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a b s t r a c t 

Fins are used ubiquitously in engineering devices and systems for enhancement of heat transfer and en- 

ergy storage. While traditional fins are made of non-porous materials, porous fins with natural convection 

porous flow orthogonal to the fin direction have also been studied. In contrast to these, there is a lack of 

work on porous fins in which the fluid flow may be along the direction of the fin. In such a fin, porosity 

may increase advective heat removal due to increased flow rate but may also impede conductive heat 

removal due to reduction in effective thermal conductivity. Due to these competing trade-offs, there is a 

need for comprehensive analysis of thermal performance of such a porous fin. This work derives a solu- 

tion for the steady-state temperature distribution in a porous fin with advection along the fin direction. 

It is shown that temperature distribution in such a porous fin is governed by a convection-diffusion- 

reaction equation. A solution for the temperature distribution is derived in the form of modified Bessel 

functions of non-zero order. Two distinct fin performance parameters are defined and derived in order to 

characterize porous fin performance. It is found that thermal properties of the fin as well as ambient con- 

vective conditions strongly impact the relationship between fin porosity and fin performance. While in 

some cases, it is found that an optimum porosity exists that maximizes heat removal, in other cases, the 

use of a porous fin is found to be not desirable at all. The analysis presented here helps fully understand 

these trade-offs, and provides useful guidelines for porous fin design for maximum heat removal. 

© 2023 Elsevier Ltd. All rights reserved. 

1

l  

m

c

s

T

d

h

t

f

h

t  

e

r

h

i

7

d

g

a

w

g

i

d

e

fl

t  

s

i  

a

e

o

[

d

h

0

. Introduction 

Fins are used commonly in a wide variety of engineering prob- 

ems for enhanced heat transfer and energy storage [ 1 , 2 ]. Com-

on applications include thermal management of engines and mi- 

roelectronics [3] , improvement in rate of phase change energy 

torage [4] and heat transfer enhancement in heat exchangers [2] . 

he fin effect also appears in bioheat transfer [5] . When a well- 

esigned fin is placed over a hot base surface, the reduction in 

eat transfer to the ambient due to reduced direct contact with 

he hot surface may be overcome by the additional heat trans- 

er through the fin, thereby providing an improvement in overall 

eat transfer. Fin performance is often characterized by parame- 

ers such as fin effectiveness and fin efficiency [ 1 , 2 ]. While the fin

ffectiveness refers to heat removal rate by the fin relative to heat 

emoval in the absence of any fin at all, fin efficiency refers to the 

eat removal rate by the fin relative to the best possible fin that is 

sothermal at the base temperature. While the fin efficiency is, by 
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efinition, always less than one, the effectiveness of a fin must be 

reater than one in order to justify the use of the fin. 

Fins are most commonly made of solid materials such as met- 

ls, although the use of porous fins, which offer reduced fin 

eight, among other possible advantages, has also been investi- 

ated. Porous metal fins are of particular interest for electron- 

cs cooling [6] . Heat transfer enhancement in a porous fin occurs 

ue to additional heat removed by the porous fluid flow [7] . For 

xample, vertical infiltration of a horizontal fin by buoyant fluid 

ow from the ambient results in an additional, non-linear sink 

erm in the energy conservation equation [ 7 , 8 ], which has been

hown to improve fin performance. Buoyancy-driven porous flow 

n such fins is often modeled on the basis of the Darcy law [ 9 , 10 ]

nd the Boussinesq approximation [11] . The energy equation gov- 

rning the natural convection porous fin is non-linear. A number 

f analytical techniques such as homotopy perturbation method 

12] and differential transformation method [8] have been used for 

etermining the temperature distribution, and, subsequently, the 

n performance characteristics. A number of numerical techniques 

 13 , 14 ] have been proposed as well. The effects of natural con-

ection [15] as well as radiation [16] in a porous fin have been 

ccounted for. Performance of porous fins of various shapes and 

izes has been characterized [ 17 , 18 ], and fin optimization has been

https://doi.org/10.1016/j.ijheatmasstransfer.2023.124109
http://www.ScienceDirect.com
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Nomenclature 

Ā Péclet number 

B̄ ratio of convective heat removal and diffusion terms 

Bi tip Biot number at the fin tip 

c f fluid heat capacity (Jkg −1 K 

−1 ) 

h convective heat transfer coefficient around the fin 

(Wm 

−2 K 

−1 ) 

h tip convective heat transfer coefficient at the fin tip 

(Wm 

−2 K 

−1 ) 

k eff effective thermal conductivity (Wm 

−1 K 

−1 ) 

k f fluid thermal conductivity (Wm 

−1 K 

−1 ) 

k s solid thermal conductivity (Wm 

−1 K 

−1 ) 

L fin radial length (m) 

L̄ non-dimensional fin radial length 

r radial coordinate (m) 

R 0 fin base radius (m) 

T temperature (m) 

T ∞ 

ambient temperature around the fin (K) 

T ∞ ,tip ambient temperature at the fin tip (K) 

T b fin base temperature (K) 

U velocity (m) 

w fin height (m) 

w̄ non-dimensional fin height 

�p pressure difference (Pa) 

K permeability (m 

2 ) 

μ viscosity (kgm 

−1 s −1 ) 

φ porosity 

ρ f fluid density (kgm 

−3 ) 

θ non-dimensinal temperature 

θ∞ ,tip non-dimensional ambient temperature at the fin tip 

ξ non-dimensional radial coordinate 

arried out [19] . Comparison of fin performance with the base- 

ine solid fin has also been carried out [20] . Other, more compli- 

ated considerations, such as temperature-dependent heat genera- 

ion [21] or thermal properties [22] have also been analyzed. 

Most of the literature on porous fins assumes a horizontal 

n, through which, buoyancy-driven vertical cross-flow of the sur- 

ounding fluid occurs, which results in heat removal from the fin. 

owever, other porous fin configurations may also be possible that 

esult in enhanced heat transfer. For example, it is possible for 

orous fluid flow between the base of the fin and the tip of the 

n along the fin direction, as opposed to across the fin direction. 

his could be driven, for example, by an imposed pressure differ- 

nce between the fin base and tip. Such a pressure-driven flow 

ay be a lot more effective in heat removal than the natural con- 

ection driven cross-flow considered in most of the past literature 

n porous fin heat transfer [ 7 , 8 , 12 , 13 ]. An illustrative example of

his scenario is presented in Fig. 1 (a) that shows a radial fin con-

ected to a base cylinder, where, a pressure gradient driven porous 

uid flow is established in the radially outward direction, provided 

hat the is sealed to prevent any fluid leakage on the lateral sur- 

ace. In such a case, heat removal from the base cylinder by the 

adial fin occurs due to two mechanisms acting in parallel – ther- 

al conduction down the porous fin material, governed by the ef- 

ective thermal conductivity of the porous fin, and advection of 

eat by the porous fluid flow from the hot base of the fin to the

elatively cooler tip of the fin. The conductive and advective heat 

ransport mechanisms are likely to be influenced very differently 

y the fin porosity. For example, increased porosity in the fin ma- 

erial likely reduces conductive heat removal due to reduction in 

ffective thermal conductivity [10] . On the other hand, increased 

orosity likely improves porous fluid flow rate by increasing the 
2 
ore area through which the fluid can flow [9] , thereby improv- 

ng the advective removal of heat. Due to these opposing effects, 

t is of much interest to carry out heat transfer analysis of the 

orous fin considered here with radially outwards pressure-driven 

uid flow. Primary interests in such analysis include the deriva- 

ion of the temperature distribution and fin performance param- 

ters, identification of key non-dimensional numbers that govern 

his problem and development of an understanding of how the two 

hermal transport mechanisms – conductive and advective – are 

ffected by properties of the porous material and other problem 

arameters. It is of much practical importance to determine under 

hat conditions is the use of a porous fin beneficial, and when so, 

hether there exists an optimal value of the porosity due to com- 

eting trade-offs between conductive and advective heat removal. 

uch an optimization may help design a porous fin to deliver the 

est possible thermal performance under given conditions. Unfor- 

unately, the analytical tools that have been developed for studying 

onvective porous fin with natural convection driven flow across 

he fin direction [ 7 , 8 ] or for optimizing non-porous fins [ 23 , 24 ] are

ot readily translatable to study this problem, for which, the gov- 

rning energy equation applicable to the present problem must be 

ormulated and solved. 

This work presents theoretical heat transfer analysis of a porous 

n with radially outwards porous flow driven by a pressure gradi- 

nt. It is shown that the temperature field of the fin is governed by 

 convection-diffusion-reaction (CDR) equation containing certain 

on-dimensional parameters. A solution of this equation is used 

o characterize the fin performance parameters, and, in particular, 

he impact of porosity on fin performance. A number of special 

ases of the analysis are also considered. This work presents new 

nsights into porous fin theory, which may be helpful in the design 

f porous fins for enhanced heat removal. 

. Problem Definition 

The problem of interest in this work pertains to heat removal 

rom the outer wall of a hot cylindrical body by a radial fin. The 

n is made of a porous material that permits radially outwards 

uid flow from the wall towards the tip, as shown schematically in 

ig. 1 (a). The lateral surfaces of the fin are assumed to be sealed, so

hat only radially outwards porous flow is possible. The hot cylin- 

rical body is assumed to be hollow and thin walled, and carrying 

 fluid within, so that a pressure difference between the inside of 

he cylindrical body and the tip of the fin results in radially out- 

ards fluid flow through the fin material. 

Heat transfer in the porous fin described above occurs both due 

o diffusion in the solid and due to advection by fluid flow through 

he pores of the porous material. This is in contrast with traditional 

on-porous fins, in which diffusion is the only heat transfer mech- 

nism within the fin. Note that the radial porous fin configuration 

eing analyzed here is distinct from previously studied porous fin 

onfigurations, in which, buoyancy-driven fluid flow occurs in a di- 

ection orthogonal to the fin direction [ 7 , 8 , 12 , 13 ], as opposed to

dvection-driven flow along the fin in the present work. 

The interest here is to derive expressions for the steady state 

emperature distribution in the porous fin and thus determine its 

eat transfer performance. Understanding the contributions of dif- 

usion and advection towards overall heat removal may help iden- 

ify scenarios where such a porous fin may be particularly effective 

r ineffective. 

The inner and outer radii of the fin are R 0 and R 0 + L , where

 is the fin length. The height of the fin is w . Uniform porosity

nd permeability of the fin material are denoted by φ and K , re- 

pectively. Thermal conductivity, density and heat capacity of the 

uid are taken to be k f , ρ f and c f , respectively. A similar nomen-

lature is followed for solid component of the fin, with subscript s . 
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Fig. 1. (a) Schematic of the geometry of a porous radial fin with outwards, pressure-driven flow through the pores of the fin material, (b) Schematic of energy balance for 

an infinitesimal element of the porous fin, showing advective and diffusive transport through the fin as well as convective heat loss to the surrounding medium. 
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luid viscosity is denoted by μ. The effective thermal conductivity 

f the porous medium is taken to be k eff. The pressure difference 

etween the base ( r = R 0 ) and tip ( r = R 0 + L ) of the fin is taken to be

p. Temperature at the base of the fin is denoted by T b . Freestream

emperature of the medium surrounding the fin is taken to be T ∞ 

. 

hermal interactions between the outer surface of the fin and the 

urrounding ambient are assumed to be represented by a convec- 

ive heat transfer coefficient h . In addition, a convective heat trans- 

er coefficient h tip along with an external freestream temperature 

 ∞ ,tip is assumed at the tip of the fin. Note that in many cases, 

 ∞ ,tip = T ∞ 

, although this assumption is not needed/made in this 

ork. 

A number of other assumptions are made in order to carry out 

 thermal analysis of a porous fin. Axisymmetry of the temperature 

eld is assumed. The velocity field is assumed to be only radial, as 

he fin surfaces are sealed to prevent fluid leakage normal to the 

n direction. All transport properties are assumed to be indepen- 

ent of temperature. Radiative heat transfer and natural convec- 

ion effects around the fin are neglected, due to a reasonably small 

emperature difference between the fin base and ambient. Note 

hat radiative effects may be modeled approximately by an effec- 

ive heat transfer coefficient [25] , but this is not investigated in de- 

ail in the present work. The porous flow is assumed to be Newto- 

ian and laminar, and, therefore, governed by the Darcy equation. 

 constant permeability is assumed. Based on these assumptions, a 

overning differential equation for the radial temperature distribu- 

ion in the porous fin may be derived by considering energy con- 

ervation in an infinitesimal element at radial location r and of ra- 

ial dimension dr. As shown in Fig. 1 (b), thermal energy flows in 

nd out of this element include thermal conduction, advection due 

o radial fluid flow and heat loss/gain from the ambient due to the 

mposed convective heat transfer coefficient. By carrying out a bal- 

nce between these energy flow terms in steady state, the follow- 

ng governing energy equation may be derived [ 1 , 2 ]: 

k e f f 

r 

∂ 

∂r 

(
r 
∂T 

∂r 

)
− φρ f c f 

r 

∂ 

∂r 
(r · T · U) − h 

w 

( T − T ∞ 

) = 0 (1) 

here T ( r ) and U ( r ) are the temperature and velocity fields, respec-

ively, within the porous fin. k eff is the effective thermal conductiv- 

ty of the medium that accounts for thermal conduction through 

oth solid and fluid constituents. Compared to the standard fin 

quation [1] , Eq. (1) contains an additional term that models ad- 

ective thermal transport. 

Appendix A shows that, based on the Darcy equation for porous 

ow in radial coordinates, the radial velocity field in the porous fin 
3 
s given by 

 ( r ) = 

K · �p 

μ · ln 

(
R 0 + L 

R 0 

)
· r 

(2) 

The 1/r dependence of the velocity field above is consistent 

ith the requirement of mass conservation as the fluid flows ra- 

ially outwards. 

The two boundary conditions associated with Eq. (1) are 

 = T b ( r = R 0 ) (3) 

k eff

∂T 

∂r 
= h tip 

(
T − T ∞ , tip 

)
( r = R 0 + L ) (4) 

The following non-dimensional variables and parameters are in- 

roduced: 

= 

r 

R 0 

; θ = 

T − T ∞ 

T b − T ∞ 

; Ā = 

K · ρ f c f · �p · φ
μ · ln 

(
R 0 + L 

R 0 

)
k e f f 

; B̄ = 

hR 

2 
0 

k e f f w 

; L̄ = 

L 

R 0 

;

B i tip = 

h tip R 0 

k e f f 

; θ∞ ,tip = 

T ∞ ,tip − T ∞ 

T b − T ∞ 

; w̄ = 

w 

R 0 

(5) 

Note that based on definitions above, Ā may be interpreted as 

he ratio of advective and diffusive transport, i.e., a Péclet number 

10] . Similarly, B̄ is the ratio of the term representing heat removal 

o the ambient and diffusive thermal transport term [ 1 , 26 ], similar

o the Damköhler number that appears in mass transfer problems 

27] . 

Inserting the form of the velocity field from Appendix A as well 

s the non-dimensional variables from Eq. (5) into the governing 

quation given by Eq. (1) results in the following non-dimensional 

overning energy conservation for the temperature field in the fin 

1 

ξ

∂ 

∂ξ

(
ξ
∂θ

∂ξ

)
− Ā 

ξ

∂θ

∂ξ
− B̄ θ = 0 (6) 

This is a Convection-Diffusion-Reaction (CDR) equation that ap- 

ears in several other heat and mass transfer problems including 

rug delivery [26] , reactor engineering [28] and pollution disper- 

ion problems [29] . The non-dimensional boundary conditions as- 

ociated with this equation are given by 

= 1 ( ξ = 1 ) (7) 

∂θ

∂ξ
= Bi tip 

(
θ − θ∞ , tip 

) (
ξ = 1 + L 

)
(8) 
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Fig. 2. An approximate schematic of the thermal resistance network of the porous 

fin showing conductive and advective heat removal from the base, as well as dissi- 
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. Solution of the Problem 

In order to solve Eq. (6) , one may substitute θ (ξ ) = ξ Ā / 2 φ(ξ ) ,

hich can be shown to result in the following equation for φ: 

2 ∂ 
2 φ

∂ ξ 2 
+ ξ

∂φ

∂ξ
−

(
B̄ ξ 2 + 

Ā 

2 

4 

)
φ = 0 (9) 

hich is the modified Bessel equation [30] . Therefore, a solution 

or the temperature distribution may be written as 

(ξ ) = ξ Ā / 2 
[ 

c 1 I Ā / 2 ( 
√ 

B̄ ξ ) + c 2 K Ā / 2 ( 
√ 

B̄ ξ ) 
] 

(10) 

here I and K refer to modified Bessel functions of the first and 

econd kind, respectively. Ā / 2 is the order of the modified Bessel 

unctions. Note that by definition, B̄ > 0 . c 1 and c 2 are constants to

e determined from the boundary conditions. 

Inserting Eq. (10) into the boundary conditions given by 

qs. (7) and (8) results in the following two linear algebraic equa- 

ions in c 1 and c 2 . 

 1 I Ā / 2 ( 
√ 

B̄ ) + c 2 K Ā / 2 ( 
√ 

B̄ ) = 1 (11) 

1 + L 
)A / 2 

[ √ 

B 

(
c 1 I A 

2 −1 

(√ 

B 

(
1 + L 

))
− c 2 K A 

2 −1 

(√ 

B 

(
1 + L 

)))
+ Bi tip 

(
c 1 I A 

2 

(√ 

B 

(
1 + L 

))
+ c 2 K A 

2 

(√ 

B 

(
1 + L 

)))] 
= Bi tip θ∞ , tip 

(12) 

rom where, c 1 and c 2 may be determined as follows 

 1 = 

−
√ 

B̄ K Ā 
2 −1 

(√ 

B̄ 
(
1 + ̄L 

))
+ B i tip K Ā 

2 

(√ 

B̄ 
(
1 +

−
√ 

B̄ 

(
K Ā 

2 −1 

(√ 

B̄ 
(
1 + ̄L 

))
I Ā 

2 

(√ 

B̄ 

)
+ I Ā 

2 −1 

(√ 

B̄ 
(
1 + ̄L 

))
K Ā 

2 

(√ 

B̄ 

))
+

and 

 2 = 

√ 

B̄ I Ā 
2 −1 

(√ 

B̄ 

(
1 + L̄ 

))
+ B i tip I Ā 

2 

(√ 

B̄ 

(
√ 

B̄ 

(
I Ā 

2 −1 

(√ 

B̄ 

(
1 + L̄ 

))
K Ā 

2 

(√ 

B̄ 

)
+ K Ā 

2 −1 

(√ 

B̄ 

(
1 + ̄L 

))
I Ā 

2 

(√ 

B̄ 

)

This completes the solution for the fin temperature field. 

Note that the effective thermal conductivity k eff appearing in 

q. (1) combines thermal conduction in both solid and fluid con- 

tituents of the porous fin. In general, k eff depends on the porosity 

f the medium [10] . Depending on the nature of the porous mate- 

ial, a number of theoretical models are available to compute k eff

10] . In the present work, the weighted average model is used as 

ollows: 

 eff = (1 − φ) k s + φk f (15) 

here k s and k f are the thermal conductivities of the solid and 

uid, respectively. 

In order to help understand the relative role of advective and 

onductive heat removal mechanisms, as well as the influence of 

arious problem parameters, heat transfer in this problem may be 

epresented approximately by a thermal resistance network of the 

orous fin shown in Fig. 2 . Heat from the base is removed by the

n through conduction and advection, which are distinct mecha- 

isms that operate in parallel as represented by the resistances 

 cond and R adv in Fig. 2 . Heat transported conductively through 

he fin is eventually transferred to the ambient either through the 

uter surface of the fin (R surf ) , or, in parallel, through the fin tip

R tip ) . In case heat transfer through the fin tip is negligible, for ex-

mple, in case of a very long fin, R tip may be omitted from the

esistance network in Fig. 2 . 
4

− θ∞ ,tip B i tip 

(
1 + ̄L 

)− Ā 
2 K Ā 

2 

(√ 

B̄ 

)
p 

(
K Ā 

2 

(√ 

B̄ 
(
1 + ̄L 

))
I Ā 

2 

(√ 

B̄ 

)
− I Ā 

2 

(√ 

B̄ 
(
1 + ̄L 

))
K Ā 

2 

(√ 

B̄ 

)) (13) 

¯
 

))
− θ∞ ,tip B i tip 

(
1 + ̄L 

)− Ā 
2 I Ā 

2 

(√ 

B̄ 

)
B i tip 

(
I Ā 

2 

(√ 

B̄ 

(
1 + L̄ 

))
K Ā 

2 

(√ 

B̄ 

)
− K Ā 

2 

(√ 

B̄ 

(
1 + ̄L 

))
I Ā 

2 

(√ 

B̄ 

)) (14) 

. Fin Performance Parameters 

A number of performance parameters are commonly used to 

ompare the rate of heat removal by the fin with idealized and 

aseline cases [1] . In the present porous fin analysis, two specific 

ases are of interest. Firstly, performance of the porous fin may be 

ompared with a baseline case with no fin at all, in which case, 

eat removal occurs purely due to convective heat transfer directly 

rom the base of the fin into the ambient. Another interesting com- 

arison is between heat removal by the porous fin and by a com- 

arable non-porous fin. This may help understand the impact of 

orosity of the fin material and subsequent pressure-driven flow 

n heat removal. 

In order to carry out such comparisons, the heat removal rate 

rom the porous fin must be determined first. Heat is removed 

rom the base of the fin due to both diffusion and advection. Thus, 

he heat removal rate may be written as 

 = 

( 

−k e f f 

(
∂T 

∂r 

)
r= R 0 

+ φρ f c f · U ( R 0 ) ( T b − T ∞ 

) 

) 

2 πR 0 w (16) 

Thus, a non-dimensional heat removal rate may be defined as 

ollows 

¯
 = 

q 

k e f f ( T b − T ∞ 

) 2 πw 

= −
(

∂θ

∂ξ

)
ξ=1 

+ Ā = −
√ 

B̄ 

(
c 1 I Ā 

2 −1 

(√ 

B̄ 

)
− c 2 K Ā 

2 −1 

(√ 

B̄ 

))
+ Ā (17) 

here the first and second terms represent conductive and advec- 

ive heat transfer rates, respectively. 
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.1. Comparison with no fin case 

The ratio of heat removed by the fin and heat removed with- 

ut the fin is usually referred to as the fin effectiveness [1] . In the

resent case, the rate of heat removed without the fin is simply 

 ( T b − T ∞ 

)2 πR 0 w . Using this in conjunction with Eq. (16) , the fol-

owing expression for fin effectiveness may be obtained 

= 

1 

w̄ ̄B 

( 

−
(

∂θ

∂ξ

)
ξ=1 

+ Ā 

) 

= 

1 

w̄ ̄B 

(
Ā −

√ 

B̄ 

(
c 1 I Ā 

2 −1 

(√ 

B̄ 

)
− c 2 K Ā 

2 −1 

(√ 

B̄ 

)))
(18) 

For a well-designed fin, η must be larger than one, since the fin 

s expected to remove more heat than would be removed without 

t. 

.2. Comparison with non-porous fin case 

In order to quantify the benefit of porous flow in the fin, one 

ay define a porous fin effectiveness, ηporous by comparing the 

eat removed by the porous fin with heat removed by a compa- 

able non-porous fin of the same dimensions and in the same con- 

itions. ηporous quantifies whether it is beneficial to replace a solid 

n with a porous fin under the same operating conditions. On one 

and, compared to the non-porous fin, the porous fin offers greater 

eat removal due to advection along with the radially outwards 

orous fluid flow. However, it may also suffer from reduced heat 

emoval by conduction down the fin due to the expected reduc- 

ion in effective thermal conductivity of the fin compared to that 

f the baseline non-porous fin. 

In order to understand which of these effects may dominate, 

ne may compute the heat removed by a non-porous fin using the 

esults presented here, but with Ā = 0 and using thermal conduc- 

ivity of the solid material instead of the effective thermal con- 

uctivity. By doing so, the following expression for the porous fin 

ffectiveness may be derived 

porous = 

k e f f 

k s 

Ā −
√ 

B̄ 

(
c 1 I Ā 

2 −1 

(√ 

B̄ 

)
− c 2 K Ā 

2 −1 

(√ 

B̄ 

))
−
√ 

B s 

(
c 1 ,s I 1 

(√ 

B s 

)
− c 2 ,s K 1 

(√ 

B s 

)) (19) 

here B̄ s = 

hR 2 
0 

k s w 

and k s refers to thermal conductivity of the solid 

aterial. The coefficients c 1,s and c 2,s are obtained from the bound- 

ry conditions corresponding to the zero-advection non-porous fin 

roblem, i.e., by setting Ā = 0 and B̄ = B̄ s in Eqs. (13) and (14) . 

η and ηporous defined above are important fin performance met- 

ics that characterize how well the porous fin performs compared 

o cases without a fin at all and with a comparable but non-porous 

n. While η represents how well the porous fin performs com- 

ared to no fin at all, ηporous governs whether the porous fin is 

etter than an equivalent non-porous fin. These parameters also 

elp understand the impact of various problem parameters, such 

s porosity on fin performance. 

. Special Cases 

.1. Special cases for transport conditions 

The general problem solved in Section 3 accounts for both con- 

uction and advection driven heat transfer down the fin. While 

oth mechanisms may be important in general, two special cases 

n which one or the other mechanism dominates may be of inter- 

st in specific applications. 
5 
.1.1. Negligible diffusion 

In certain cases, diffusion may be negligible compared to ad- 

ection, for example when the flow velocity is relatively large. In 

rder to model this special case, the first term on the left hand 

f the governing equation, given by Eq. (6) may be neglected. This 

esults in the following simplified governing equation 

Ā 

ξ

∂θ

∂ξ
+ B̄ θ = 0 (20) 

As expected, in the absence of diffusion, the governing equation 

ecomes a first-order differential equation, for which, only the up- 

tream boundary condition ( θ = 1 at ξ = 0 ) is needed. The solution 

or the temperature distribution in the fin is given by 

( ξ ) = exp 

(
− B̄ 

Ā 

ξ 2 

)
(21) 

hich is indeed the solution for a pure-advection problem [25] . 

Note that B̄ / ̄A = 

hR 2 
0 
·μ·ln ( R 0 + L 

R 0 
) 

K ·ρ f c f ·�p·φ·w 

, i.e., thermal conductivity of the 

n does not appear in the expression for the temperature distribu- 

ion. This is to be expected since diffusion is assumed to be negli- 

ible in this special case. 

.1.2. Negligible advection 

The other extreme scenario of theoretical interest is where ad- 

ection is small or negligible. In such a case, the second term on 

he left hand of the governing energy equation may be neglected. 

his results in 

1 

ξ

∂ 

∂ξ

(
ξ
∂θ

∂ξ

)
− B̄ θ = 0 (22) 

hich is indeed the standard governing equation for a purely dif- 

usive fin. A general solution for this problem obtained by setting 
¯
 = 0 in the general solution, Eq. (10) is 

( ξ ) = c 1 I 0 

(√ 

B ξ
)

+ c 2 K 0 

(√ 

B ξ
)

(23) 

hich matches with the standard solution for this pure-diffusive 

roblem [1] . The constants appearing in Eq. (23) may be obtained 

sing boundary conditions, similar to the general case considered 

n Section 2 . For example, for an adiabatic tip, one may derive 

( ξ ) = 

K 1 

(√ 

B̄ 

(
1 + ̄L 

))
I 0 

(√ 

B̄ ξ
)

+ I 1 

(√ 

B̄ 

(
1 + ̄L 

))
K 0 

(√ 

B̄ ξ
)

K 1 

(√ 

B̄ 

(
1 + L̄ 

))
I 0 

(√ 

B̄ 

)
+ I 1 

(√ 

B̄ 

(
1 + ̄L 

))
K 0 

(√ 

B̄ 

)
(24) 

.2. Tip boundary special cases 

While the model presented in Section 2 assumes general con- 

ective boundary conditions at the tip, including a general tip am- 

ient temperature, depending on the specific conditions encoun- 

ered in a problem, a number of simplifications may be considered. 

A commonly encountered special case is that of an adiabatic 

ip. This may be relevant, for example, when heat transfer at the 

ip may be negligible due to the small tip area, or because the fin 

s very long. In either case, temperature distribution in the fin may 

e obtained by setting B i tip = 0 in Eqs. (10) , (13) and (14) , resulting

n 

( ξ ) = ξ Ā / 2 
K Ā 

2 −1 

(√ 

B̄ 
(
1 + ̄L 

))
I Ā / 2 

(√ 

B̄ ξ
)

+ I Ā 
2 −1 

(√ 

B̄ 
(
1 + ̄L 

))
K Ā / 2 

(√ 

B̄ ξ
)

K Ā 
2 −1 

(√ 

B̄ 
(
1 + ̄L 

))
I Ā 

2 

(√ 

B̄ 

)
+ I Ā 

2 −1 

(√ 

B̄ 
(
1 + ̄L 

))
K Ā 

2 

(√ 

B̄ 

)
(25) 
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Fig. 3. Impact of Ā : (a) fin temperature distribution for multiple values of Ā , (b) heat transfer rate q̄ as a function of Ā . Other problem parameters are B̄ = 2 . 5 , L̄ = 3 . 0 , 

w̄ = 0 . 5 , Bi tip = 0 . 5 and θ∞ ,tip = 0 . 0 . 
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While the adiabatic tip excludes any heat transfer at the tip, the 

pposite, best-case scenario for heat transfer at the tip arises when 

he tip is specified to be at a certain temperature θ∞ ,tip . Results 

or this case may be obtained by setting B i tip → ∞ in Eqs. (10) ,

13) and (14) , which results in 

( ξ ) = ξ Ā / 2 

(
K Ā 

2 

(√ 

B̄ 

(
1 + ̄L 

))
− θ∞ ,tip K Ā 

2 

(√ 

B̄ 

))
I Ā / 2 

(√ 

B̄ ξ
)

−
(

I Ā 
2 

K Ā 
2 

(√ 

B̄ 

(
1 + L̄ 

))
I Ā 

2 

(√ 

B̄ 

)
− I Ā 

2 

(√

Finally, in many scenarios, the freestream temperature associ- 

ted with the convective boundary condition at the tip is the same 

s the ambient temperature, i.e., θ∞ ,tip = 0 . In such a case, temper- 

ture distribution in the fin further simplifies to 

( ξ ) = ξ Ā / 2 
K Ā 

2 

(√ 

B̄ 
(
1 + ̄L 

))
I Ā / 2 

(√ 

B̄ ξ
)

− I Ā 
2 

(√ 

B̄ 
(
1 + ̄L 

))
I Ā / 2 

(√ 

B̄ ξ
)

K Ā 
2 

(√ 

B̄ 
(
1 + ̄L 

))
I Ā 

2 

(√ 

B̄ 

)
− I Ā 

2 

(√ 

B̄ 
(
1 + ̄L 

))
K Ā 

2 

(√ 

B̄ 

)
(27) 

Expressions for fin performance parameters, including heat re- 

oval rate, fin effectiveness and porous fin effectiveness can be 

implified similarly. 

. Results and Discussion 

.1. Impact of Ā and B̄ on fin temperature distribution 

Ā and B̄ are the two key non-dimensional parameters that ap- 

ear in the governing energy equation, and consequently in the ex- 

ressions for temperature distribution and fin performance param- 

ters. Ā represents heat advection due to the radial porous flow in 

he fin driven by the imposed pressure gradient, relative to diffu- 

ive heat flow, and thus, is a Péclet number. On the other hand, 
¯
 represents the rate of heat loss from the fin surface to the sur- 

ounding, also relative to diffusive heat flow, and is similar to the 

amköhler number in mass transfer analysis. It is pertinent to ex- 

mine the impact of these key non-dimensional parameters on the 

n temperature distribution and fin performance. 

Fig. 3 examines the impact of Ā . A number of temperature dis- 

ribution curves for different values of Ā are plotted in Fig. 3 (a). 

he values of other parameters are B̄ = 2 . 5 , L̄ = 3 . 0 , w̄ = 0 . 5 ,

∞ ,tip = 0 . 0 and B i tip = 0 . 5 . For comparison, the zero advection

urve corresponding to a non-porous fin is also plotted. Fig. 3 (a) 
6 
 

(
1 + ̄L 

))
− θ∞ ,tip I Ā 

2 

(√ 

B̄ 

))
I Ā / 2 

(√ 

B̄ ξ
)

 + L̄ 
))

K Ā 
2 

(√ 

B̄ 

) (26) 

hows that the fin temperature curves shift upwards with increas- 

ng value of Ā , which can be attributed to greater heat removal 

own the fin at large Ā due to advection, which increases the fin 

emperature in general. The curves for various values of Ā approach 

he limiting case of the traditional non-porous fin as Ā decreases. 

ote that in each case, as expected, the temperature at the fin base 

 ξ = 1 ) has a value of 1, whereas the magnitude and gradient of 

he temperature distribution at the fin tip, ξ = 1 + ̄L , is determined 

y the convective boundary condition at the tip. 

The impact of Ā on fin performance is further shown in 

ig. 3 (b), in which the total heat removed by the fin, given by 

q. (17) , is plotted as a function of Ā . Even though conductive heat 

emoval decreases with increasing Ā , as evidenced by the decreas- 

ng slope of temperature plots at the base seen in Fig. 3 (a), yet, the

ncreased advective heat transfer at large Ā results in increasing to- 

al heat removed with increasing Ā . 

Note that several dimensional parameters and properties con- 

ribute towards Ā , as defined in Eq. (5) . For example, increasing 

he permeability or pressure gradient, reducing the viscosity or re- 

ucing the fin length relative to its radius all contribute towards 

ncreasing Ā , and thus improving fin performance. Note that the 

n porosity impacts fin performance in a more complicated man- 

er, because while Ā increases with increasing fin porosity, it also 

educes the effective thermal conductivity k eff, thereby affecting 

ther non-dimensional parameters such as B̄ too. This is examined 

n more detail in a later sub-section. 

In contrast with Ā , which represents advective cooling, B̄ rep- 

esents heat removal due to convective heat transfer from the fin 

urface to the surrounding ambient. The impact of B̄ on fin tem- 

erature distribution and heat removal is investigated in Fig. 4 . Fin 

emperature curves for multiple values of B̄ are plotted in Fig. 4 (a), 

hereas total heat removal is plotted as a function of B̄ in Fig. 4 (b).

ll other problem parameters are the same as Fig. 3 , along with 

¯
 = 2 . 5 . As expected, the larger the value of B̄ , the greater is the

eat removed from the fin, and, therefore, the cooler is the fin. 

ig. 4 (a) also shows strong dependence of the slope of the temper- 

ture curve at the fin base on B̄ , which indicates greater heat re- 

oval from the base as B̄ increases. This is also seen more directly 
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Fig. 4. Impact of B̄ : (a) fin temperature distribution for multiple values of B̄ , (b) heat transfer rate q̄ as a function of B̄ . Other problem parameters are Ā = 2 . 5 , L̄ = 3 . 0 , 

w̄ = 0 . 5 , Bi tip = 0 . 5 and θ∞ ,tip = 0 . 0 . 
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Fig. 5. Fin effectiveness as a function of B̄ for multiple values of Ā . Other problem 

parameters are L̄ = 3 . 0 , w̄ = 0 . 5 , Bi tip = 0 . 5 and θ∞ ,tip = 0 . 0 . 
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n the heat removal plot in Fig. 4 (b), where the heat removed by

he fin is seen to increase with increasing value of B̄ . 

Per Eq. (5) , the key physical quantity that appears in the expres- 

ion for B̄ is the convective heat transfer coefficient around the fin, 

 . All other parameters being the same, the greater the value of h ,

he greater is the heat removal to surroundings. This is clearly seen 

n Figs. 4 (a) and 4 (b). Note that while several other dimensional 

arameters also appear in the expression for B̄ , most notably the 

ffective thermal conductivity (as well as the porosity that appears 

ithin k eff), these parameters also influence other non-dimensional 

umbers. Therefore, the influence of these parameters is analyzed 

eparately in a later sub-section. 

.2. Fin Performance Parameters 

Section 4 defines two key performance parameters of the fin. 

hese parameters represent how much heat is removed by the 

orous fin relative to the no fin case, and relative to a compara- 

le non-porous fin. The impact of key non-dimensional numbers 

ppearing in the problem – Ā and B̄ – on these two parameters is 

nvestigated in detail. 

.2.1. Fin Effectiveness, η
The fin effectiveness, η is considered first. As defined in 

q. (18) , η represents heat removal by the porous fin relative to 

he baseline case without any fin at all. Fig. 5 plots η as the func-

ion of the non-dimensional convective heat transfer coefficient B̄ . 

urves are presented for multiple values of Ā . In each case, fin ef- 

ectiveness reduces with increasing B̄ , rapidly at first, followed by 

 plateau at larger values of B̄ . Also, the curves in Fig. 5 shift up-

ards with increasing value of Ā . This is because at large B̄ , there 

s relatively large convective heat removal, implying that the per- 

ormance of the fin is increasingly closer to heat removal without 

he fin at all. In contrast, Ā simply appears as an additional term 

n the fin effectiveness expression given in Eq. (18) , and, therefore 

imply shifts the curves upwards. 

The impact of B̄ is also confirmed from Fig. 4 (a) that shows 

hat the magnitude of the slope of the temperature curve at ξ = 1 

ncreases with B̄ , but does not change appreciably at large B̄ . This 

xplains the plateauing out of the curves in Fig. 5 . 

These results indicate that when the non-dimensional convec- 

ive heat transfer coefficient is relatively large, increasing the ad- 

ective heat removal, for example, by making the fin more porous 

oes not significantly improve fin performance. This is because the 

ate-limiting step is the conductive heat removal from the fin. The 

mpact of porosity on performance of the porous fin is likely to be 
7

ignificant when the convective heat removal from the fin surface 

s not very strong, for example, in conditions approaching natural 

onvection around the fin. 

The fin effectiveness plotted in Fig. 5 is found to be greater than 

ne throughout the parameter space considered here, indicating 

hat more heat is removed by the fin than without, which is de- 

irable. It is found that the fin effectiveness flattens out at large 

alues of B̄ . This is because when the convective heat transfer co- 

fficient around the fin is very large, then the effect of increased 

urface area due to the fin is not very significant any more. 

In contrast with Fig. 5 , fin effectiveness is plotted as a function 

f Ā in Fig. 6 . As expected, fin effectiveness increases monotonically 

ith Ā , which is because Ā appears as an independent term in the 

xpression of η, given by Eq. (18) . As expected, the larger the value

f B̄ , the lower are the effectiveness curves in Fig. 6 . This is mainly

ecause, as shown and discussed in Fig. 5 , fin effectiveness reduces 

ith increasing B̄ . 

.2.2. Porous Fin Effectiveness, ηporous 

The porous fin effectiveness ηporous which compares perfor- 

ance of the porous fin with that of a comparable non-porous fin 

s considered next. Similar to Figures in the previous sub-section, 

porous is plotted as a function of B̄ for multiple values of Ā in 
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Fig. 6. Fin effectiveness as a function of Ā for multiple values of B̄ . Other problem 

parameters are L̄ = 3 . 0 , w̄ = 0 . 5 , Bi tip = 0 . 5 and θ∞ ,tip = 0 . 0 . 

Fig. 7. Porous fin effectiveness as a function of B̄ for multiple values of Ā . Other 

problem parameters are L̄ = 3 . 0 , w̄ = 0 . 5 , Bi tip = 0 . 5 and θ∞ ,tip = 0 . 0 . 
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Fig. 8. Porous fin effectiveness as a function of Ā for multiple values of B̄ . Other 
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ig. 7 , and as a function of Ā for multiple values of B̄ in Fig. 8 .

hese curves show strong dependence of ηporous on Ā , and rel- 

tively weaker dependence on B̄ , particularly at small Ā . This is 

ainly because the key difference between the porous fin and the 

on-porous fin is the porous convective term Ā . The greater the 

alue of Ā , the greater is the heat removal by the porous fin com- 

ared to the non-porous fin, which is completely unaffected by Ā . 

his can also be confirmed mathematically from the expression of 

¯ , given by Eq. (17) . Therefore, the porous fin becomes more and 

ore attractive compared to the non-porous fin as Ā increases. 

In contrast, the porous fin effectiveness is not as strongly de- 

endent on B̄ , particularly for small values of Ā . This is because 

hen Ā is small, there is no particular distinction between the 

orous and non-porous fin, and no particular thermal advantage of 

he porous fin over the non-porous fin. Since B̄ is expected to af- 

ect both porous and non-porous fins similarly, therefore, when Ā 

s small, the fin performance is not significantly impacted by B̄ , and 

porous is close to one, indicating that the porous and non-porous 

ns have nearly the same performance. 
8 
.3. Effect of porosity: Trade-off between conductive and advective 

eat removal 

The parallel placement of R cond and R adv in the resistance net- 

ork shown in Fig. 2 presents interesting trade-offs and opportu- 

ities for optimization of fin performance. Specifically, it is of inter- 

st to examine how these two components change as the porosity 

f the fin is changed since changing the porosity of the fin ma- 

erial is an important design question. In general, increasing the 

orosity is expected to reduce the effective thermal conductivity, 

er Eq. (15) , since the solid material comprising the fin is likely to 

ave greater thermal conductivity than the fluid. This is expected 

o lead to reduced conductive heat removed by the fin. On the 

ther hand, greater porosity also results in greater area available 

or porous fluid flow, and, thus, greater advective heat removal. 

athematically, this can be seen in the Ā term that increases with 

ncreasing porosity due to the φ and k eff terms in the numera- 

or and denominator, respectively, and that results in greater fin 

eat removal, per Eq. (5) . Moreover, the porosity φ appearing in 

he advection term in the energy conservation equation given by 

q. (1) also shows the enhancement in advective heat removal 

ue to increased porosity. The opposing effects of porosity on con- 

uctive and advective heat removal pose an interesting theoretical 

uestion about whether an optimal porosity exists that maximizes 

r minimizes total heat removal. This is also a question of much 

ractical relevance, and, therefore, is investigated in more detail. 

To begin with, heat removed by a representative porous fin 

s considered. The baseline solid material is assumed to be alu- 

inum, and the fluid is assumed to be air, with constant prop- 

rties corresponding to room temperature. Permeability of the fin 

s taken to be K = 5.7 × 10 −9 m 

2 . The inner radius fin length and

n width are taken to be R 0 = 5 cm, L = 15 cm and w = 5 cm, re-

pectively. The pressure difference driving the porous flow is taken 

o be �p = 100 Pa. The convective heat transfer coefficient, both 

round the fin and at the tip is taken to be h tip = 50 Wm 

−2 K 

−1 .

nder these conditions, Fig. 9 presents the total heat removed as 

ell as the conductive and advective components as functions of 

orosity, corresponding to 20 °C temperature difference between 

he base and ambient. As expected from the discussion above, the 

onductive and advective components of heat removed decrease 

nd increase, respectively, with increasing porosity. While the ad- 

ective component increases nearly linearly, the advective compo- 

ent has a more complicated, non-linear reduction. This is because 

side from the effect on effective thermal conductivity, porosity in- 
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Fig. 9. Heat removal rate as a function of fin porosity for a baseline set of design 

parameters. Total heat removed as well as the conductive and advective compo- 

nents are plotted. 
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reases the advective term in the governing energy equation ( ̄A ) 

inearly, whereas the impact of porosity on conductive heat trans- 

er is more complicated, driven by the slope of the temperature 

istribution at the base, as given by the solution involving modi- 

ed Bessel functions. Interestingly, in this case, the total heat re- 

oved changes non-monotonically with porosity and exhibits a 

axima at a porosity of around 0.65. This shows the importance 

f careful design of the porous fin, particularly its porosity in or- 

er to maximize the benefit of the porous fin. 

Note that the impact of porosity on fin effectiveness is some- 

hat complicated due to the number of ways in which the poros- 

ty affects heat removal rate, depending on the values of various 

roblem parameters and non-dimensional numbers that appear in 

he analysis presented above. While an optimal porosity is found 

or the set of parameters considered above, the location of the op- 

imal porosity, or even the existence of an optimal porosity itself 

s not universal. For example, the impact of the convective heat 

ransfer on these curves is examined. Figs. 10 (a) and 10 (b) plot the

otal heat removed as well as the conductive and advective com- 

onents as functions of porosity for h = 12 Wm 

−2 K 

−1 and h = 150

m 

−2 K 

−1 , respectively. All other parameters remain the same. It is 

ound that changing the convective heat transfer coefficient com- 

letely changes the nature of the heat removal curves. The non- 
ig. 10. Heat removal rate as a function of fin porosity for (a) h = 10 Wm 

−2 K −1 and (b) h

ell as the conductive and advective components are plotted. 

9 
onotonic behavior of total heat removed seen in Fig. 9 is not seen 

ny longer in Figs. 10 (a) and 10 (b). It is found instead that the

otal heat removed increases ( Fig. 10 (a)) or decreases ( Fig. 10 (b))

onotonically with porosity when the convective heat transfer co- 

fficient is lower or higher, respectively, than the value considered 

n Fig. 9 . This is mainly because increasing h reduces the convec- 

ive resistance at the fin surface, R surf , as shown in Fig. 2 with-

ut impacting the advective resistance R adv . As a result, more heat 

s drawn conductively through while the advective component re- 

ains the same. As a result, the total heat removed is dominated 

y the conductive component, and, thus shows a decreasing trend 

ith porosity, as seen in Fig. 10 (b). A similar explanation may be 

rovided for the impact of reducing h on heat removal rates. 

Fig. 10 shows that when the convective heat transfer is very 

mall, such as in natural convection conditions around the fin, it is 

est to design the fin to be as porous as possible, within other con- 

traints such as structural integrity. On the other hand, as shown in 

ig. 10 (b), under forced convective conditions around the fin, hav- 

ng a porous fin is not beneficial at all, since the improvement in 

dvective heat removal with increasing porosity is completely over- 

helmed by the reduction in conductive heat removal as porosity 

ncreases. 

As another illustration of the impact of design parameters on 

ow the heat removal rate varies with porosity, the same base- 

ine case as Fig. 9 is considered again, but with different values of 

he imposed pressure gradient. In contrast with the baseline value 

f �p = 100 Pa, Figs. 11 (a) and 11 (b) plot heat removal curves as

unctions of porosity for �p = 400 Pa and �p = 20 Pa, respec-

ively. It is found that while a greater pressure difference results 

n a monotonically increasing heat removal rate as a function of 

orosity, a lower pressure difference completely reverses the trend, 

esulting in a monotonically decreasing heat removal rate as a 

unction of porosity. This is mainly because changing the pressure 

ifference affects the advective resistance R adv without affecting 

ny other resistances in the problem, thereby making the total heat 

emoval more dominant or less dominant by advective or conduc- 

ive heat removal, respectively, at larger or smaller pressure differ- 

nces. 

Similar to the effect of the convective heat transfer coeffi- 

ient examined in Fig. 10 , this analysis shows that determining 

hether a porous fin is beneficial or not and, if so, selecting the 

est porosity depends strongly on the available pressure difference 

hat drives the porous flow. For very large pressure difference, the 

arger the porosity, the more effective is the fin. In contrast, for 

ery small pressure difference, there may be little or no benefit of 

sing a porous fin. 
 = 150 Wm 

−2 K −1 . Other parameters are the same as Fig. 9 . Total heat removed as 
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Fig. 11. Heat removal rate as a function of fin porosity for (a) �p = 400 Wm 

−2 K −1 and (b) �p = 20 Wm 

−2 K −1 . Other parameters are the same as Fig. 9 . Total heat removed 

as well as the conductive and advective components are plotted. 

Fig. 12. Effect of fin tip conditions: Fin temperature distribution for (a) multiple values of Bi tip , with θ∞ ,tip = 0 . 0 , (b) multiple values of θ∞ ,tip with Bi tip = 1 . 0 . Other problem 

parameters are Ā = 2 . 5 , B̄ = 0 . 5 , L̄ = 3 . 0 and w̄ = 0 . 5 . 
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Whether an optimal value of the porosity exists, and if so, de- 

ermining that value can be addressed by examining the derivative 

f the total heat removed with respect to the porosity. Differenti- 

ting Eq. (16) and setting to zero results in 

k f − k s 
)(∂θ

∂ξ

)
ξ=1 

+ k eff

∂ 

∂φ

[ (
∂θ

∂ξ

)
ξ=1 

] 

− K · ρ f c f · �p 

μ · ln 

(
R 0 + L 

R 0 

) = 0 

(28) 

The root of Eq. (28) , if one exists between 0 and 1 is the opti-

al porosity for maximizing heat removal by the fin. 

.4. Effect of tip conditions 

Similar to a traditional, non-porous fin, the nature of the con- 

ective boundary conditions at the fin tip is expected to influence 

he temperature distribution in the porous fin. The two key non- 

imensional parameters that describe thermal conditions at the fin 

ip are the tip Biot number B i tip and tip temperature θ∞ ,tip . As dis- 

ussed in Section 3 , specific values of these parameters transform 

he general problem considered here into special cases, such as an 

diabatic tip or an isothermal tip. 

In order to examine the impact of B i tip and θ∞ ,tip on thermal 

esponse of the fin, the fin temperature distribution is plotted for 

ultiple values of B i tip and θ∞ ,tip in Figs. 12 (a) and 12 (b), respec- 
10 
ively. Fig. 12 (a) is plotted for θ∞ ,tip = 0 . 0 , while Fig. 12 (b) is plot-

ed for B i tip = 1 . 0 . Other non-dimensional parameters are Ā = 2 . 5 ,

¯
 = 0 . 5 , L̄ = 3 . 0 and w̄ = 0 . 5 . Fig. 12 (a) shows that for B i tip = 0 . 0 ,

he fin is, in general, the hottest. This, however, does not imply 

reater heat removal, since all curves in Fig. 12 (a) have nearly the 

ame slope at ξ = 1 . Note that B i tip = 0 . 0 renders the fin tip adi-

batic, resulting in no heat removal from the end of the fin, as 

onfirmed by the flat nature of the B i tip = 0 . 0 curve at ξ = L̄ . As

 i tip increases, the fin temperature curves shift downwards and the 

lope at the fin tip becomes larger in magnitude, indicating in- 

reased heat loss from the fin tip. However, the effect of fin tip 

onditions does not extend throughout the fin, and, in particular, 

ignificantly does not influence heat removal from the base. For 

ery large value of B i tip , Fig. 12 (a) shows that the fin tip temper-

ture becomes very close to θ∞ ,tip , approaching isothermal fin tip 

onditions. Note that the tip temperature for both B i tip = 10 . 0 and

 i tip = 100 . 0 curves is close to θ∞ ,tip , indicating that both values of

he Biot number are close to isothermal conditions. 

The impact of θ∞ ,tip is examined in Fig. 12 (b). In this case, 

 i tip = 1 . 0 , which is a reasonably low value. This is the reason why

he temperature curves in Fig. 12 (b) do not reach θ∞ ,tip at the 

ip. Nevertheless, the lower the value of θ∞ ,tip , the lower is the 

emperature curve in general. Note that for relatively large value 

f θ∞ ,tip = 0 . 4 , the temperature curve actually reaches a minima 

ithin the fin and then rises towards the fin tip, indicating that 
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ome parts of the fin may be cooler than the fin tip. This only oc-

urs for large value of θ∞ ,tip , which is likely unrealistic, since the 

n tip is unlikely to be hotter than the ambient around the fin. In

ost cases, the two are expected to be the same, and, therefore, 

∞ ,tip = 0 . 0 is the most likely scenario. 

Note that in both Figs. 12 (a) and 12 (b), changing the tip condi-

ions, i.e., B i tip and θ∞ ,tip , does not appreciably change the slope of 

he temperature at the base of the fin. This indicates that the con- 

uctive heat removed by the fin is largely independent of the tip 

onditions. Since the convective heat removal also does not depend 

n B i tip and θ∞ ,tip , therefore, under the conditions considered here, 

n performance is largely independent of the fin tip. This may be 

ecause of the relatively large length of the fin considered here. 

or a shorter fin, it is likely that increasing the tip Biot number 

ay have a stronger impact on the non-dimensional fin heat re- 

oval. 

. Conclusions 

The key contributions of this work include the thermal analy- 

is of a radial porous fin in which heat removal is aided by ra- 

ial pressure-driven flow instead of natural convection flow con- 

idered in past papers, and the identification of key conduction- 

s-advection trade-offs in fin design. Under a certain set of pa- 

ameters, it is shown that there exists a fin porosity that maxi- 

izes heat removal rate. Under certain other set of parameters, it 

s shown that a porous fin may not offer any benefits at all over a

on-porous fin of the same geometry. These insights may be help- 

ul to choosing whether to use a porous fin or not in a given heat

ransfer problem, and if so, the correct porosity to choose. 

Non-dimensional curves presented in this work improve the 

eneral understanding of extended surface heat transfer, particu- 

arly in the context of porous fins. Such curves may be useful for 

he general design of heat transfer systems. 

It must be noted that this work analyzes only the heat trans- 

er aspects of a porous fin. A highly porous fin is also light-weight. 

eight reduction may be desirable for certain applications, but it 

omes at the cost of reduced ability to withstand mechanical loads. 

or applications where weight and load bearing capability are im- 

ortant, such mechanical considerations must also be accounted 

or in fin design and optimization, in addition to the thermal anal- 

sis presented here. In addition, the pumping power needed to 

ustain the pressure-driven flow, which is not considered here, 

ay be important in certain problems. 

While the porous flow in this work is assumed to be driven by 

 pressure gradient, other fluid flow mechanisms, such as electro- 

smotic flow can be easily analyzed within the same framework as 

he one presented here. The present work assumes negligible nat- 

ral convection of the porous fluid within the fin. Radiative effects 

ave also been neglected due to a reasonably small temperature 

ifference. Thermal properties of the fin material and fluid are as- 

umed to be independent of temperature. Porous fluid flow is as- 

umed to be Newtonian and laminar, and with constant perme- 

bility. While these assumptions are reasonable for a wide range 

f applications, in other problems, several of these assumptions 

an potentially be relaxed, in which case, the use of numerical 

echniques to solve the resulting equations may be necessary. Nev- 

rtheless, several important trade-offs identified here may persist 

ven in such scenarios. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 
11 
RediT authorship contribution statement 

Ankur Jain: Conceptualization, Methodology, Formal analy- 

is, Validation, Investigation, Data curation, Project administra- 

ion, Writing – original draft, Writing – review & editing. 

uhammad M. Abbas: Formal analysis, Validation, Data curation. 

ohsen Torabi: Conceptualization, Methodology, Writing – origi- 

al draft, Writing – review & editing. 

ata availability 

Data will be made available on request. 

ppendix A. Derivation of radial velocity field in the porous fin 

This Appendix derives an expression for the velocity field in the 

orous fin. Based on the assumptions listed in Section 2 , fluid flow 

n the fin is driven by the pressure gradient between the inner pipe 

nd the ambient at the fin tip, and is purely radial in nature. As- 

uming that the porous fluid flow is purely Darcian in nature, the 

ollowing relationship exists between the volumetric flow rate q 

nd local pressure gradient at any location r [ 9 , 10 ]: 

 = 

K A 

μ

dp 

dr 
(A.1) 

Where A = 2 π rw φ is the cross-section area for fluid flow at the 

adial location r , and K , φ, and μ are the permeability, porosity and

iscosity, respectively. Rearranging and integrating equation (A.1) 

etween r = R 0 and r = R 0 + L results in 

 = 

K A 

μ · ln 

(
R 0 + L 

R 0 

) �p 

r 
(A.2) 

Where �p is the total pressure difference between the inner 

ube and the fin tip. Finally, since q = A · U(r) , therefore, the fol-

owing expression for the velocity field may be written: 

 ( r ) = 

K 

μ · ln 

(
R 0 + L 

R 0 

) �p 

r 
(A.3) 

This completes the derivation of the radial velocity field in the 

orous fin. As expected, the radial velocity has a 1/r dependence, 

ue to the requirement of mass conservation as the fluid flows ra- 

ially outwards. 
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