 

 = 1 ( ξ = 1 ) (12) 

dv 

dξ
= Bi tip 

(
v − θ∞ , tip 

) (
ξ = 1 + L 

)
(13) 

The v (ξ ) problem is indeed the steady-state problem for the 

orous fin with radially outwards flow, which has been solved in a 

ecent paper [33] . The solution for the problem is given by [33] 

 ( ξ ) = ξ Ā / 2 
[ 

c 1 I Ā / 2 

(√ 

B̄ ξ
)

+ c 2 K Ā / 2 

(√ 

B̄ ξ
)] 

(14) 

here the coefficients c 1 and c 2 are obtained on the basis of the 

oundary conditions. I and K are modified Bessel functions of the 

rst and second kind, respectively [41] . Expressions for c 1 and c 2 
re available from the recent steady-state analysis [33] and are not 

eproduced here for brevity. 

The differential equation governing the rest of the temperature 

eld, u ( ξ , τ ) is given by 

1 

ξ

∂ 

∂ξ

(
ξ

∂u 

∂ξ

)
− Ā 

ξ

∂u 

∂ξ
− B̄ u = 

∂u 

∂τ
(15) 

ubject to 

 = 0 ( ξ = 1 ) (16) 

∂u 

∂ξ
= Bi tip · u 

(
ξ = 1 + L̄ 

)
(17) 

 ( ξ , τ ) = −v ( ξ ) ( τ = 0 ) (18) 

Note that the u ( ξ , τ ) problem is free of non-homogeneities in 

he governing equation as well as the boundary conditions. There- 

ore, a solution may be derived using the method of separation of 
4

ariables. Substituting u ( ξ , τ ) = ξ
Ā 
2 · f (ξ ) · g(τ ) and separating the 

quations for f (ξ ) and g(τ ) , one may derive the following form of 

he solution 

 ( ξ , τ ) = 

∞ ∑ 

m =1 

ξ
Ā 
2 · s m 

(
J Ā 

2 
( ω m 

ξ ) + c 2 ,m 

· Y Ā 
2 
( ω m 

ξ ) 

)
e −λ2 

m τ (19) 

here ω m 

= 

√ 

λ2 
m 

− B̄ , and J and Y are Bessel functions of the first 

nd second kind, respectively. The order of both Bessel functions 

hat appear in the solution is Ā / 2 . The eigenvalues λm 

and coef- 

cient c 2 ,m 

may be determined by applying boundary conditions 

iven by Eqs. (16) and (17) . Rearrangement of the resulting equa- 

ions may be shown to result in the following eigenequation: (√ 

λ2 − B Y A 
2 −1 

[ (
1 + L 

)√ 

λ2 − B 

] 
+ Bi tip · Y A 

2 

[ (
1 + L 

)√ 

λ2 − B 

] )
J A 

2 

[ √ 

λ2 − B 

] 
−

(√ 

λ2 − B J A 
2 −1 

[ (
1 + L 

)√ 

λ2 − B 

] 
+ Bi tip · J A 

2 

[ (
1 + L 

)√ 

λ2 − B 

] )
Y A 

2 

[ √ 

λ2 − B 

] 
= 0 (20)

further, it can be found from Eq. (16) that c 2 ,m 

= −
J 

Ā 
2 

( ω m ) 

Y 
Ā 
2 

( ω m ) 
. 

herefore, the solution for u ( ξ , τ ) may be written as 

 ( ξ , τ ) = 

∞ ∑ 

m =1 

ξ
Ā 
2 · s m 

( 

J Ā 
2 
( ω m 

ξ ) −
J Ā 

2 
( ω m 

) 

Y Ā 
2 
( ω m 

) 
· Y Ā 

2 
( ω m 

ξ ) 

) 

e −λ2 
m τ

(21) 

The last remaining set of coefficients, s m 

may be determined 

y using the initial condition given by Eq. (18) in conjunction 

ith the principle of orthogonality of the eigenfunctions. Note 

hat due to the appearance of the advective term in the govern- 

ng equation, the principle of orthogonality differs slightly from 

hat for pure-diffusion problems. Specifically, as shown in prior 

ork on a CDR problem [42] , a weighing function ξ 1 − Ā 
2 must 

e included in the expression for orthogonality of eigenfunctions. 

q. (18) is inserted into (19), followed by multiplying both sides 

y ξ 1 − Ā 
2 ( J Ā 

2 

( ω m 

′ ξ ) + c 2 ,m 

′ · Y Ā 
2 

( ω m 

′ ξ ) ) and integrating from ξ = 1 

o ξ = 1 + ̄L . Based on orthogonality, this results in elimination of 

ll terms except one, a formal proof for which is available in the 

iterature [42] . This leads to the following expression for s m 

 m 

= −
∫ 1+ L 

1 v m 

( ξ ) 

(
J A 

2 

( ω m 

ξ ) + c 2 ,m 

Y A 
2 

( ω m 

ξ ) 

)
ξ 1 − A 

2 dξ

∫ 1+ L 
1 ξ

(
J A 

2 

( ω m 

ξ ) + c 2 ,m 

Y A 
2 

( ω m 

ξ ) 

)2 

dξ

(22) 

Note that the denominator in Eq. (22) is the norm of the eigen- 

unctions of this problem. 

This completes the derivation of the solution of the problem. 

he final solution for the temperature distribution on the fin is 

iven by Eqs. (14) and (21) , along with Eqs. (20) and (22) . 

Based on the temperature distribution derived here, one may 

rite the following expression for the dimensional rate of heat re- 

oval from the fin base as a function of time 

 ( t ) = 

( 

−k e f f 

(
∂T 

∂r 

)
r= R 0 

+ φρ f c f · U ( R 0 ) ( T b − T ∞ 

) 

) 

2 πR 0 w (23) 

Note that the first and second terms in the expression for q (t) 

epresent conductive and advective rates of heat removal, respec- 

ively. 
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Based on the instantaneous rate of heat removal derived above, 

he following expression for the non-dimensional heat removal 

ate may be written 

 ( τ ) = 

q ( t ) 

k eff( T b − T ∞ 

) 2 πw 

= A −
√ 

B 

(
c 1 I A 

2 −1 

(√ 

B 

)
− c 2 K A 

2 −1 

(√ 

B 

))

−
∞ ∑ 

m =1 

s m 

ω m 

( 

J A 
2 −1 

( ω m 

) −
J A 

2 

( ω m 

) 

Y A 
2 

( ω m 

) 
· Y A 

2 −1 
( ω m 

) 

) 

e −λ2 
m τ (24) 

While Eq. (24) represents the instantaneous rate of heat re- 

oval at any given time, an averaged rate of heat removal up to 

 given time may be of practical interest for applications in which 

 finite amount of time is available for heat transfer. One may de- 

ive 

 avg ( τ ) = 

∫ t 
0 q ( t 

∗) dt ∗

t 
= A −

√ 

B 

(
c 1 I A 

2 −1 

(√ 

B 

)
− c 2 K A 

2 −1 

(√ 

B 

))

−
∞ ∑ 

m =1 

s m 

ω m 

( 

J A 
2 −1 

( ω m 

) −
J A 

2 

( ω m 

) 

Y A 
2 

( ω m 

) 
· Y A 

2 −1 
( ω m 

) 

) 

1 − e −λ2 
m τ

λ2 
m 

τ
(25) 

. Fin transient performance parameters 

One may define the fin effectiveness to be the ratio of heat re- 

oval rate by the fin and heat rate that would be removed directly 

rom the base in the absence of the fin 

( t ) = 

(
−k e f f 

(
∂T 
∂r 

)
r= R 0 

+ φρ f c f · U ( R 0 ) ( T b − T ∞ 

) 

)
2 πR 0 w 

2 πR 0 wh ( T b − T ∞ 

) 
(26) 

hich can be shown to result in 

( τ ) = 

1 

Bi 

[ 
A −

√ 

B 

(
c 1 I A 

2 −1 

(√ 

B 

)
− c 2 K A 

2 −1 

(√ 

B 

))

−
∞ ∑ 

m =1 

s m 

ω m 

( 

J A 
2 −1 

( ω m 

) −
J A 

2 

( ω m 

) 

Y A 
2 

( ω m 

) 
· Y A 

2 −1 
( ω m 

) 

) 

e −λ2 
m τ

] 

(27) 

Note that the fin effectiveness is a function of time, since the 

eat removal rate by the fin changes over time. It is expected that 

he fin effectiveness will be very high at early times, owing to 

arge conductive heat removal due to large temperature gradient 

etween the base and the fin. 

In addition, it is also of interest to define a fin effectiveness on 

he basis of comparison of porous fin performance with a non- 

orous fin of the same geometry and operating under identical 

onditions. Such a comparison is pertinent in order to understand 

hether a porous fin offers improved thermal performance than 

ts non-porous equivalent. While porosity in the fin offers advec- 

ive heat removal that is absent from the non-porous fin, yet, the 

orous fin has lower effective thermal conductivity, implying that 

ts conductive heat removal may be lower than the non-porous 

n. Therefore, it is important to compare the total heat removal 

y both porous and non-porous fins. This may be done by defining 

he porous fin effectiveness as the ratio of heat removal by the two 

ns. Similar to fin effectiveness, the porous fin effectiveness is also 

 function of time as follows: 

poro us ( τ ) = 

k eff

k s 

A −
√ 

B 

(
c 1 I A 

2 −1 

(√ 

B 

)
− c 2 K A 

2 −1 

(√ 

B 

))
− ∑ ∞ 

m =1 s m

−
√ 

B s 

(
c 1 ,s I 1 

(√ 

B s 

)
− c 2 ,s K 1 

(√ 

B s 

))
+ 

∑ ∞ 

m =1 s m,
5 
J A 
2 −1 

( ω m 

) −
J 

A 
2 

( ω m ) 

Y 
A 
2 

( ω m ) 
· Y A 

2 −1 
( ω m 

) 

)
e −λ2 

m τ

s 

(
J 1 ( ω m,s ) − J 0 ( ω m,s ) 

Y 0 ( ω m,s ) 
· Y 1 ( ω m,s ) 

)
e −λ2 

m,s τ
(28) 

where, in the denominator, ω m,s = 

√ 

λ2 
m,s − B̄ s , B̄ s = 

hR 2 
0 

k s w 

and 

m,s are obtained from roots of the eigenequation given by 

q. (20) while using B̄ s instead of B̄ and Ā = 0 in order to model 

he non-porous fin. 

. Results and discussion 

In order to highlight key features of this transient thermal prob- 

em, the transient temperature field in the fin is determined first, 

ollowed by computation of heat removal and other performance 

arameters of the fin. In each case, the transient behavior of fin 

erformance is of particular interest. 

.1. Number of terms needed 

Firstly, due to the infinite series nature of the transient tem- 

erature distribution derived in this work, it is important to de- 

ermine the number of eigenvalues that must be accounted for in 

omputations. This helps determine a reasonable balance between 

ccuracy and computational time. In general, the greater the num- 

er of eigenvalues considered, the more accurate is the computed 

emperature, but at a greater computational cost. This is because, 

n principle, the series solution is exact only if an infinite num- 

er of eigenvalues have been considered. However, each additional 

igenvalue adds to the computational cost, not only to compute the 

dditional term, but also to compute the eigenvalue itself by deter- 

ining the next root of the eigenequation, given, in this case, by 

q. (20) . Once converged, increasing the number of terms further 

ffers only a negligible improvement in accuracy while continuing 

o increase computational cost. Therefore, it is of interest to deter- 

ine the minimum number of terms needed for a specific compu- 

ation. In the present case, temperature distribution along the fin is 

omputed at two specific times, while including different number 

f eigenvalues, denoted by N. Results are presented in Fig. 2 , which 

hows that the computed temperature distribution with N = 5 and 

 = 10 terms are practically identical at both times. Therefore, the 

se of five terms is found to be sufficient at the two times con- 

idered in Fig. 2 . Since the number of terms needed for conver- 

ence of an eigenfunction-based series solution usually increases 

t smaller times, therefore, in the present case, all results are pre- 

ented with a conservative value of N = 50 . It is found that the

ncrease in computational cost between N = 10 and N = 50 is not

ignificant, and, therefore, N = 50 is a reasonable choice. 

.2. Typical transient temperature distribution 

For a fixed set of problem parameters Ā = 1 . 0 , B̄ = 2 . 0 , L̄ = 2 . 0 ,

i tip = 0 . 5 , θtip, ∞ 

= 0 . 0 , Fig. 3 (a) plots temperature distributions in

he fin at different times. This is supplemented by plots of tem- 

erature at different fin locations as functions of time in Fig. 3 (b). 

hese plots show that thermal transport into the fin causes tem- 

erature rise over time, first in regions next to the fin base and 

lowly encompassing the entire fin. As time passes, a balance is 

eached between advective/conductive thermal transport into the 

n and convective heat removal into the ambient, resulting in 

teady state. For example, at τ = 0 . 005 , only the region up to

= 1 . 30 has heated up significantly, while the rest of the fin is

till nearly at the initial temperature. As time passes, the temper- 

ture curve shifts rightwards and upwards, indicating deeper and 
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Fig. 2. Effect of number of eigenvalues considered in the analytical solution: Temperature distribution along the fin at (a) τ = 0 . 07 , (b) τ = 0 . 30 . Curves corresponding to 

different number of eigenvalues are presented. Parameter values are Ā = 1 . 0 , B̄ = 1 . 0 , L̄ = 2 . 0 , Bi tip = 0 . 5 , θ∞ ,tip = 0.0. 

Fig. 3. Typical fin temperature field: (a) Fin temperature distribution along the fin at multiple times. (b) Fin temperature at multiple locations as functions of time. Parameter 

values are Ā = 1 . 0 , B̄ = 1 . 0 , L̄ = 2 . 0 , Bi tip = 0 . 5 , θ∞ ,tip = 0.0. The steady state solution is also shown in (a) for reference. 
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F 95 
eeper penetration of heat into the fin. At large times, the tran- 

ient temperature field computed using the model presented here 

pproaches the independently computed steady state profile [33] , 

lso shown in Fig. 3 (a). 

It is notable that as time passes, there is a reduction in the 

lope of the temperature curve at the fin base, which represents 

he conductive rate of heat removal, per Eq. (24) , indicating reduc- 

ion in conductive heat removal over time. Temperature curves as 

unctions of time presented in Fig. 3 (b) show that, depending on 

ow far a point is from the fin base, there is an initial period of

egligible temperature rise before temperature begins to rise ap- 

reciably. This is mainly due to the time taken for thermal trans- 

ort from its base to a given fin location. As expected, the closer a 

oint is to the fin base, the shorter is this initial period, the earlier

s steady state reached, and, finally, the greater is the temperature 

ise at steady state. 

.3. Impact of advective ( ̄A ) and convective ( ̄B ) thermal transport 

The two key transport-related non-dimensional parameters that 

ppear in the transient porous fin problem are Ā and B̄ , which 

epresent advective thermal transport down the fin and convec- 

ive heat removal from the fin, respectively, both expressed relative 

o the rate of conduction heat transfer down the fin. The impact 

f Ā and B̄ on the transient temperature field in the fin is exam- 

ned first, with particular interest in the time taken to reach steady 

tate. Such analysis helps understand the effect of changing various 
6

nput parameters that make up the non-dimensional parameters Ā 

nd B̄ . For example, the effect of changing the pressure drop �p

r fin width w on fin performance can be understood by analyzing 

he impact of changing Ā or B̄ , respectively. 

The transient fin temperature distribution is computed using 

qs. (14) and (22) for several values of Ā . All other parameters are 

eld constant as follows: B̄ = 2 . 0 , L̄ = 2 . 0 , Bi tip = 0 . 5 and θ∞ ,tip =
 . 0 . Since steady state is reached only asymptotically at infinite 

ime, therefore, the time taken for the temperature to reach 95% 

f the eventual temperature at very large time, denoted by τ95 is 

aken to represent the time to reach steady state. Results are plot- 

ed in Fig. 4 , where Fig. 4 (a) plots the tip temperature as a func-

ion of time for each case and Fig. 4 (b) plots τ95 as a function of Ā

t multiple locations on the fin. Several key features of the tran- 

ient temperature distribution in this problem are evident from 

igs. 4 (a) and (b). First of all, there is a small initial time during

hich there is no significant temperature rise at the fin tip. This is 

ecause of the finite time taken for thermal energy to reach the fin 

ip due to advection and conduction from the hot base. Following 

his initial period, temperature rises rapidly, and then slows down 

s the fin approaches steady state. Fig. 4 (a) shows greater temper- 

ture rise for larger values of Ā , which is expected because Ā rep- 

esents advective transport of heat. Therefore, the larger the value 

f Ā , the more rapidly does the point of interest heat up. In addi- 

ion to the magnitude of temperature, Ā also influences the speed 

t which the fin approaches steady state. This is best observed in 

ig. 4 (b), where the time taken to reach steady state, τ is found 
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Fig. 4. Effect of Ā : (a) Fin temperature at tip as a function of time for multiple values of Ā , (b) Time required for 95% of temperature change up to steady state as a function 

of Ā at multiple fin locations. Other parameter values are B̄ = 1 . 0 , L̄ = 2 . 0 , Bi tip = 0 . 5 , θ∞ ,tip = 0 . 0 . 

Fig. 5. Effect of B̄ : (a) Fin temperature at tip as a function of time for multiple values of B̄ , (b) Time required for 95% of temperature change up to steady state as a function 

of B̄ at multiple fin locations. Other parameter values are Ā = 1 . 0 , L̄ = 2 . 0 , Bi tip = 0 . 5 , θ∞ ,tip = 0 . 0 . 
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t
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o decrease with increasing Ā . Finally, Fig. 4 (b) also shows that dif- 

erent locations at the fin take different times to reach steady state. 

he closer a point is to the base, the faster it reaches steady state 

ue to rapid thermal transport from the base to the point. Depend- 

ng on the value of Ā , the time to reach steady state at the fin tip

ay be more than 40–50% greater than the time to reach steady 

tate at the mid-point of the fin. 

A similar analysis of the impact of B̄ on the transient tempera- 

ure field is presented in Fig. 5 . Temperature at the tip of the fin is

lotted as a function of time for multiple values of B̄ in Fig. 5 (a),

nd the time taken to reach steady state is plotted as a function 

f B̄ for multiple locations on the fin in Fig. 5 (b). A few aspects

f the effect of B̄ on the transient temperature field are similar to 

he effect of Ā – there is an initial period of slow temperature rise, 

ollowed by prolonged, rapid temperature rise, eventually leading 

symptotically to steady state. Unlike Ā , the larger the value of B̄ , 

he lower is the temperature rise. This is because B̄ represents the 

ate at which the fin convectively loses heat to the surrounding 

edium. A larger value of B̄ implies greater heat loss, and, there- 

ore, lower temperature rise. It is found that B̄ also has a significant 

mpact on the time taken to reach steady state. At any given lo- 

ation, a large value of B̄ results in faster arrival of steady state. 

his is because large B̄ implies greater convective heat removal 

hat counteracts the conductive/advective heat flow from the fin 

ase, resulting in reaching steady state faster. 

Note that changes in B̄ may be brought about by changes in 

ny of the parameters that appear in the definition of B̄ , including 
7 
he convective heat transfer coefficient, fin inner radius, effective 

hermal conductivity and fin width. Therefore, the plots shown in 

ig. 5 represent the impact of changing any one or more of these 

arameters on the transient thermal response of the porous fin. For 

xample, curves at decreasing values of B̄ shown in Fig. 5 represent 

he impact of increasing the fin thickness. 

Further, note that the range of non-dimensional time τ consid- 

red in this work is around 2.0. Assuming porous steel fin of inner 

adius 5 cm with water as the fluid and porosity of 0.5, this trans- 

ates to a dimensional time of up to 653 s. This indicates that un- 

er these conditions, the analysis presented above may be relevant 

o cooling problems that last a few hundreds of seconds, for ex- 

mple, the discharge process of the Li-ion cell that generates heat 

ver a period of 600 s at a C-rate of 6C. In case the fluid is air in-

tead of water, the range of dimensional time for the same range of 

is much lower, which may be relevant for the problem of cooling 

f a microprocessor chip, in which, the heat load changes with a 

ime period of few tens of milliseconds or lower. A key advantage 

f non-dimensional analysis carried out here is that multiple dis- 

arate applications such as the two listed above can be analyzed 

ithin a single framework. 

.4. Heat removal rates as functions of time 

The previous sub-section focuses mainly on fin temperature dis- 

ribution and the time taken to reach steady state. In addition, it 

s also of much interest to examine how the rate of heat removal 
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Fig. 6. Advective, conductive and total heat removal rates through the fin as functions of time: (a) and (b) present instantaneous and averaged heat removal rates. Parameter 

values are Ā = 1 . 04 , B̄ = 0 . 11 , L̄ = 3 . 0 , , Bi tip = 0 . 11 , θ∞ ,tip = 0.00. 
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y the fin varies with time. While steady state heat removal by the 

orous fin has been characterized in the past [33] , there are sev- 

ral scenarios, as outlined in Section 1 , where only a finite amount 

f time is available for the heat removal process, during which, 

he fin may not even reach steady state. In such scenarios, steady 

tate performance of the porous fin is not relevant, and, instead, it 

s important to understand how heat removal by the fin changes 

ith time prior to reaching steady state. For a fixed set of problem 

arameters ( ̄A = 1 . 04 , B̄ = 0 . 11 , L̄ = 3 . 0 , Bi tip = 0 . 11 , θ∞ ,tip = 0 . 0 ),

ig. 6 plots the non-dimensional fin heat removal rate as a func- 

ion of time. In order to facilitate a fundamental understanding of 

his problem, both advective and conductive rates of heat removal, 

s defined by Eq. (24) are also plotted, in addition to the total 

eat removal rate. Fig. 6 (a) plots the instantaneous rates of heat 

emoval, per Eq. (24) , whereas the average rate of heat removal up 

o a certain time, which may be of greater practical importance, is 

lotted as a function of time in Fig. 6 (b). Since the advective rate

f heat removal is simply equal to Ā , per Eq. (24) , therefore, the

dvective curves in Figs. 6 (a) and 6(b) are both horizontal straight 

ines, corresponding to the value of Ā = 1 . 04 used here. In contrast,

he conductive rate of heat removal depends strongly on time. At 

arly times, when there is a large temperature gradient between 

he fin base and the rest of the fin, there is very large conductive 

eat removal, per Eq. (24) . As the fin heats up, this temperature 

ifference reduces, and the conductive rate of heat removal drops 

harply, eventually reaching a steady value. Trends similar to the 

nstantaneous heat removal rates shown in Fig. 6 (a) are also found 

n the average heat removal rates plotted in Fig. 6 (b). The reduc- 

ion in conductive rate of heat removal over time seen in Figs. 6 (a)

nd (b) are consistent with Fig. 3 (a), where the slope of the tem-

erature field at the fin base, ( ∂θ
∂ξ

) 
ξ=1 

is found to reduce and reach 

 steady value as time increases. 

The plots in Fig. 6 show that heat removal at early times is 

ominated by the conductive mechanism, whereas, there is a cer- 

ain time at which the two mechanisms have equal contributions 

around τ = 1 . 2 , as shown in Fig. 6 (b)), and at later times, advec-

ive heat removal dominates. This shifting away of the dominating 

echanism from conductive to advective over time is an impor- 

ant consideration in the design of practical systems when there is 

nly finite time available for heat removal. In such cases, the time 

vailable for heat removal must be compared against the transi- 

ion time shown in Fig. 6 , based on which, one must design to

ither enhance advective or conductive heat removal mechanism 

y changing underlying parameters such as the porosity of the fin 

r the applied pressure difference. For example, if the total time 

vailable is relatively small, then one must maximize conductive 
8 
eat transport by choosing a low value of porosity, or not using a 

orous fin at all. In contrast, if the time available for heat transfer 

s much larger than the conduction-to-advection transition time, 

hen it may be beneficial to improve advective heat removal by in- 

reasing fin porosity. 

.5. Effect of porosity on fin performance 

Porosity is a key parameter in the design of the porous fin. The 

orosity of the fin material can be easily varied, and must be care- 

ully chosen in order to maximize the desired objective, which, in 

ost cases, is the total heat removed by the fin. Introducing poros- 

ty into the fin may impact advective and conductive heat removal 

echanisms in opposite directions. For example, greater porosity 

acilitates greater advective heat removal through increased porous 

ow down the fin. Mathematically, this occurs due to greater ad- 

ective component of heat removal given by Eq. (24) , with increas- 

ng φ. On the other hand, increasing the fin porosity reduces effec- 

ive thermal conductivity, which reduces conductive heat removal. 

ue to these opposing effects, it is of interest to determine if the 

otal heat removed increases or decreases with increasing porosity, 

r, if there is an optimal value of the porosity that maximizes total 

eat removed. Past analysis [ 33 ] showed that, in steady state, an 

ptimal value of the fin porosity exists under certain conditions, 

hereas under other conditions, making the fin porous may not 

e beneficial at all. It is of interest to extend such analysis to tran- 

ient conditions, in order to facilitate the design of porous fins for 

cenarios with limited time available for heat transfer. 

In order to analyze this problem over a transient time period, 

he total heat removed as well as its conductive and advective 

omponents are plotted as functions of fin porosity in Fig. 7 . Plots 

re presented at four different times. Values of parameters are cho- 

en to be consistent with past steady state analysis [33] . In short, 

aseline solid and fluid materials are taken to be aluminum and 

ir, with constant properties corresponding to room temperature. 

dditionally, K = 5 . 7 × 10 −9 m 

2 , R 0 = 5 cm, L = 15 cm, w = 5 cm,

p = 100 Pa, h = 50 Wm 

−2 K 

−1 . These plots use Eqs. (14) , (21) and

23) . Results indicate that at early times, heat removal is domi- 

ated by conductive thermal transport, which is due to the large 

emperature gradient in the fin at small times. As time passes and 

he fin gets hotter, the temperature gradient reduces, and, there- 

ore, the rate of conductive heat removal reduces sharply. In con- 

rast, the rate of advective heat removal remains invariant with 

ime. As a result of this, it is found that at early times, using a

n with large porosity actually reduces total heat removal, as ev- 

denced by the monotonically reducing plot for the total heat re- 
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Fig. 7. Impact of porosity: Averaged heat removal rates as well as conductive and advective components as functions of porosity up to (a) τ = 10 . 0 , (b) τ = 50 . 0 , (c) τ = 100 . 0 

and (a) τ = 140 . 0 . Parameter values are L̄ = 3 . 0 , θ∞ ,tip = 0 . 0 . Values of other fin parameters are given in Section 5.4 . 
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Fig. 8. Impact of porosity: Optimal porosity to maximize total heat removal as a 

function of total time available for heat transfer. Problem parameter are the same 

as Fig. 6 . 

m
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t

m

p

d

oval in Figs. 7 (a) and (b). This occurs because large porosity re- 

ults in reduced effective thermal conductivity, and thus a reduc- 

ion in conductive heat removal, which is the dominant heat re- 

oval mechanism at small times. As time passes, the total heat 

emoval curve is found to become more and more curved, as seen 

n Fig. 7 (c), and eventually become non-monotonic by developing 

 maxima at a certain value of porosity, as seen in Fig. 7 (d). This

ndicates that if the fin operates for a sufficiently long time, there 

xists an optimal value of the porosity at which the total heat re- 

oval is maximized. 

The optimal porosity of the fin, φopt , is computed and plotted in 

ig. 8 as a function of the maximum time period available for heat 

emoval, τmax for the same set of parameters as the previous Fig- 

re. Fig. 8 shows an optimal value of zero porosity for short time 

eriods, due to early dominance of conductive heat removal, which 

s exacerbated by porosity in the fin. Beyond a certain time, con- 

uctive heat removal has diminished significantly, such that mak- 

ng the fin porous is now favorable. This period in Fig. 8 is char-

cterized by a very sharp rise in the value of φopt , followed by 

aturation at large times, as a steady state is eventually reached, 

nd the optimal value of the fin porosity approaches its value in 

teady state operation [33] . Note that porosity values above the op- 

ima shown in Fig. 8 involve a significant drop in effective thermal 

onductivity, so as to negate the improvement in advective heat 

emoval. Further, note that the sharpness in the curve shown in 

ig. 8 is simply because before a certain time period, it is not op- 

imal for the fin to be porous at all, which has been indicated by a

ero value for φopt in the curve. 

The results presented in this sub-section are of much practical 

mportance in the design of the porous fin for transient heat re- 
9 
oval. These results indicate that the choice of how porous the 

n is designed to be depends critically, among other factors, on 

he time period available for heat removal. For short-time heat re- 

oval processes, making the fin porous is not helpful at all, as fin 

orosity worsens thermal conductivity, which directly impacts con- 

uctive heat removal that dominates at early times. This loss may 
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Fig. 9. Time required for 63.2% of the temperature change as a function of location 

along the fin. Parameter values are Ā = 1 . 04 , B̄ = 0 . 11 , L̄ = 3 . 0 , Bi tip = 0 . 11 , θ∞ ,tip = 

0 . 00 . 
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Fig. 10. Time required for 95% of the temperature change as a function of porosity 

at three different fin locations. Parameter values are L̄ = 3 . 0 , θ∞ ,tip = 0 . 0 . 
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ot be justified by the additional advective heat removal due to 

he porous flow when the heat removal time period is short. 

.6. Time taken to reach steady state 

The time taken to reach steady state is an important perfor- 

ance parameter of interest in transient thermal systems. In the 

ontext of a porous fin, this is important to determine in order to 

scertain if previously reported steady state characteristics of the 

orous fin [33] can be used within the time frame of interest. If 

he operating time of the porous fin is shorter than the charac- 

eristic time to steady state, then the transient analysis presented 

ere must be accounted for. 

Plots of the total heat removal rate from the fin as a func- 

ion of time are already presented in Fig. 6 , from where, the time

aken to reach steady state may be estimated. For example, from 

ig. 6 (a), it may be inferred that the instantaneous rate of heat 

emoval reaches within 5% of the eventual steady state value by 

round τ = 5 . 0 . 

A more quantitative representation of time to steady state may 

e carried out in terms of the transient temperature distribution. 

ince the initial temperature is known, but the temperature field 

eaches steady state, in principle, only asymptotically at infinite 

ime, therefore, the time taken to achieve, say, 95% of the temper- 

ture change may be used to represent the time taken to reach 

teady state. Alternately, one may use the classical definition of 

he thermal time constant of a lumped thermal mass, defined as 

he time to reach ( 1 − 1 /e ) , i.e., 63.2% of the temperature change. 

hese quantities are denoted by τ95 and τ63 , respectively. 

Fig. 9 plots the time taken to reach 63.2% of the temperature 

hange as a function of spatial location on the fin. Problem pa- 

ameters are Ā = 1 . 0 , B̄ = 2 . 0 , L̄ = 3 . 0 , Bi tip = 0 . 5 , θ∞ ,tip = 0 . 0 . Note

hat since the fin is not a lumped thermal mass, therefore, dif- 

erent locations on the fin reach steady state at different rates. 

ig. 8 shows that fin locations close to the fin base reach steady 

tate very quickly, as expected, due to the physical proximity to 

he fin base that is responsible for temperature rise. τ63 then rises 

apidly before reaching a plateau as one approaches the tip of the 

n. This is mainly because once far enough from the fin base, the 

ime taken to reach steady state is no longer a strong function of 

istance from the fin base but instead is influenced more strongly 

y thermal conditions at the fin tip. 
10 
The time taken to reach steady state is also expected to be a 

unction of fin porosity, because the fin porosity influences the 

ates of conductive and advective heat removals, which eventu- 

lly contribute towards reaching steady state. Fig. 10 plots τ95 , the 

ime taken for 95% of the temperature change as a function of fin 

orosity. It is found that at each location on the fin, τ95 reduces 

ith increasing porosity, slowly at first at small porosities, and 

ore rapidly when the porosity is larger. Note, however, that at 

xtremely large porosity, the fin may become perforated, thereby 

nvalidating some of the assumptions made in this work. More- 

ver, a highly porous fin may be structurally weak. This must be 

onsidered carefully in determining the best value of fin porosity 

or a particular problem. 

.7. Effect of tip conditions 

Finally, the effect of fin tip conditions on heat removal rate is 

xamined in Fig. 11 . The two fin tip parameters of relevance are 

he fin tip Biot number, Bi tip , representative of the convective heat 

ransfer coefficient at the fin tip, and the fin tip temperature θ∞ ,tip . 

eat removal rate is plotted as a function of time for different val- 

es of these parameters in Figs. 11 (a) and (b), respectively, for a 

epresentative set of parameter values. Specifically, the fin length 

s taken to be L̄ = 0 . 5 . Fig. 11 (a) shows that at early times, the

eat removal rate does not depend on the Biot number at the tip. 

his is mainly because at small times, the thermal wave has not 

eached the tip, and, therefore, the convective heat transfer coef- 

cient at the tip is not yet influential on the heat removal rate. 

t larger times, the greater the tip Biot number, the greater is the 

eat removal rate, as expected, due to increased heat removal from 

he fin tip. In each case, a steady state for the heat removal rate 

s reached. A large value of Bi tip results in reaching steady state 

omewhat faster. 

Similar to Bi tip , θ∞ ,tip also influences the heat removal rate. 

ig. 11 (b) shows greater heat removal rate for smaller values of 

∞ ,tip , as expected, due to the cooling effect at small θ∞ ,tip that in- 

uces greater heat removal from the fin base. Similar to Bi tip , heat 

emoval is relatively independent of θ∞ ,tip at small times, and a 

teady state is reached at large times. 

Note that the fin length is expected to play an important role in 

etermining how influential fin tip conditions are on heat removal 

ate from the fin base. The results presented in Fig. 11 are based 

n a somewhat short fin, L̄ = 0 . 5 . Calculations for a longer fin, say,
¯
 = 2 . 0 show that fin tip conditions continue to influence the heat 
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Fig. 11. Effect of fin tip conditions: (a) Heat lost through the fin as a function of time for different Bi tip . (b) Heat lost through the fin as a function of time for different θ∞ ,tip . 

Parameter values are Ā = 1 . 0 , B̄ = 2 . 0 , L̄ = 2 . 0 . In part (a), θ∞ ,tip = 0 . 0 and in part (b), Bi tip = 5 . 0 . 
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emoval rate, but not as strongly as the L̄ = 0 . 5 case presented in

ig. 11 . 

. Conclusions 

The key contribution of the present work is to develop an ana- 

ytical model for transient performance of a porous fin with radi- 

lly outwards pressure gradient driven porous flow. Advective heat 

emoval due to such porous flow supplements conductive heat re- 

oval. However, the two heat removal mechanisms are influenced 

ifferently by key properties of the porous fin, and, therefore, a de- 

ailed analysis of transient temperature distribution and the result- 

ng heat removal rate from the fin base is necessary. The analyti- 

al solution of the transient CDR equation involving Bessel func- 

ions makes it possible to identify important non-dimensional pa- 

ameters and quantitatively understand their impact on fin perfor- 

ance. 

While the steady state performance of such a porous fin has 

een presented recently, this work addresses the important as- 

ect of transient performance, which may be relevant in a num- 

er of practical scenarios, such as battery thermal management, in 

hich, heat removal occurs only for a short, transient period. In 

uch cases, previously available steady state results are not directly 

pplicable. One interesting result of practical relevance is that the 

ptimal porosity that maximizes heat removal rate depends on the 

ime period over which heat removal by the fin occurs. Such con- 

iderations may be important in practical problems that are inher- 

ntly transient in nature. 
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