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a b s t r a c t 

Multilayer diffusion-reaction problems are of much interest for both heat and mass transfer. While past 

work in this direction has mainly addressed multilayer bodies of finite size, practical problems such as 

immersion cooling of Li-ion cells and thermal runaway in semiconductor devices necessitate considering 

one of the layers to be semi-infinite. This work presents theoretical analysis of a diffusion-reaction prob- 

lem in a finite layer surrounded by an infinite medium on both sides, where heat generation proportional 

to the local temperature occurs in the finite layer. Transient temperature distributions in the two bodies 

are determined using Laplace transformation technique. Through analysis of the poles of the solution in 

the Laplace domain, it is proved that this problem is unconditionally unstable, in that temperature in the 

finite thickness layer is predicted to always diverge at large times. However, the time taken to reach the 

unstable regime is shown to depend strongly on the key non-dimensional parameters of the problem. 

Temperature in the finite layer is shown to exhibit non-monotonic behavior at small times, particularly 

for large values of the heat generation coefficient, which is explained on the basis of the balance be- 

tween temperature-dependent heat generation, heat dissipation into the semi-infinite medium and even- 

tual slowdown of heat dissipation due to temperature rise. The impact of thermal properties on thermal 

behavior of the system is examined. A practical problem related to thermal safety design of a Li-ion cell 

is solved. Results from this work expand the state-of-the-art in theoretical analysis of diffusion-reaction 

problems, and also offer practical tools for thermal design of engineering problems including Li-ion cells 

and semiconductor devices. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat transfer in multilayer bodies is of much theoretical and 

ractical interest in a variety of engineering problems, including 

hermal property measurements [ 1 , 2 ], thermal management [3] , 

uilding insulation [4] , thin films [5] and structural engineering 

6] . Theoretical analysis of one-dimensional diffusion-based trans- 

ort in a multilayer body of finite thickness is usually carried 

ut using the separation of variables method [7] , wherein the 

uasi-orthogonality of eigenfunctions [8] plays a key role. Prob- 

ems with complications such as time-dependent [9] or spatially- 

arying [10] boundary conditions have also been solved using vari- 

nts of this technique. A combination of separation of variables and 

aplace transformation techniques has also been used [11] . A num- 

er of numerical techniques have also been used for solving mul- 

ilayer thermal conduction problems [ 12 , 13 ]. 

Diffusion-reaction problems form an important subset of mul- 

ilayer thermal conduction problems. Such problems are rele- 
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ant when temperature-dependent heat generation occurs in one 

r more layers, for example, Arrhenius heat generation due to 

hemical reaction in Li-ion cells [14] , and Joule heating in a 

etal–Oxide–Semiconductor Field-Effect Transistor (MOSFET) with 

emperature-dependent current characteristics [15] . In the context 

f mass transfer, reactions that generate or consume species also 

esult in a diffusion-reaction problem [ 16 , 17 ]. In such cases, lin-

arization of the generation term results in an additional term 

n the energy/species conservation equation, requiring somewhat 

ore complicated analysis. Multilayer diffusion-reaction problems 

ave been solved using the separation of variables method, where 

uasi-orthogonality of eigenfunctions has been shown to be un- 

ffected by the generation term [18] . More complicated problems, 

uch as multilayer convection-diffusion-reaction (CDR) problems 

ave also been solved [19] . 

Convergence and stability are of much importance in diffusion- 

eaction problems due to the positive feedback between temper- 

ture rise and heat generation. In short, heat generation results 

n temperature rise, which, due to the temperature-dependent 

eat generation term, results in greater heat generation and fur- 

her temperature rise. In the absence of sufficient heat dissipa- 
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Nomenclature 

k thermal conductivity (Wm 

−1 K 

−1 ) 

L half thickness of the finite layer (m) 

T temperature (K) 

x spatial coordinate (m) 

t time (s) 

α thermal diffusivity (m 

2 s −1 ) 

ᾱ2 non-dimensional thermal diffusivity, ᾱ2 = 

α2 
α1 

k̄ 2 non-dimensional thermal conductivity, k̄ 2 = 

k 2 
k 1 

τ non-dimensional time, τ = 

α1 t 

L 2 

θi non-dimensional temperature, θi = 

T i −T 0 
T in −T 0 

( i = 1, 2) 

ˆ θi Laplace transform of temperature ( i = 1, 2) 

ξ non-dimensional spatial coordinate, ξ = 

x 
L 

Subscripts 

0 ambient 

1 finite layer 

2 semi-infinite medium 

max maximum value 

in initial 

ion driven by diffusion within the body and convection on the 

oundaries, this may lead to a thermal runaway situation, as is 

ell-known to occur in Li-ion cells [14] and in MOSFET devices 

20] . Analytical solutions for specific thermal runaway problems 

re available [ 14 , 21 ]. It has been shown that one or more eigenval-

es in a multilayer finite-thickness diffusion-reaction problem may 

e imaginary [ 18 , 22 ], which leads to divergence in temperature at

arge times. Closed-form expressions for the threshold conditions 

or thermal runaway to occur [ 14 , 18 ], as well as the number of

maginary eigenvalues [22] have been derived. 

The literature discussed above mostly addresses the diffusion- 

eaction problem in finite bodies. In contrast, diffusion-reaction 

ay also be of interest when a finite thickness body is surrounded 

y an infinite external medium, as shown schematically in Fig. 1 (a). 

n case heat generation in a finite thickness body is temperature- 

ependent, it is unclear whether heat dissipation into the infinite 

edium may be sufficient to prevent thermal runaway. One prac- 

ical problem where such a scenario may be encountered is in the 

ooling of a thin prismatic Li-ion cell immersed in a large station- 

ry fluid, where heat generation in the cell due to decomposition 

eactions may be approximated, to the first degree, by a heat gen- 

ration term that rises linearly with temperature [14] . Another rel- 

vant example is related to heat dissipation from a thin MOSFET 

nto the surrounding substrate [20] . In this case, heat generation 

n the MOSFET can increase with increasing temperature due to 

emperature-dependent current characteristics [15] . The substrate 

s located on only one side of the MOSFET in traditional semi- 
ig. 1. Schematics showing (a) the geometry of a finite body of thickness 2 L in an 

nfinite medium; (b) details of the half-geometry considered in this work based on 

ymmetry. 
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2 
onductor devices, whereas, more recently, 3D integrated circuits 

3D ICs) [23] , particularly monolithic 3D ICs [24] , result in the sub- 

trate being on both sides of the MOSFET. In both of the examples 

ited above, it is of interest to determine whether the temperature 

eld diverges at large times or not. Interesting physical phenomena 

hat occur in such a problem include heat generation in the finite 

ody, which is expected to increases as the finite body gets hotter 

nd cooling due to conduction into the infinite medium, which is 

xpected to slow down over time due to temperature rise in the 

emi-infinite medium. 

A robust mathematical model is needed for developing a fun- 

amental understanding of these phenomena and their trade-offs 

ith each other. While much work already exists on analysis of 

iffusion-reaction problems in finite multilayer bodies, there is a 

ack of work in scenarios where one of the bodies is semi-infinitely 

arge. The limited work available on heat transfer between a fi- 

ite layer and a semi-infinite medium [ 7 , 25 ] mostly presents only 

ure-diffusion analysis, which does not account for temperature- 

ependent heat generation. The usual separation of variables tech- 

ique that has been used successfully for finite thickness prob- 

ems cannot be used in this case since the quasi-orthogonality of 

igenfunctions is not valid in a semi-infinite geometry. An alternate 

echnique is needed for addressing the important questions posed 

bove. 

This work presents a Laplace transforms based analysis of a 

wo-layer diffusion-reaction problem, in which, a finite layer with 

emperature-dependent heat generation is adjoined by a semi- 

nfinite body. A solution for the problem is derived in the Laplace 

omain, which is then inverted numerically. Analysis of the poles 

f the solution in Laplace domain is carried out to prove that this 

roblem is unconditionally unstable. Results are shown to correctly 

educe to past work for the special case of a pure-diffusion prob- 

em. Results are also shown to be in good agreement with finite- 

lement simulations. The dependence of the nature of the temper- 

ture field on the rate of change of heat generation with temper- 

ture as well as other problem parameters such as thermal prop- 

rties is investigated. Applications of these results exist in stability 

nalysis of Li-ion cells and semiconductor devices. 

. Problem definition 

Fig. 1 (a) presents a schematic of the problem under considera- 

ion here. A one-dimensional body of thickness 2 L is submerged in 

n infinitely large, stationary medium on both sides. Internal heat 

eneration occurs within the finite body at a rate that is propor- 

ional to the local temperature. Heat generated in the finite body 

s conducted into the infinite medium. The temperature-dependent 

eat generation modeled in this problem may represent, for exam- 

le, exothermic heat generation in a Li-ion cell due to electrochem- 

cal decomposition reactions, or Joule heating in a semiconduc- 

or MOSFET with a temperature-dependent current, whereas the 

nfinite medium may represent, for example, a dielectric coolant 

uid in the battery problem, and the Silicon substrate surround- 

ng the MOSFET in the semiconductor problem [20] . The semi- 

nfinite medium is assumed to be stationary, with no convective 

eat transfer within. In the context of immersion cooling of a Li- 

on cell, this implies that the coolant fluid is not being circulated. 

By symmetry, only one half of the problem may be modeled, 

s shown in Fig. 1 (b), in which, the geometry comprises a finite 

ayer of thickness L in contact with a semi-infinite layer. Thermal 

onductivity and diffusivity are denoted by k and α, respectively, 

nd subscripts 1 and 2 denote the finite layer and semi-infinite 

edium, respectively. The semi-infinite medium is assumed to be 

t ambient temperature T 0 initially, while a uniform initial tem- 

erature T in (> T 0 ) is assumed for the finite layer. Perfect thermal 

ontact between the two is assumed. All properties are assumed 
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o be uniform and independent of temperature. Dimensions in the 

irections normal to the x direction as shown in Fig. 1 (b) are as-

umed to be large enough to enable treating thermal conduction 

o be one-dimensional in nature. Based on these assumptions, the 

nergy conservation equations that govern the temperature fields 

 1 ( x, t ) and T 2 ( x, t ) in the finite layer and semi-infinite medium,

espectively, may be written as follows: 

1 
∂ 2 T 1 
∂x 2 

+ β1 T 1 = 

∂T 1 
∂t 

( 0 < x < L ) (1) 

2 
∂ 2 T 2 
∂x 2 

= 

∂T 2 
∂t 

( x > L ) (2) 

here, β1 > 0 is the linear heat generation coefficient that con- 

ects heat generation in the finite layer to the local temperature. 

Boundary conditions associated with this problem may be writ- 

en as follows: 

∂T 1 
∂x 

= 0 ( x = 0 ) (3) 

 1 = T 2 ( x = L ) (4) 

 1 
∂T 1 
∂x 

= k 2 
∂T 2 
∂x 

( x = L ) (5) 

 2 → T 0 ( x → ∞ ) (6) 

Here, Eq. (3) is due to symmetry considerations along the cen- 

er of the finite layer, Eqs. (4) and (5) model perfect thermal con- 

act and heat flux conservation, respectively, at the interface, and 

q. (6) arises from the semi-infinite nature of the surrounding 

edium. 

The initial condition associated with this problem is 

 1 = T in ; T 2 = T 0 ( t = 0 ) (7) 

. Derivation of the solution 

In order to solve the problem defined by Eqs. (1) –(7) , it is help-

ul to carry out a non-dimensionalization first. Doing so reduces 

he number of parameters of the problem, helps identify important 

on-dimensional groups governing the solution of the problem and 

acilitates parametric analysis. The following non-dimensional vari- 

bles are introduced: 

1 = 

T 1 − T 0 
T in − T 0 

, θ2 = 

T 2 − T 0 
T in − T 0 

, ξ = 

x 

L 
, τ = 

α1 t 

L 2 
, ᾱ2 = 

α2 

α1 

, 

¯
 2 = 

k 2 
k 1 

, β̄1 = β1 L 
2 /α1 (8) 

Note that β̄1 represents the strength of the generation term rel- 

tive to the diffusion term. The other two non-dimensional pa- 

ameters that appear are the ratios of thermal conductivity and 

hermal diffusivity. Based on the non-dimensionalization outlined 

bove, the following non-dimensional equations and associated 

oundary/initial conditions may be written 

∂ 2 θ1 

∂ξ 2 
+ β1 θ1 = 

∂θ1 

∂τ
( 0 < ξ < 1 ) (9) 

∂ 2 θ2 

∂ξ 2 
= 

1 

α2 

∂θ2 

∂τ
( ξ > 1 ) (10) 

∂θ1 

∂ξ
= 0 ( ξ = 0 ) (11) 

1 = θ2 ( ξ = 1 ) (12) 
3 
∂θ1 

∂ξ
= k 2 

∂θ2 

∂ξ
( ξ = 1 ) (13) 

2 → 0 ( ξ → ∞ ) (14) 

1 = 1 ; θ2 = 0 ( τ = 0 ) (15) 

It is of interest to solve this non-dimensional problem to in- 

estigate whether heat absorption in the semi-infinite body is able 

o keep the temperature of the finite layer from diverging at large 

imes due to the positive feedback between temperature and heat 

eneration. 

Note that in case both layers are finite in dimension, the result- 

ng two-layer diffusion-reaction problem has already been solved 

sing the separation of variables method, and conditions for di- 

ergence have been derived explicitly [ 18,22 ]. However, in the 

resent case, this is not possible due to the semi-infinite nature 

f the second body, which precludes the use of an eigenfunction- 

ased solution. A special case of the present problem with no 

emperature-dependent heat generation, which makes this a pure- 

iffusion problem, has been solved using Laplace transforms tech- 

ique [7] . After deriving a solution for the problem in the Laplace 

omain, it has been shown that an analytical inversion results in 

 solution comprising error functions. Therefore, the Laplace trans- 

orms technique is also used for solving the present problem. In 

eneral, the Laplace transformation involves appropriate integra- 

ion of the governing equations over time, which introduces a new 

aplace variable, but removes time dependence, thereby resulting 

n significant simplification. This makes it possible to derive an ex- 

licit solution of the problem in the Laplace domain. Laplace trans- 

ormation technique is commonly used for solving thermal conduc- 

ion and other engineering problems [7] . 

Carrying out Laplace transform of Eqs. (9) and (10) while mak- 

ng use of the initial condition given by Eq. (15) results in 

ˆ ′′ 
1 + β1 

ˆ θ1 = s ̂  θ1 − 1 ( 0 < ξ < 1 ) (16) 

ˆ ′′ 
2 = 

s 

α2 

ˆ θ2 ( ξ > 1 ) (17) 

here, ̂  represents the Laplace transform, and s is the Laplace vari- 

ble. 

Eqs. (16) and (17) can be solved easily as follows: 

ˆ 
1 ( ξ , s ) = − 1 

γ 2 
1 

+ A 1 cos ( γ1 ξ ) + B 1 sin ( γ1 ξ ) ( 0 < ξ < 1 ) 

(18) 

ˆ 
2 ( ξ , s ) = A 2 exp ( γ2 ξ ) + B 2 exp ( −γ2 ξ ) ( ξ > 1 ) (19) 

here, γ1 = 

√ 

β̄1 − s and γ2 = 

√ 

s/ ̄α2 . 

Based on Laplace transforms of boundary conditions given 

y Eqs. (11) and (14) , B 1 = 0 and A 2 = 0 , respectively. Moreover,

sing the Laplace transforms of interface conditions given by 

qs. (12) and (13) , one may write 

1 

γ 2 
1 

+ A 1 cos ( γ1 ) = B 2 exp ( −γ2 ) (20) 

γ1 A 1 sin ( γ1 ) = −k̄ 2 γ2 B 2 exp ( −γ2 ) (21) 

 1 and B 2 may be determined by solving the linear equations given 

y Eqs. (20) and (21) . The subsequent solution for the temperature 

elds in the Laplace domain is found to be 

ˆ 
1 ( ξ , s ) = 

1 

γ 2 
1 

( 

−1 + 

cos ( γ1 ξ ) 

cos ( γ1 ) − γ1 

k 2 γ2 

sin ( γ1 ) 

) 

( 0 < ξ < 1 ) 

(22) 
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q

ˆ 
2 ( ξ , s ) = 

exp ( γ2 ( 1 − ξ ) ) 

cos ( γ1 ) − γ1 

k 2 γ2 

sin ( γ1 ) 
· sin ( γ1 ) 

γ1 k 2 γ2 

( ξ > 1 ) (23) 

hich completes the solution for the problem in the Laplace 

omain. For the special case of β̄1 = 0 , it can be shown that

qs. (22) and (23) correctly reduce to the results presented be- 

ore for the pure-diffusion problem [7] . While an explicit inversion 

as carried out for the pure-diffusion problem, in the present case, 

ue to the considerable complication in Eqs. (18) and (19) from the 

emperature-dependent heat generation term, an explicit inversion 

s unlikely to be possible. However, a number of numerical inver- 

ion techniques are available [ 26 , 27 ]. In the present work, the de

oog quotient difference method algorithm [26] is used to deter- 

ine the temperature fields in the two layers. 

. Stability analysis 

Due to the presence of both temperature-dependent heat gen- 

ration and cooling due to heat dissipation into the semi-infinite 

edium, it is unclear without further analysis whether the so- 

ution derived in Section 3 results in a stable or unstable tem- 

erature distribution. In particular, due to the positive feedback 

 ̄β1 > 0) between temperature rise and heat generation rate in 

he finite layer, it is of interest to determine if the semi-infinite 

edium is able to sufficiently dissipate heat and keep the temper- 

ture field θ1 ( ξ , τ ) bounded at large times. 

In order to do so, the nature of the solution in the Laplace do- 

ain, ˆ θ1 ( ξ , s ) , is examined. In particular, it is well known from lin-

ar stability theory [28] that a function f (t) diverges at large time 

f its Laplace transform 

ˆ f (s ) has at least one pole with a positive

eal component. Further, a function 

ˆ f (s ) = 

p(s ) 
q (s ) 

has a pole of order 

 at s = s 0 if and only if the following conditions apply [29] : (1)

 ( s 0 ) = 0 , (2) q ′ ( s 0 ) � = 0 , (3) p( s 0 ) � = 0 , and (4) both p and q are

nalytic at s = s 0 . 

For the solution derived for ˆ θ1 ( ξ , s ) in Section 3 , given by 

q. (22) , one may write 

p ( ξ , s ) = 

sin ( γ1 ) 

k̄ 2 γ1 γ2 

+ 

cos ( γ1 ξ ) − cos ( γ1 ) 

γ 2 
1 

(24) 

 ( s ) = cos ( γ1 ) − γ1 sin ( γ1 ) 

k̄ 2 γ2 

(25) 

Based on these expressions, it is proved in the following sub- 

ections that ˆ θ1 ( ξ , s ) satisfies each of the conditions listed above 

t at least one point in the range 0 < s < β̄1 , thus proving the ex-

stence of at least one real positive pole for ˆ θ ( ξ , s ) . Once this is
1 

Fig. 2. Plots of functions (a) q (s ) , and (b) p(ξ , s ) for multiple values of β̄

4 
stablished, it clearly follows that temperature distribution in the 

nite layer diverges unconditionally at large times. 

.1. Proof that q (s ) has at least one root in 0 < s < β1 

In order to show that q (s ) has at least one root in 0 < s < β̄1 ,

he values of q (s ) approaching the two ends of this range are

xamined. For s → 0 + , one may obtain γ1 → 

√ 

β̄1 and γ2 → 0 + .

herefore, q (s ) → 1 −
√ 

β̄1 sin ( 
√ 

β̄1 ) 

k̄ 2 γ2 
. If β̄1 < π2 / 4 , this implies that

 (s ) → −∞ as s → 0 + . On the other hand, at s = β̄1 , one may ob-

ain γ1 = 0 and γ2 = 

√ 

β̄1 / ̄α2 , and thus, q (s ) = 1 at s = β̄1 . Further,

ection 4.1.1 below proves that q (s ) is a continuous function in 

his range. Since q (s ) begins at −∞ at the start of the range, be-

omes positive at the end of the range and is a continuous func- 

ion throughout, therefore, q (s ) must cross the s axis at least once 

ithin this range, i.e., must have at least one root in 0 < s < β̄1 . 

This is illustrated in Fig. 2 (a), which presents plots of q (s ) for

ultiple values of β̄1 with ᾱ2 = 2 . 0 and k̄ 2 = 3 . 0 . In each case, as

xpected, q (s ) has a large negative value as s → 0 + and a value of

 at the other end of the range, and, therefore, is seen to cross the

 axis in each case. 

.1.1. Proof that q (s ) is a continuous function throughout 0 ≤ s < β̄1 

Clearly, q (s ) is well defined in 0 < s < β̄1 , as given by Eq. (25) .

urther, at any point s = s 0 in this range, 

lim 

 → s 0 
q ( s ) = lim 

s → s 0 
cos 

(√ 

β̄1 − s 

)
−

√ 

ᾱ2 

k̄ 2 
lim 

s → s 0 
sin 

(√ 

β̄1 − s 

)√ 

β̄1 

s 
− 1 

(26) 

Since the limit of a product of two functions is the product of 

he limits of the two functions, and since s 0 � = 0 , one may obtain 

lim 

 → s 0 
q ( s ) = cos 

(√ 

β̄1 − s 0 

)
−

√ 

ᾱ2 

k̄ 2 
sin 

(√ 

β̄1 − s 0 

)√ 

β̄1 

s 0 
− 1 = q ( s 0 )

(27) 

This applies for both left and right side limits. Therefore, the 

imit of q (s ) at any point in 0 < s < β̄1 is equal to its value at that

oint. This shows that q (s ) is a continuous function in 0 < s < β̄1 . 

.2. Proof that q ′ (s ) � = 0 throughout 0 ≤ s < β̄1 

By differentiating Eq. (25) , one may write 

 

′ ( s ) = 

sin ( γ1 ) 

2 γ1 

+ 

1 

k 

sin ( γ1 ) + γ1 cos ( γ1 ) 

2 γ1 γ2 

+ 

γ1 sin ( γ1 ) 

2 γ2 s 
(28) 
2 

1 . Problem parameters are ᾱ2 = 2 , k̄ 2 = 3. For p(s ) , ξ = 0 . 5 is used. 
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Fig. 3. Plot of ˆ θ1 ( ξ , s ) as a function of s in the range 0 < s < β̄1 for multiple values 

of β̄1 . Other problem parameters are ᾱ2 = 2 , k̄ 2 = 3, ξ = 0 . 5 . 
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Now, for β̄1 < π2 / 4 , each of the terms in Eq. (28) above are

ositive, and, therefore, q ′ (s ) is positive throughout the range 0 < 

 < β̄1 . 

.3. Proof that p(s ) � = 0 throughout 0 ≤ s < β̄1 

As s → 0 + , γ1 → 

√ 

β̄1 and γ2 → 0 + . At the other end of the

ange, at s = β̄1 , γ1 = 0 and γ2 = 

√ 

β̄1 / ̄α2 . Both γ1 and γ2 re- 

ain positive in this range. Further, sin ( γ1 ) > 0 if β̄1 < π2 / 4 , since

1 < 

√ 

β̄1 . Therefore, the first term in the expression for p(s ) given 

y Eq. (24) is positive. As for the remaining two terms, from 

he above conditions, γ1 < π/ 2 , and, therefore, cos ( γ1 ξ ) > cos ( γ1 ) ,

ince ξ < 1 in the finite layer and cosine is a decreasing function 

etween 0 and π/ 2 . Therefore, the sum of second and third terms

n Eq. (24) is also positive. Therefore, it follows that p(s ) is positive

hroughout 0 < s < β̄1 for all values of ξ < 1 , if β̄1 < π2 / 4 . 

This result is illustrated in Fig. 2 (b), which presents plots of 

p(ξ , s ) for multiple values of β̄1 , with ᾱ2 = 2 , k̄ 2 = 3 , ξ = 0 . 5 .

hese plots show that for each value of β̄1 considered in this Fig- 

re, p(ξ , s ) remains positive throughout 0 < s < β̄1 , as established

y the proof above. 
ig. 4. Verification of the solution technique: (a) temperature at the center of finite laye

urves corresponding to multiple values of β̄1 based on the present work are plotted. Fo

arameters are ᾱ2 = 2 , k̄ 2 = 3 . 

5 
.4. Proof that p(s ) and q (s ) are both analytic throughout 0 ≤ s < β̄1 

Both p and q comprise functions that are individually ana- 

ytic. Therefore, p and q are also analytic in the range considered 

ere. 

Taken together, the proofs presented above establish that the fi- 

ite layer temperature in the Laplace domain, ˆ θ1 ( ξ , s ) , has at least 

ne real positive pole of order 1 when β̄1 < π2 / 4 . Therefore, the 

emperature distribution in the finite layer diverges at large times, 

nd the problem considered in this work is unconditionally unsta- 

le. 

Note that each proof in Sections 4.1 –4.3 is valid only for 
¯
1 < π2 / 4 . It can be argued that if the problem is uncondition-

lly unstable in this range, then increasing β̄1 beyond π2 / 4 will 

ot remove the instability since a larger β̄1 results in an even 

tronger positive feedback between heat generation and temper- 

ture, thereby moving the problem even more towards instabil- 

ty. Therefore, while proved specifically for β̄1 < π2 / 4 , the con- 

lusion of unconditional instability is true for all positive values 

f β̄1 . 

As an illustration, Fig. 3 plots ˆ θ1 ( ξ , s ) as a function of s for 

= 0 . 5 , ᾱ2 = 2 . 0 and k̄ 2 = 3 . 0 for four different values of β̄1 . It

s found that in each case, the function exhibits a pole at a pos- 

tive value of s smaller than β̄1 , as predicted by the proofs dis- 

ussed above. Further, the locations of the poles for the four curves 

n Fig. 3 correspond exactly with the zeroes of the corresponding 

lots of q (s ) shown in Fig. 2 (a). 

Note that the derivation presented in this section does not place 

ny limitations on the other two parameters of the problem, ᾱ2 

nd k̄ 2 , or on the location ξ within the finite layer. Therefore, the 

esults are valid everywhere in the finite layer and for all values of 

hermal properties of the materials. 

. Results and discussion 

.1. Comparison with past work and numerical simulations 

The present work generalizes past work on pure diffusion anal- 

sis in a stack of a finite thickness layer and a semi-infinite 

edium [7] by accounting for temperature-dependent heat gen- 

ration in the finite layer. Therefore, it is instructive to com- 

are results from the present work with pure-diffusion results. 

his comparison is presented in Fig. 4 , where Fig. 4 (a) presents 

 plot of temperature at ξ = 0 . 5 in the center of the finite
r as a function of time, and (b) temperature distribution at τ = 2 . 0 . In both cases, 

r comparison, pure-diffusion results from past work [7] are also plotted. Problem 
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Fig. 5. Comparison with finite-element simulations: (a) Temperature distributions at multiple times, and (b) temperature at two locations as functions of time calculated 

using the present work for ᾱ2 = 1 . 5 , k̄ 2 = 2 . 4 , β̄1 = 0 . 4 . Results from a finite-element simulation are also presented for comparison. 
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ayer as a function of time, and Fig. 4 (b) presents a plot of

emperature distribution in both layers at τ = 0 . 1 . In each case,

urves for multiple values of β̄1 are presented, and the pure- 

iffusion curve based on past work [7] is also presented for 

omparison. 

Fig. 4 (a) shows greater temperature rise over time with increas- 

ng value of β̄1 , which is consistent with expectations, since in- 

reasing β̄1 results in increased heat generation and thus greater 

emperature rise. As the value of β̄1 reduces, Fig. 4 (a) shows that 

he temperature curves from the present work approach the pure- 

iffusion curve, as expected. For β̄1 = 0 . 01 , the curves from the

resent work and past work are nearly identical. The temperature 

istributions in both layers at a specific time presented in Fig. 4 (b) 

how, consistent with Fig. 4 (a), greater temperature rise with in- 

reasing β̄1 . Further, the temperature rise is always greater in the 

nite layer, which is also consistent with heat generation occur- 

ing in the finite thickness layer. Similar to Fig. 4 (a), curves based 

n the present work in Fig. 4 (b) approach the pure diffusion curve 

rom past work as the value of β̄1 reduces. This shows that results 

rom the present work correctly reduce to pure-diffusion results as 

he value of β̄1 reduces to zero. 

In addition to comparison with past work for a special case, re- 

ults from the present work are also compared with finite-element 

umerical simulations carried out in ANSYS. For this purpose, a 

ne-dimensional geometry is modeled and discretized. The semi- 

nfinite medium is simulated by considering a long enough geom- 

try such that the temperature at the other end of the geometry 

an be verified to always remain close to zero within the simulated 

ime period. Temperature-dependent heat generation in the finite 

ayer is simulated using a user-defined function. All other aspects 

f the simulation are chosen to be identical to the assumptions 

utlined in Section 2 . Grid and timestep independence of simula- 

ions is confirmed by continuing to refine the mesh and time step 

ntil further refinement does not result in significant change in 

he predicted temperature field. Comparison between the analyti- 

al model and finite-element simulations is carried out in terms of 

emperature distributions at multiple times in Fig. 5 (a), and tem- 

eratures at multiple locations as functions of time in Fig. 5 (b). 

roblem parameters are β̄1 = 0 . 4 , ᾱ2 = 1 . 5 and k̄ 2 = 2 . 4 . Both plots

how excellent agreement between the present work and numeri- 

al simulations over the entire geometry and throughout the time 

uration. The worst-case deviation between the two is found to 

e 1.3%, which is quite reasonable. The small deviation may arise 

rom computational error in finite-element simulations as well as 

omputations in the present work. 
6 
.2. Evolution of temperature field with time 

It is of interest to predict how the temperature field in the fi- 

ite layer changes over time. In particular, whether the tempera- 

ure field converges or diverges at large time is of much practical 

nterest for safety design. In this case, evolution of the temperature 

eld is governed by several physical processes that occur in paral- 

el with each other. Firstly, heat generation within the finite layer 

ccurs proportional to the local temperature, and, therefore, as the 

ocal temperature rises/falls, so does the heat generation rate. Fur- 

her, heat diffuses within the finite layer towards the semi-infinite 

edium, and is then conducted into the semi-infinite medium at 

he interface. Further diffusion within the semi-infinite medium 

ay increase the temperature of the semi-infinite medium, par- 

icularly close to the interface, with increasing time. This implies 

hat the rate of heat removal by the semi-infinite medium may re- 

uce over time due to diminished temperature difference between 

he two layers. In order to highlight the interplay between these 

arious processes going on in this problem, temperature at ξ = 0 . 5 

n the finite layer is plotted as a function of time for two different

alues of β̄1 in Fig. 6 (a) and Fig. 6 (b), while holding other param-

ters constant. For a relatively small value of β̄1 , implying weak 

onnection between heat generation rate and temperature rise, 

ig. 6 (a), particularly the inset within the plot, shows that temper- 

ture in the finite layer decreases at first. This is because at early 

imes, temperature evolution is dominated by diffusion towards 

he semi-infinite medium, while heat generation is still quite low 

ue to the small value of β̄1 . In some time, however, the tempera- 

ure reaches a minima (see inset of Fig. 6 (a)), which is when heat 

emoval into the semi-infinite medium has saturated, due to tem- 

erature rise in the semi-infinite medium, and, afterwards, heat 

eneration within the finite layer slowly begins to become more 

nd more significant in comparison. This results in slow tempera- 

ure rise past the minima in Fig. 6 (a). Over some time, significant 

emperature rise has occurred within the finite layer due to the 

ncreasing dominance of heat generation over diffusion. Due to the 

ositive feedback between temperature and heat generation, even- 

ually, the temperature curve diverges, even though it may occur 

fter considerable time due to the relatively small value of β̄1 . Such 

ivergence even for small β̄1 is consistent with the unconditionally 

nstable nature of this problem, as proved in Section 4 . 

For comparison, a similar temperature curve is also plotted in 

ig. 6 (b) for a relatively larger value of β̄1 = 2 . 0 . An inset of the

emperature curve at very small times is also shown. Fig. 6 (b) 

hows interesting changes in the temperature curve, particularly 
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Fig. 6. Evolution of temperature at center of finite layer ( ξ = 0 . 5 ) with time for a representative problem with (a) β̄1 = 0 . 2 and (b) β̄1 = 2 . 0 . Insets show zoomed-in plots at 

small times. Other problem parameters are ᾱ2 = 2 , k̄ 2 = 3. 
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t very small times. It is seen, particularly in the inset, that the 

emperature rises for a short time to reach a local maxima, then 

tart going down to reach a minima, and then begins to mono- 

onically rise and eventually diverge. This interesting behavior of 

he temperature curve may be explained on the basis of the bal- 

nce between diffusion, heat removal and the diminishing role of 

he semi-infinite medium over time. At very early times, the ther- 

al diffusion wave from the center of the finite layer has not yet 

eached the interface, and, therefore, the semi-infinite medium has 

ery little influence. On the other hand, since the value of β̄1 is 

elatively large, therefore, heat generation dominates at very early 

imes, which explains the first peak in the inset in Fig. 6 (b). Once

iffusion reaches the interface, some heat removal begins to oc- 

ur, which results in reduction in temperature for a small time 

eyond the maxima. However, since β̄1 is so large, this reduc- 

ion in temperature is short-lived, and heat generation soon be- 

ins to dominate the dynamics of this problem once more. The 

lowdown in heat removal into the semi-infinite medium due to 

ts own temperature rise also likely contributes towards this phe- 

omenon. Eventually, similar to the first case presented in Fig. 6 (a), 

here is a divergence in the temperature curve for this case as well, 

lthough the divergence in the present case occurs at a much ear- 

ier time than the first case. This is explained on the basis of the 
ig. 7. Evolution of temperature distribution in the two layers at multiple times for a repr
¯

1 = 2 . 0 . 

7 
uch larger value of β̄1 in the second case, which results in a 

ot more aggressive increase in heat generation rate with temper- 

ture, resulting in divergence much earlier due to the strong posi- 

ive feedback. 

Fig. 7 presents temperature distributions within the finite thick- 

ess layer and semi-infinite medium at multiple times for the 

wo cases considered above. The β̄1 = 0 . 2 curves presented in 

ig. 7 (a) show a reduction in the temperature field first at early 

imes, followed by slow increase in the temperature field over 

ime, eventually leading to divergence at large time. In contrast, 

ith β̄1 = 2 . 0 , the temperature field diverges much faster, and 

t each time plotted here, the finite layer is much hotter than 

he semi-infinite medium, compared to the β̄1 = 0 . 2 case. In each 

f the cases plotted in Fig. 7 (a) and Fig. 7 (b), the temperature

urve is flat at ξ = 0 , consistent with symmetry considerations, 

nd the temperature field in the semi-infinite medium far away 

rom the interface approaches zero, also consistent with the semi- 

nfinite nature of the medium. There is continuity of the temper- 

ture field at the interface, but the slopes are different, which 

s due to the different values of thermal conductivity of the two 

aterials. 

The proof presented in Section 4 establishes unconditional in- 

tability of this problem regardless of how small β̄1 is, as long as 
esentative problem with ᾱ2 = 2 , k̄ 2 = 3. Plots are presented for (a) β̄1 = 0 . 2 and (b) 
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Fig. 8. Effect of heat generation coefficient: (a) Temperature at the center of the finite layer ( ξ = 0 . 5 ) at τ = 2 , and (b) time taken for temperature at the center of the finite 

layer to reach θ1 = 3.0, both plotted as functions of β̄1 . Other problem parameters are ᾱ2 = 2 , k̄ 2 = 3. 
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Fig. 9. Effect of heat generation coefficient: Average temperature in the finite thick- 

ness layer as a function of τ at multiple values of β̄1 . Other problem parameters are 

ᾱ2 = 2 , k̄ 2 = 3. 
¯
1 > 0 . The divergence predicted by the proof is seen for both val-

es of β̄1 presented in Figs. 6 and 7 . However, it is important to

ote that such divergence occurs over very different time periods, 

epending on the value of β̄1 . Since practical heat-generating pro- 

esses occur only for a specific time period, therefore, the tem- 

erature field in a practical device may remain bounded within 

he time period of interest, despite the unconditional instability at 

arge times proved here. 

.3. Impact of heat generation coefficient 

Since the heat generation coefficient β̄1 is an important param- 

ter in this problem, further investigation of the effect of β̄1 on 

he temperature distribution is carried out. In practical problems, 
¯
1 is determined on the basis of the physical processes respon- 

ible for temperature-dependent heat generation. For example, in 

he case of a Li-ion cell, chemical decomposition reactions within 

he cell generate heat, and the nature of these reactions helps de- 

ermine the value of β̄1 [ 14 , 30 ]. As another example, in the case

f thermal runaway in a MOSFET, the strength of the underlying 

emperature dependence of current can be used to determine β̄1 

15] . Such practical problems are also often governed by a specific 

ime interval of interest, which in these examples may be the to- 

al charge/discharge time for a Li-ion cell or the pulse width of the 

OSFET, respectively. Further, each of these devices are character- 

zed by a maximum tolerable temperature, on the basis of perfor- 

ance, safety and reliability considerations. Therefore, it is of in- 

erest to examine the interplay between β̄1 and the operating pa- 

ameters outlined above. 

Fig. 8 (a) plots the temperature at the center of the finite layer 

 ξ= 0.5) at the end of a particular time period, τ= 2.0, as a func-

ion of time heat generation coefficient β̄1 . As expected, there is a 

trong dependence of the temperature rise on β̄1 . In general, there 

s small temperature rise for low values of β̄1 , but the temperature 

ncreases exponentially for larger values. The strong dependence 

hown by Fig. 8 (a) highlights the importance of keeping β̄1 as low 

s possible in practical systems in order to minimize the risk of 

hermal runaway. 

Note that Fig. 8 (a) is plotted at a specific time, whereas, it is

ossible that the total time interval of practical systems may be 

overned by other considerations. Therefore, the time taken for 

emperature at the center of the finite layer to reach a threshold 

alue, say, θmax = 3 is calculated as a function of β̄1 . If the actual

ime period of the process is lower than this calculated thresh- 
8 
ld, then the layer temperature will stay below θmax , whereas, 

he actual time period being greater would indicate unacceptably 

arge temperature rise within the process. This plot is presented 

n Fig. 8 (b), which indicates a rapid increase in the time taken to 

each θmax as β̄1 reduces. This indicates the capability to withstand 

he temperature-dependent heat generation for longer and longer 

ime as β̄1 decreases, which is along expected lines. The time taken 

o reach θmax is extremely large for sufficiently small values of 
¯
1 , even though, Section 4 shows that the system is unstable for 

ny positive β̄1 . Therefore, depending on how long an actual pro- 

ess lasts and the maximum temperature that can be tolerated, the 

ystem can still survive, despite the unconditional instability. Note 

hat due to the sharp increase in the time taken to reach θmax at 

mall values of β̄1 , a plot is provided as an inset in order to show

his curve between β̄1 = 1 and β̄1 = 4 , which shows, as expected a 

ontinued reduction in time taken to reach θmax as β̄1 increases. 

In some applications, the average temperature of the finite layer 

ay also be of interest. Fig. 9 plots this quantity as a function of 

ime for different values of β̄1 , with other parameters held con- 

tant at ᾱ2 = 2 . 0 and k̄ 2 = 3 . 0 . Since the temperature field diverges

or these cases, the plot is cut off at a maximum temperature value 
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Fig. 10. Effect of thermal properties of the semi-infinite medium: Temperature at the center of layer 1 as a function of time for multiple values of (a) k̄ 2 and (b) ᾱ2 , for 

β̄1 = 2 . In parts (a) and (b), ᾱ2 = 2 and k̄ 2 = 2 , respectively. 
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Fig. 11. Maximum heat generation coefficient β̄1 in order to keep the peak tem- 

perature below a threshold θmax as a function of time duration of heat genera- 

tion. Curves are plotted for several values of θmax . Other parameters are ᾱ2 = 2 . 0 , 

k̄ 2 = 3 . 0 . 
f 20. Fig. 9 shows that the average temperature of the finite layer 

lways diverges, although for small values of β̄1 , divergence is rela- 

ively slow and the rapid rise in temperature is preceded by a long 

eriod in which temperature does not change much. In contrast, 

or larger values of β̄1 , such as β̄1 = 2 . 0 , the average temperature

egins to go up almost immediately and rises very rapidly. The 

ime taken to reach a temperature value of 20 is about 57 times 

arger for β1 = 2 . 0 than for β1 = 0 . 2 . 

.4. Effect of thermal properties 

Thermal properties of the two materials clearly play an impor- 

ant role in determining the nature of the temperature distribution. 

f particular interest is the thermal conductivity and thermal dif- 

usivity of the semi-infinite medium, relative to the finite layer. For 

xample, a number of materials are available for cooling of a Li-ion 

ell, and it is important to benchmark the thermal performance 

f candidate materials. Fig. 10 (a) and Fig. 10 (b) present curves for 

emperature at ξ= 0.5 in the finite layer as a function of time 

or different values of k̄ 2 and ᾱ2 , respectively, while other ther- 

al properties are held constant. Results indicate strong influence 

f both k̄ 2 and ᾱ2 on temperature distribution. As k̄ 2 increases, 

ig. 10 (a) shows that temperature rise in the finite layer becomes 

maller and smaller. Even though each curve is expected to diverge 

ventually, in practical problems, the lower rate of growth of tem- 

erature for large k̄ 2 implies greater time window available for the 

eat generation process (such as discharge of a Li-ion cell or oper- 

tion of a MOSFET device) to complete. The strong dependence of 

emperature on k̄ 2 is not surprising, since k̄ 2 is the primary ther- 

al property that governs interfacial heat transfer from the finite 

ayer into the semi-infinite medium, per Eq. (13) . On the other 

and, Fig. 10 (b) shows that increasing ᾱ2 results in greater tem- 

erature rise. This is because a larger value of ᾱ2 , while holding k̄ 2 
onstant, is equivalent to lower volumetric heat capacity, which re- 

ults in greater temperature rise in the semi-infinite medium, thus 

ower heat removed from the finite layer and, therefore, greater 

emperature rise in the finite layer. Note that in practical materials, 

hermal conductivity and diffusivity usually both rise/fall together, 

hich is why, it may be more appropriate to carry out such anal- 

sis while letting both properties vary. This has been presented in 

he next sub-section for materials of practical interest. 

.5. Practical design guidelines 

The theoretical results presented in this work can be helpful 

n the design and optimization of practical engineering systems. 
9 
or example, it is of interest to determine β̄1 ,max , the highest heat 

eneration coefficient that can be tolerated over a time interval 

total without the peak temperature exceeding a desired threshold. 

his problem is first addressed in non-dimensional form in order 

o produce universal design curves, and then applied to a specific 

ractical problem related to thermal design of Li-ion cells. 

Fig. 11 plots β̄1 ,max as a function of τtotal , the total time taken by 

he process for given thermal properties ( ̄α2 = 2 . 0 , k̄ 2 = 3 . 0 ). Plots

re presented for four different values of the peak temperature 

max . Fig. 11 shows that the larger the value of τtotal , i.e., the longer

he heat generation occurs, the larger is the risk of exceeding θmax , 

nd, therefore, the smaller is the maximum heat generation coeffi- 

ient that can be tolerated. However, in each case shown in Fig. 11 ,

here is a plateau effect, in that there is a sharp reduction in β̄1 ,max 

hen τtotal is small, but for larger values, the impact on β̄1 ,max is 

uch less significant. Fig. 11 also shows that the larger the value of 

max , the larger is the value of β̄1 ,max . A large value of θmax allows 

 relaxed thermal design, since a large temperature peak can be 

olerated. Therefore, a larger value of β̄1 ,max can be accommodated 

ompared to when θmax is small, in which case, even small β̄1 ,max 

an cause sufficient temperature rise to exceed the threshold. 
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Fig. 12. Applications for Li-ion battery thermal design: (a) Maximum tolerable heat generation coefficient β1 as a function of discharge time represented by the discharge 

rate in order to keep the peak temperature below 360 K. Curves are plotted for three different materials around the cell. (b) Maximum tolerable heat generation coefficient 

β1 as a function of discharge rate for different values of highest permissible peak temperature. Curves correspond to FC72 material around the cell. In both cases, the ambient 

is at 300 K and the initial temperature of the cell is 330 K. 
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Fig. 11 is presented in completely non-dimensional form to fa- 

ilitate its use as a universal design tool for any general system 

egardless of specific dimensions or thermal properties. The use of 

lots similar to Fig. 11 for solving a practical engineering problem 

s illustrated in the context of a prismatic Li-ion cell being cooled 

n a large surrounding ambient. In order to prevent thermal run- 

way of a Li-ion cell, the cell temperature is required to be main- 

ained below a certain threshold [ 14 , 31 ]. This requires effective 

issipation of heat generated within the cell due to temperature- 

ependent decomposition reactions. 

In the context of a Li-ion cell, the C-rate, also known as dis- 

harge rate characterizes the time duration of a discharge process 

32] . The C-rate of a discharge process is defined as the reciprocal 

f the number of hours taken for the process to completely dis- 

harge the cell, starting from a fully charged cell [32] . For exam- 

le, C-rates of 1C and 4C correspond to a total discharge time of 

 h and 0.25 h, respectively. Starting from an initial temperature 

f the cell, it is of interest to determine if, for a given C-rate of the

ischarge process, the cell temperature will exceed the threshold 

emperature before the process is complete. If the threshold tem- 

erature is not exceeded before the process is complete, the cell 

ill not undergo thermal runaway despite the unconditional insta- 

ility of the process proved in Section 4 above, because once the 

rocess is complete, there is no longer any heat generation and the 

ell can begin to cool down. 

Two specific questions related to diffusion-reaction heat trans- 

er in a discharging Li-ion cell surrounded by a large medium are 

nswered using the model. Firstly, the performance of three differ- 

nt materials around the Li-ion cell is characterized and compared. 

or a 10 mm thickness cell initially at 330 K with an ambient 

emperature of 300 K, the maximum value of heat generation coef- 

cient, β1 ,max is computed for different C-rates. Three different ma- 

erials around the cell – FC72, which is a dielectric fluid [33] , water 

nd Aluminum – are considered. While FC72 and water may be 

sed for immersion cooling, in some applications, the cell is pack- 

ged within an Aluminum matrix. Thermal properties of the Li-ion 

ell are taken from past measurements on an 18650 cell [ 34 , 35 ].

tandard thermal properties are assumed for water and Aluminum. 

roperties for FC72 are obtained from manufacturer datasheet [33] . 

Results pertaining to this materials comparison are presented 

n Fig. 12 (a) and Fig. 12 (b). These data show significant difference 

n thermal performance of the device depending on the nature of 

he medium around the cell. In case of FC72, due to its relatively 
10 
oor thermal properties, the maximum tolerable value of β1 ,max 

s quite small. Due to superior thermal properties, water performs 

etter and Aluminum even better. As expected, the greater the dis- 

harge rate, i.e., shorter the time duration of the discharge pro- 

ess, and therefore, the greater is the value of β1 ,max that can be 

argeted without exceeding the threshold temperature. Fig. 12 (b) 

hows, as expected, that for a given coolant material, as the dis- 

harge goes up, the maximum tolerable value of heat generation 

lso goes up. Further, as the threshold temperature becomes more 

nd more stringent, the maximum tolerable value of heat genera- 

ion reduces. Note that for thermal properties corresponding to a 

i-ion cell [ 34 , 35 ], a value of β1 ,max = 0 . 01 s −1 corresponds to a

 Q 

′′′ /d T value of around 16,500 Wm 

−3 K 

−1 , where Q 

′′′ is the volu-

etric heat generation rate. 

. Conclusions 

The key contributions of this work include the development of 

 theoretical model for understanding multilayer diffusion-reaction 

n a problem where one layer is finite and the other is semi- 

nfinite, as is commonly encountered in battery cooling, MOSFET 

evice thermal performance and related problems. The theoretical 

roof of unconditional instability of this problem presented here 

ontributes towards extending the state-of-the-art in the theory of 

hermal stability, particularly since there is only limited literature 

n thermal stability analysis using the Laplace solution [36] . 

While these theoretical results indicate that this problem is, 

n principle, unconditionally unstable, results also indicate that 

he temperature of the finite layer may actually reduce for some 

ime before diverging. It is also shown that the time taken for di- 

ergence may be quite large under certain conditions, for exam- 

le when the heat generation coefficient is small. Therefore, de- 

pite the unconditionally unstable nature of the problem, practical 

iffusion-reaction processes may still remain within a reasonable 

hermal envelope if the time duration of the process is reasonably 

hort. 

Non-dimensional curves, such as those presented in Fig. 11 may 

erve as universal design tools, regardless of the specific values of 

imensions and other parameters of a specific problem, and, there- 

ore, may be used for a wide variety of applications. One specific 

pplication discussed in this work – cooling of a Li-ion cell during 

ischarge – may be of particular relevance for ensuring safe elec- 

rochemical energy conversion and storage. 
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It is important to recognize the key limitations and assumptions 

nderlying the present work. The heat generation phenomenon has 

een linearized, as is commonly the case for first-order analysis 

 14 , 18 , 19 ]. All thermal properties are assumed to remain constant,

espite change in temperature. Natural convection heat transfer 

r any other fluid flow in the surrounding medium has been ne- 

lected. In case the surrounding medium is a fluid, it is important 

o confirm the validity of this assumption by confirming that the 

overning Rayleigh number is sufficiently small. 
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