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Abstract
Sublimation of a humid porous body occurs commonly in food technology and thermal energy storage system . Especially, 
in accelerated freeze-drying, preservation of biological materials to be denatured is the prime interest. Despite the available 
literature on sublimation, there is a general lack of mathematical analysis of the effect of convection in the frozen and vapour 
regions, and rate of evaporation of water vapour in the vapour region. Therefore, it is essential to explore a mathematical 
model which accounts for these physical processes. This paper attempts to address these gaps in the modeling of sublimation 
of a humid porous body. For a specific form of the velocity profile, an exact solution of the current problem is obtained via 
similarity technique. Particularly, results from the current work are shown to be in strong agreement with the results of a 
previous work. The impact of various dimensionless problem parameters on the sublimation process is discussed extensively. 
Condition for sublimation limit is discussed. It is  obtained that sublimation can take place only under limit of sublimation 
curve. It is found that, in the presence of convection, sublimation process becomes fast and the material requires less time than 
usual to sublimate. Furthermore, higher rate of evaporation of water vapour produces a lower temperature field and slower 
propagation rate of sublimation interface.
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List of symbols

Thermophysical properties
�  Thermal diffusivity ( m2s−1)
cp  Specific heat ( Jkg−1K−1)
cpv  Specific heat of water vapour ( Jkg−1K−1)
k  Thermal conductivity ( Wm−1K−1)
�  Material density ( kg m−3)
L  Latent heat of sublimation ( J kg−1)
u  Unidirectional molecular motion ( m s−1)
Cm  Molar concentration of vapour moisture ( mol m−3)

Mm  Molecular mass ( kg mol−1)
pv  Vapour pressure ( kg m−1 s−2)
R0  Universal gas constant ( kg m2 s−2 K−1 mol−1)
t  Time (s)
Exp(.)  Exponential function
Erf(.)  Error function

Temperature profile
F  Temperature (K)
Fv  Sublimation temperature (K)
Fs  Surface temperature (K)
T1  Non-dimensional temperature profile (

T1 = 1 +
F1−Fv

Fs−Fv

)

T2  Non-dimensional temperature profile 
(
T2 =

F2−F0

Fv−F0

)

  Non-dimensional molar concentration 
m m, s

m, sm, 0

�  Non-dimensional temperature/concentration 
profile
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Space variables
x  Space coordinate (m)
�  Non-dimensional space coordinate
s(t)  Moving sublimation front (m)

Non‑dimensional quantities
�21  Non-dimensional thermal diffusivity 

(
�2

�1

)

C  Non-dimensional molar limit concentration (
C =

Cm,0−Cm,max

Cm,max−Cm,s

)

�  Non-dimensional quantity 
(
� =

cpvMmCm,0

cp�1

)

�  Non-dimensional heat flux 
(
� =

k1(Fs−Fv)

k2(Fv−F0)

)

l0  Non-dimensional latent heat of sublimation (
l0 =

Cm,0MmL

k2(Fv−F0)
�1

)

�  Unknown constant 
�
� =

s(t)

2
√
�1t

�

Non‑dimensional numbers

Pe  Péclet number 

�
Pe =

u√
�

t

�

Lu  Luikov number 
(
Lu =

�m

�1

)

Subscripts
0  Initial
1  Vapour region
2  Frozen region
m  Moisture
s  Surface x = 0

Introduction and Literature review

Introduction

Heat and mass transfer processes, such as sublimation–des-
orption, evaporation, condensation, melting and solidification 
have a wide range of applications in food technology [1–3], 
separation processes [4–7], spray-freezing [8] migration of 
heat and moisture in soils and grounds [9–13]. In addition 
to the commonly studied freezing and melting processes, 
sublimation is also of much technological importance [14].  
Porous medium offers an extensive contact surface with flu-
ids, which can enhance the effect of heat and mass transfer 
[15–17]. Sublimation converts a solid directly into vapour 
form without the intermediate liquid phase. Sublimation is 
driven by addition of energy into the solid, in order to meet 
the internal energy required for change of state, i.e. the latent 
heat and work done by the molecules at constant pressure. 
Raising the temperature above the sublimation point, results 
in propagation of a sublimation interface, determining the 
location of which is usually of primary interest. Sublimation 
of solid carbon dioxide, also known as dry ice, which is used 
commonly for shipping very cold objects and sublimation of 

arsenic at 615 ◦C [18] are well known examples of sublima-
tion. Moreover, sublimation of ice plays a key role in the 
earth’s energy balance and global climate [19].

Literature review

Heat and mass transfer in phase change processes can be 
highly coupled and complicated, particularly when the solid 
phase is porous. While conduction is often the dominant heat 
transfer mechanism in solid [20, 21], in specific practical 
applications,  heat transfer due to convection driven by fluid 
motion within porous frozen region and in the liquid region 
may also be important [22]. Similar to melting and solidifi-
cation problems, the sublimation problem is, in general, 
nonlinear, and closed-form solutions are expected only for 
special cases. Many approximate analytical and numerical 
methods have been proposed  to solve the problem numeri-
cally. Examples include, homotopy perturbation method 
[23], heat balance method [24, 25] and wavelet method 
[26–28]. A mathematical framework of heat and mass trans-
fer problem in capillary-porous bodies was presented by 
Luikov [29]. Exact solutions for specific heat and mass trans-
fer problems have been reported in previous literatures 
[30–33]. An exact treatment of the drying problem using 
similarity method is presented by Marcus and Tarzia [34], 
in which, coupled phase change in a porous medium with 
heat flux of the form − q0√

t
 has been accounted for. Hayashi 

et al. [35] presented an experimental and analytical study of 
self-freezing of a wet substance. A mathematical model 
describing sublimation of frozen moisture in a porous space 
is reported in [36]. The present mathematical formulation is 
inspired from the work [36], in which sublimation process 
is presented in the absence of convective. In this work, an 
exact solution of the governing heat and mass transfer model 
was obtained and effect of various parameters were dis-
cussed. The optimal condition for sublimation rate in a 
porous half-space and exact solution for the temperature, 
vapour and track of moving sublimation interface has been 
obtained in [37]. Douglas and Mellon [38] presented a study 
on the rate of ice sublimation, which is controlled by vapour 
transport away from the planet’s outer surface, may have led 
to the formation of landforms on Mars. Approximate and 
experimental study of sublimation of water in porous 
medium has been presented by Zhang et al. [39]. An analyti-
cal model involving heat and moisture flow describing sub-
limation process in a porous half-space is seen in [40]. This 
work did not account the convection term in the porous fro-
zen region and convective term of moisture transfer of the 
water vapour in the vapour region, which is being accounted 
in detail in the present work. In sublimation–dehydration 
process, porous materials are merely associated with some 
water crystals present there. Removing these water crystals 
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from the vapour region is one of the key important process 
in sublimation to obtain a stable biological material.  In con-
nection with this, the convective term due to mass transfer 
of water vapour is more realistic in vapour region than in the 
frozen part [35]. The convective drying of biological materi-
als is the most favourable approach to stabilize them for long 
time and avoid denaturation [41, 42]. Therefore, mathemati-
cal formulation of sublimation–dehydration of  biological 
products such as fruits is a key relevant process in  dryer 
design [43]. Recently, Chaurasiya and Singh [44] obtained 
an analytical solution of a freeze-drying problem which 
accounts sublimation as well as desorption and it was shown 
that sublimation and desorption can take place only under 
sublimation and desorption curve.

Present contribution

The study of heat and mass transfer problems is an impor-
tant aspect of the field of moving boundary problems. Treat-
ment of such type of problems becomes more challenging by 
the addition of convection term driven by fluid flow in the 
vapour, frozen porous and convective term due to mass trans-
fer of the water vapour. Based on the literature cited above, a 
key shortcoming of available research on modelling of sub-
limation is related to insufficient modelling of the effect of 
convection in the frozen porous region and convective term 
of moisture transfer due to water vapour in the vapour region. 
Therefore, study of convective sublimation is necessary to 
meet the current technological demand of sublimation–dehy-
dration. The major contribution of the present work are: 

1. convective term due to moisture flow of water vapour is 
considered in vapour region.

2. presence of convection driven due to fluid flow is 
assumed within the porous frozen region, molar con-
centration of vapour moisture and in vapour region.

3. exact treatment for temperature and moisture profile as 
well as the location of the tracking of sublimation inter-
face is presented for a particular velocity profile.

From this study it is found that convection plays a key 
important role during sublimation of a porous body. In the 
presence of convection, the rate of sublimation is enhanced 
and the material requires less time than usual to sublimate. 
It is also found that a large rate of evaporation of water 
vapour reduces the sublimation process. This result can be 
improved with offering lower rate of evaporation of water 
vapour. Results obtained from this study  expected to con-
tribute in food technology, especially in accelerated freeze-
drying (AFD) technique. Similar to the sublimation, current 
study is also useful in desorption process, which is one of 
the important step in freeze-drying. The goal of the modern 

sublimation–dehydration process is designed to increase the 
temperature field of the desorption region to a high level 
under high vacuum (without loss of flavour of the biologi-
cal products) after end of sublimation process. Thus, for 
future scope, the current study can have its direct application 
in freeze-drying involving sublimation and desorption, and 
evaporation of water crystals from vapour region.

Physical description and mathematical 
modelling of the problem

Analysis

To study the problem, consider a rigid, solid, porous half-
space that contains evenly frozen moisture. The schematic 
diagram of the sublimation process described in the prob-
lem is depicted in Figs. 1 and 2 . The porous body resides 
in a low-pressure environment, therefore the main pressure 
acting on the frozen region is the moisture vapour pres-
sure. Thus, we consider that during the sublimation, the 
environmental pressure (which remains unchanged) and 
vapour pressure (acting on the frozen region) are equal. 
Following these assumptions, the process of sublimation 
will occur at a constant sublimation temperature cor-
responding to the vapour pressure acting on the frozen 
region. The following additional assumptions are also 
made in order to formulate the sublimation process: 

1. The vapour is treated to be an ideal gas due to the low 
vapour pressure.

2. Initial concentration profile within frozen phase is 
assumed to be uniform, denoted by Cm,0 . For conveni-

Fs

Heat and Moisture region

Frozen region

Fv

F0

Cm, s Location of sublimation interface

0
s(t)

∞

x

Vapour region                           

Fig. 1  Schematic diagram describing the one-dimensional sublima-
tion process of a humid porous body
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ence, it is considered that at the sublimation state, 
pv∕FvR0 , the value of Cm,0 is higher in compare to the 
value of the vapour molar concentration, where Fv and 
pv denotes the sublimation temperature and vapour pres-
sure acting on the frozen region, respectively, and R0 
represents the universal gas constant.

3. The frozen porous body is initially assumed to be at a 
fixed temperature F0(< Fv) . Sublimation begins when 
the temperature of the frozen body reaches Fv.

4. At x = 0 , a fixed molar concentration of the moisture, 
Cm,s(< Cm,0) and a fixed temperature Fs(> Fv) is main-
tained to sublimate the frozen porous body.

5. The space 0 < x < s(t) represents the vapour region in 
which heat and mass transfer occurs, whereas the space 
s(t) < x < ∞ is the frozen region without moisture flow. 
s(t) is the position of sublimation front.

6. The effect of the convective term due to moisture flow of 
the water vapour is accounted for in the vapour region.

7. Both conduction as well as convection heat transfer 
mechanism are considered in each region.

8. Constant thermophysical properties are assumed in each 
region.

9. Volumetric expansion during sublimation is neglected.

In the view of above assumptions,  the mathematical descrip-
tion of  sublimation process in heat and mass transfer  is for-
mulated as follows:

Mathematical modelling

The dynamics of one-dimensional heat-mass transfer in the 
sublimation process can be governed by below system of dif-
ferential equations:

Vapour region for heat and mass transfer

where F1 represents the unknown temperature profile and �1 
is density, in the vapour region. The term on right side (

cpv

�1cp

dw

dt

)
 represents the convective term due to mass transfer 

of the water vapour, where w stands for rate of mass transfer 
[35].

where Cm represents the unknown molar concentration of 
vapour moisture.

Frozen region

where F2 is the unknown temperature distribution in the fro-
zen porous region. �1, �m and �2 are the thermal and mass 
diffusivity in the vapour and frozen regions, respectively. 
u1, um and u2 denote the unidirectional motion of phase 
change material in the vapour and frozen regions, respec-
tively [45–48].

Initial condition

In the sublimation process, it is assumed that the frozen porous 
body is at a uniform initial temperature F0 , i.e.

Boundary condition

At x = 0 the temperature and mass for vapour region is sub-
jected to the following conditions,

(1)
𝜕F1

𝜕t
+ u1

𝜕F1

𝜕x
= 𝛼1

𝜕2F1

𝜕x2
+

(
cpv

𝜌1cp

dw

dt

)
𝜕F1

𝜕x
,

0 < x < s(t),

(2)
𝜕Cm

𝜕t
+ um

𝜕Cm

𝜕x
= 𝛼m

𝜕2Cm

𝜕x2
, 0 < x < s(t),

(3)
𝜕F2

𝜕t
+ u2

𝜕F2

𝜕x
= 𝛼2

𝜕2F2

𝜕x2
, s(t) < x < ∞,

(4)F2(x, t) = F0, t = 0.

(5)F1(x, t) =Fs, x = 0.

(6)Cm(x, t) =Cm,s, x = 0.

Frozen moisture

Vapor

Fig. 2  Physical phenomena of the one-dimensional sublimation pro-
cess of a frozen porous body in the presence of conduction as well as 
convection
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Heat and mass balance condition

In order to determine the location of moving sublimation 
front as a function of time, an expression for energy balance 
may be written as follows:

and

where latent heat of sublimation is denoted by L and Mm 
denotes molar mass of the moisture. In addition, at the sub-
limation interface, the temperature of the vapour and frozen 
regions is equal to the sublimation temperature, i.e.

It is assumed that as x → ∞ the temperature of the frozen 
region approaches the initial temperature

Dimensionless scaling parameters

The dimensional problem presented in Sect. 3.2 can be con-
verted into non-dimensional form by introducing the follow-
ing scaling parameters:

Note that the definition of Pe presented above assumes that 
the velocity decays as 1√

t
 . Under these transformations (11), 

the system of Eqs. (1)–(10) is converted into the following 
form,

Vapour region for heat and mass transfer

(7)k2
�F2

�x
− k1

�F1

�x
= Cm,0MmL

ds(t)

dt
, x = s(t),

(8)�m
�Cm

�x
=
(
Cm,0 − Cm(x, t)

)ds(t)
dt

, x = s(t),

(9)F1(x, t) = F2(x, t) = Fv, x = s(t).

(10)F2(x, t) = F0, x → ∞.

(11)

(12)

𝜕T1

𝜕t
+ Pe

√
𝛼1

t

𝜕T1

𝜕x
= 𝛼1

𝜕2T1

𝜕x2
+

(
cpv

𝜌1cp

dw

dt

)
𝜕T1

𝜕x
, 0 < x < s(t),

(13)

Frozen region

Initial condition

Boundary condition

Heat and mass balance condition

and

It is assumed that as x → ∞ the temperature of the frozen 
region becomes approximately equal to the initial tempera-
ture, i.e.

Solution of the problem

The system of Eqs. (12, 14, 15, 16, 18, 20) and (21) that 
represent temperature distributions during the sublimation 
process in a half-porous space is similar to those that model 
temperature distribution during melting of a pure material in 

(14)
𝜕T2

𝜕t
+ Pe

√
𝛼2

t

𝜕T2

𝜕x
= 𝛼2

𝜕2T2

𝜕x2
, s(t) < x < ∞,

(15)T2(x, t) = 0, t = 0.

(16)T1(x, t) =2, x = 0.

(17)

(18)
�T2

�x
− �

�T1

�x
=

Cm,0MmL

k2(Fv − F0)

ds(t)

dt
, x = s(t),

(19)

(20)T1(x, t) = T2(x, t) = 1, x = s(t).

(21)T2(x, t) = 0, x → ∞.



 V. Chaurasiya et al.

1 3

a similar geometry [36]. The solution of the current problem 
can be obtained by the use of similarity transformations to 
obtain ordinary differential equations as follows:

where i = 1, 2,m and � is an unknown constant.

Solution of the vapour region

For heat transfer

The rate of moisture flow of the water vapour dw/dt vapor-
izes from the sublimation surface into gaseous form and this 
can be related with speed of sublimation front ds/dt. In Eq. 
(12), the term in right hand side dw/dt can be expressed in 
the manner [35],

Combining Eqs. (22) and (23), one may obtain

Now, Eq. (12) along with respective boundary conditions 
may be written as,

with

and

The exact solution of Eqs. (25) and (26) satisfying the 
boundary conditions can be obtained as [29, 40]

where Erf(.) is the error function that occurs commonly in 
transport problems in semi-infinite bodies [49].

For mass transfer

With the help of Eq. (22), the moisture Eq. (13) with their 
associated boundary conditions can be reduce to

(22)

(23)
dw

dt
≃ Cm,0Mm

ds

dt
.

(24)dw

dt
≃ Cm,0Mm�

√
�1

t
.

(25)
d2𝜃1

d𝜉2
+ 2(𝜉 − Pe + 𝛽𝜆)

d𝜃1

d𝜉
= 0, 0 < 𝜉 < 𝜆.

(26)�1(�) = 2, � = 0

(27)�1(�) = 1, � = �.

(28)

�1(�) =
Erf(Pe − ��) + Erf(Pe − � − ��) − 2 Erf(Pe − (1 + �)�)

Erf(Pe − ��) − Erf(Pe − (1 + �)�)
,

with

and

for which, the solution may be expressed as,

Solution of the frozen region

In a similar fashion, Eq. (14) for the frozen region can be 
reduced to the following form

with

and

for which, the solution is given by

With the help of Eq. (22), the heat and moisture balance 
condition given by Eq. (18) can be put in the form

(29)Lu
d2𝜃m

d𝜉2
+ 2(𝜉 − Pe

√
Lu)

d𝜃m

d𝜉
= 0, 0 < 𝜉 < 𝜆.

(30)�m(0) = 0, � = 0

(31)
d�m(�)

d�
= 2

�

Lu

(
1 − �m(�)

)
, � = �

(32)

�m(�) =

�
√
�

�
Erf(Pe) − Erf

�
Pe −

�√
Lu

��

�√
Lu Exp

�
−
(� − Pe

√
Lu)2

Lu

�

+
√
� �

�
Erf(Pe) − Erf

�
Pe −

�√
Lu

���
.

(33)𝛼21
d2𝜃2

d𝜉2
+ 2(𝜉 − Pe

√
𝛼21)

d𝜃2

d𝜉
= 0, 𝜆 < 𝜉 < ∞

(34)�2(�) = 1, � = �

(35)�2(∞) = 0, � = ∞

(36)�2(�) =

1 + Erf
�
Pe −

�√
�21

�

1 + Erf
�
Pe −

�√
�21

� .

(37)
d�2

d�
− �

d�1

d�
= 2 � l0, � = �.
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Condition for sublimation limit

A key limitation of the solution of the molar concentration 
in the vapour region, (Eq. (30)) is that the molar concen-
tration of the vapour at the sublimation front x = s(t) must 
not exceed the value of pv∕FvR0 [36]. Equation (32) can 
be written as

In order to determine this limiting condition, let

The condition for the sublimation limit with Luikov number 
and convection effect can be obtained from Eq. (38). Since, 
Cm(s(t), t) ≤ Cm,max , therefore

which can be rearranged as

Finally, using Eq. (22), the following limiting condition may 
be derived

(38)

Cm(x, t) − Cm,s

Cm,0 − Cm,s

=

�
√
�

�
Erf(Pe) − Erf

�
Pe −

�√
Lu

��

�√
Lu Exp

�
−
(� − Pe

√
Lu)2

Lu

�

+
√
� �

�
Erf(Pe) − Erf

�
Pe −

�√
Lu

��

(39)Cm,max =
pv

FvR0

and C =
Cm,0 − Cm,max

Cm,max − Cm,s

.

(40)

�
√
�

�
Erf(Pe) − Erf

�
Pe −

�√
Lu

��

�√
Lu Exp

�
−
(� − Pe

√
Lu)2

Lu

�

+
√
� �

�
Erf(Pe) − Erf

�
Pe −

�√
Lu

���
≤

Cm,max − Cm,s

Cm,0 − Cm,max

=
1

C
,

(41)
C ≤

1

�
√
�

�
Erf(Pe) − Erf

�
Pe −

x

2
√
Lu �1t

���√
Lu Exp

�
−

(�−Pe
√
Lu)2

Lu

�
+
√
� �

�
Erf(Pe) − Erf

�
Pe −

�√
Lu

���−1
.

(42)
C ≤

1

�
√
�

�
Erf(Pe) − Erf

�
Pe −

�√
Lu

���√
Lu Exp

�
−

(�−Pe
√
Lu)2

Lu

�
+
√
� �

�
Erf(Pe) − Erf

�
Pe −

�√
Lu

���−1
.

Eq. (42) represents the limiting condition for the sublimation 
process to occur in the presence of convection. From Eq. 
(39), we observe that for a constant sublimation pressure, 
either a large value Cm,0 or a large value of Cm,s gives a large 
value of C.

Some of these trade-offs between various factors in this 
problem are illustrated in sublimation curves shown in 
Figs. 3 and 4 . Sublimation may occur only in the region 
under these curves. From Fig. 3, it is evident that in the 
presence of convection, the sublimation limit increases 
more in compare to in the absence of convection. Moreo-
ver, positive value of the Luikov number Lu accelerates the 
sublimation limit as shown in Fig. 4. Consequently, high 
diffusivity of moisture through the vapour zone is required 
to keep the process under the sublimation limit.

Analysis of existence of the analytical solution

Determination of location and speed of the sublimation 
front depending on time is usually important in mov-
ing boundary problems. In the current work, this can be 
obtained from Eq. (37) along with the use of Eqs. (28) 
and (36), i.e.

Now, we show the existence of the solution of the problem 
(25)-(37) by defining a function of the form [45, 46],

(43)

� Exp
�
−(Pe − (1 + �)�)2

�
Erf(Pe − ��) − Erf(Pe − (1 + �)�)

−

Exp

�
−(Pe −

�√
�21

)2
�

√
�21

�
1 + Erf

�
Pe −

�√
�21

�� = � l0

√
�.
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Eq. (43) represents a transcendental condition governing the 
sublimation front location, which can be solved to deter-
mine the value of � , for example, using the Newton–Raph-
son method.

Note that, for positive real values of parameters Pe, �, � 
and �21 , limλ→0+ f (�) is negative while limλ→∞ f (�) gives 
positive. This, along with the continuous and differenti-
able nature of the function based on Eq. (44) confirms that 
there exists at least one root of f (�) over (0,∞) . Moreover, 
under these conditions, the derivative of f (�) is always 
positive over (0,∞) . Hence, f (�) has a unique root over 
(0,∞) . The next section discusses the effect of various 
parameters of this problem on the sublimation process.

Results and discussion

This section discusses the heat transfer phenomena, molar 
concentration and heat and mass transfer with molar con-
centration in vapour region. In the last subpart, the effect of 
various parameters on sublimation process is also discussed. 
For the clear illustration of the results we have discussed 
each subpart separately. All computations and figures are 
performed in MATHEMATICA and MATLAB software.

(44)

f (�) =
� Exp

�
−(Pe − (1 + �)�)2

�
Erf(Pe − ��) − Erf(Pe − (1 + �)�)

−

Exp

�
−(Pe −

�√
�21

)2
�

√
�21

�
1 + Erf

�
Pe −

�√
�21

�� − � l0

√
�.

Validation of analytical work

It is much important and necessary to validate our analyti-
cal/numerical work with previous studies either in general 
or specific cases. To validate the current analytical work, 
we compare our study with the study presented by Jitendra 
et al. [40]. To proceed with comparison, we have removed 
convective term due to mass transfer of water vapour in 
vapour region and convection in frozen region in the cur-
rent model. In the similar manner, we have removed con-
vective term of mass transfer of the water vapour in the 
frozen region in the mathematical model presented by 
Jitendra et al. [40]. Range of value of parameters are taken 
as those given in [40]. Fig. 5a plots for temperature field 
at fixed parameter �21 = 0.5,Pe = 1.0, � = 0.5, l0 = 5 and 
Fig. 5b plots for sublimation interface at fixed parameter 
�21 = 0.5,Pe = 1.0, � = 0.5, l0 = 5, �1 = 1.0 . Fig. 5a shows 
a strong agreement of our temperature field with temperature 
field of Jitendra et al. [40]. Fig. 5b also depicts that result 
for sublimation interface obtained in current work and those 
given in Jitendra et al. [40] are in strong acceptance. There-
fore, current analytical work has an excellent agreement with 
the results presented by Jitendra et al. [40].

Heat transfer process

Effect of Péclet number (Pe)

In the present work, impact of convection is illustrated in 
the vapour and frozen region with variation of Péclet num-
ber Pe. Péclet number is the non-dimensional ratio of rate 
of advective transport of a material to the rate of moving 
molecules from high concentration to lower concentration of 
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the same physical substance. Fig. 6a and b depicts the tem-
perature profile in the vapour and frozen region and corre-
sponding propagation rate of sublimation front for different 
Péclet numbers (Pe = 0.0, 0.2, 0.6, 0.8) at the fixed value of 
parameters �21 = 0.4, � = 0.3, � = 1.0, l0 = 0.5 . From Fig. 6a 
and b, we found that temperature profile in the vapour and 
frozen region rises with increasing the value of Pe. Further, 

the rate of propagation of the sublimation interface grows as 
well. For higher rate of convection, the energized particles 
vibrates faster and faster than usual at a certain temperature, 
as a result, temperature field increased and material subli-
mate faster. This observation is similar to the observation 
obtained by Jitendra et al. [40] and Chaurasiya and Singh 
[44].
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Effect of thermal diffusivity ( ̨ 21)

Thermal diffusivity �21 is the ratio of the thermal diffusivities 
of the frozen and vapour regions. Fig. 7a and b shows the 
effect of �21 on temperature profile in the vapour and frozen 

regions and tracking of sublimation front at fixed value of 
parameters Pe = 0.1, � = 0.3, � = 1.0, l0 = 0.5 . Fig. 7a and 
b shows that the temperature distribution in the vapour and 
frozen region increases with increasing value of �21 . Moreo-
ver, the growth rate of the sublimation front increases for 
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large value of �21 . The physical reasoning behind this obser-
vation is that large �21 implies large value of �2 relative to 
�1 , which implies the faster heat flow in the frozen region or 
less water vapour will be absorbed by the sublimated region. 
This result is similar to the result those obtained by Lin [36].

Effect of heat flux ( )

Heat flux � is the ratio of steady thermal flux within vapour 
region to that in the frozen region with the same thermal 
conduction space. The effect of � on the temperature profile 
and moving sublimation front at fixed value of parameters 
Pe = 0.1, �21 = 0.4, � = 0.3, l0 = 0.5 is shown in Fig. 8a and 
b. From Fig. 8a, it is evident that with increasing the value 
of heat flux, temperature in the vapour and frozen region 
increases. Furthermore, the transition process speed up 
with increasing � and thus, the material sublimates faster, 
as shown in Fig. 8b. The lower heat flux within frozen region 
produces higher heat flux, as a result faster sublimation rate 
is obtained. This situation is similar to the result presented 
by Lin [36].

Effect of coefficient of convective term ( ̌ )

The coefficient of convective term � models vapour flow in 
the vapour region. Fig. 9a presents the effect of changing � on 
the temperature distribution in the vapour and frozen regions. 
Fig. 9b plots the evolution of the sublimation interface. 
Parameter values are Pe = 0.1, �21 = 0.4, � = 1.0, l0 = 0.5 . 

Fig. 9a shows that increasing the value of � results in steeper 
temperature profile and corresponding rate of propagation 
of the sublimation interface deterred. Hence, the sublima-
tion process slows down for higher value of � . For higher 
rate of evaporation of water vapour, molecules require much 
energy at the sublimation interface to sublimate the mate-
rial which causes a lower temperature response is recorded 
within vapour region. Therefore, sublimation deterred for 
large rate of water evaporation from sublimation surface. 
This finding is similar to the finding of the experimental 
work presented by Hayashi and Komori [35] and Chaurasiya 
and Singh [44].

Effect of latent heat of sublimation ( l0)

The impact of phase change heat of sublimation on tem-
perature distribution in the vapour and frozen region and 
moving sublimation interface at fixed value of parameters 
Pe = 0.1, �21 = 0.4, � = 0.3, � = 1.0 as shown in Fig. 10a 
and b. Fig. 10a shows that for higher value of the latent 
heat of sublimation, there is lower temperature rise within 
the vapour and frozen region. Consequently, the sublimation 
process gets deterred with increasing the value of l0 as illus-
trated in Fig. 10b. Due to higher rate of thermal transition 
within vapour region, the particle required more energy to 
sublimate material. As a result, material requires more time 
than usual to sublimate. This observation is similar to the 
observation obtained by Lin [36].
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Moisture transfer process

At the sublimation interface � = �,

(45)

Cm(𝜆) > Cm,s

or Cm,0 − Cm(𝜆) < Cm,0 − Cm,s,

or
Cm,0−Cm(𝜆)

Cm,0−Cm,s

< 1,

or 𝛿 < 1,

⎫⎪⎪⎬⎪⎪⎭

where � =
Cm,0−Cm(�)

Cm,0−Cm,s

.

Effect of Péclet number (Pe)

The variation of Péclet number on the molar concentra-
tion of the vapour moisture at the fixed value of parameters 
Lu = 0.25, � = 0.5 and � = 0.3 is illustrated in Fig. 11. This 
plot shows that with positive value of Péclet number, the 
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molar concentration of the vapour moisture decreases. Fur-
thermore, in the presence of the convection the rate of the 
molar concentration of the vapour moisture is lower than in 
the absence of convection as shown in Fig. 11. Similar situa-
tion is obtained in the work presented by Jitendra et al. [40].

Effect of Luikov number (Lu)

Luikov number Lu is defined as the dimensionless ratio of 
mass diffusivity to the diffusivity in vapour region. Fig. 12 
presents the effect of Luikov number on the molar concen-
tration of the vapour moisture at the fixed value of param-
eters Pe = 0.1, � = 0.5 and � = 0.3 . Fig. 12 shows that the 

molar concentration curve becomes steeper with higher 
value of Lu. Since, the diffusion of molecules within the 
frozen region deterred, therefore, the sublimation process 
becomes slow. This result is similar to the result of Jiten-
dra et al. [40] and Chaurasiya and Singh [44].

Effect of ı

As defined in Eq. (45), the effect of � for values less than 
unity on the molar concentration of the vapour moisture 
at the fixed value of parameters Pe = 0.1, Lu = 0.25 and 
� = 0.3 is shown in Fig. 13. From this figure, we find that 
increasing the value of � , then it increases the molar con-
centration of the vapour moisture. The larger value of dif-
ference between initial concentration and concentration at 
sublimation interface increases the value of �.

Heat and moisture transfer process with molar 
concentration

Effect of thermal diffusivity (˛21)

The effect of heat diffusivity (�21) on temperature distribu-
tion is presented in Fig. 14. This plot shows that for higher 
value of �21 there is greater temperature rise in the vapour 
and frozen region and the molar concentration of the vapour 
moisture is also increased. This phenomenon confirms that 
the sublimation process gets accelerated with increasing the 
value of (�21) . During sublimation process, material absorbs 
little amount of heat and transfer maximum amount of heat 
so that material sublimate fast. This result is similar to the 
result of Lin [36].
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Effect of heat flux ( )

The variation of steady heat flux in the heat and mass trans-
fer with molar concentration of the vapour moisture is shown 
in Fig. 15. From this figure, it is estimated that the tem-
perature grows in the vapour and frozen region with cor-
responding increment in the value of heat flux. Further, the 
molar concentration of the vapour moisture get accelerated 
for positive value of � . Consequently, the material sublimate 
fast for higher value of the heat flux. This conclusion is simi-
lar to the conclusion made by Lin [36].

Effect of Péclet number (Pe)

The impact of convection in the heat and mass trans-
fer with molar concentration of the vapour moisture is 
shown with variation of Péclet number Pe. The tempera-
ture configuration in the vapour and moisture region 
increases with increasing the value of Pe as illustrated 
in Fig. 16. With positive value of Pe, the rate of the 
concentration of the vapour moisture also increases. 
Moreover, the sublimation process enhanced more with 
convection while it becomes slower without convec-
tion, see Fig. 16. Hence, less time will be required to 
complete the sublimation process. This result is similar 
to the result those obtained by Jitendra et al. [40] and 
Chaurasiya and Singh [44].

Effect of coefficient of convective term ( ̌ )

The effect of coefficient of convective term ( � ) due to mois-
ture flow of the water vapour on temperature profile is given 
in Fig. 17. From this figure, it is observed that with increas-
ing the value of � there is steeper in the temperature profile 
within the vapour and frozen region and the molar concen-
tration of the vapour moisture is also deterred. This shows 
that the process of sublimation becomes slowed down for 
higher value of the coefficient of convective term ( � ). This 
result is similar to the result obtained by Chaurasiya and 
Singh [44].
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Effect of latent heat of sublimation ( l0)

The phase change heat of sublimation at a fixed tempera-
ture is the amount of heat required to change a unit mass of 
frozen material into vapour. The latent heat of sublimation 

affects the temperature profile within the vapour and frozen 
region and also the molar concentration as shown in Fig. 18. 
This figure illustrated that with increasing the value of l0 
there is a decay in the temperature within the vapour and fro-
zen region. For large value of the latent heat of sublimation, 
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the molar concentration of the vapour moisture decreases. 
Consequently, the sublimation process becomes slow. This 
observation is similar to the result of Lin [36].

Effect of latent heat of sublimation on �

Figures 19a and 20b illustrate the effect of thermal diffu-
sivity and latent heat of sublimation l0 on the growth rate 
parameter � . In Fig. 19a, we show the effect of thermal 
diffusivity on � at Pe = 0.2, � = 0.15 and � = 1.0 . From 
this figure, it is evident that higher value of l0 yields 
smaller � and thus, sublimation process becomes slow. 
Further, with increasing the value of �21 , the correspond-
ing value of � increases for smaller value of l0 . Therefore, 
the sublimation process increases gradually. In the similar 
fashion, if we increase the value of � , then there is a small 
decrease in the value of � . Consequently, sublimation pro-
cess becomes slow, see Fig. 19b. Now, we discuss the 
effect of the heat flux on � , as shown in Fig. 20a. This 
figure depicts that for a higher value of heat flux result in 
faster sublimation process. From Fig. 20b, it is seen that 
sublimation becomes fast with convection while there is 
delay in the absence of convection.

Applications and further extensions

Separation process

Sublimation is commonly used for separation processes 
involving a sublimate with volatile component and a 
non-sublimate impurity. Consider a compound of ammo-
nium chloride ( NH4Cl ) and sodium chloride (NaCl) in a 
disc. A cotton plug is placed over the funnel as shown 
in Fig. 21. When applying heat to the surface of the disc 
then the ammonium chloride ( NH4Cl ) turns in the vapour 
form without passing through the liquid. Clearly, from 

the mixture both sodium chloride (NaCl) and ammonium 
chloride ( NH4Cl ) separated via sublimation process.

Drying of foods

In the food drying process, sublimation allows frozen foods 
to be dried while avoiding a breakdown of the cellular struc-
ture of the food. The current work may provide the theoreti-
cal basis for understanding and optimizing microwave food 
drying process [2]. Microwave drying is used in food drying 
where microwaves penetrate the material and are converted 
into heat so that it can remove moisture.

Conclusions

The mathematical modelling of moving boundary problems 
in heat and mass transfer process is important for several 
practical engineering systems. Such models are useful in 
heat and mass transfer problem that include an unknown 
interface, such as vaporization and drying of food. In this 
paper, we investigated a one-dimensional moving bound-
ary problem in heat and mass transfer describing sublima-
tion process in a half-porous space. Convective term due 
to moisture flow of the water vapour in the vapour region 
is considered. Convection is considered in the vapour and 
frozen region and also in the molar concentration of the 
vapour moisture. For a specific velocity profile, an exact 
solution of the current problem is determined via similarity 
transformation. Existence of the solution of the problem is 
also discussed. Further, the impact of variation of different 
parameters of this problem is studied in detail. A few key 
learnings from this analysis are summarized below:

• It is found that sublimation limit is enhanced by increas-
ing the Péclet number Pe. In a similar fashion, the subli-
mation limit also increases with increasing Luikov num-
ber Lu.

• We observed that for a large value of Péclet number, the 
temperature profile within the medium becomes high and 
hence, the  sublimation front moves rapidly. It is there-
fore, concluded that the sublimation process becomes fast 
for larger convection rate.

• With higher value of thermal diffusivity �21 , the tempera-
ture distribution within the medium rises and thus, fast 
propagation of the sublimation front with respect to the 
time is achieved.

• Temperature profile within the medium rises with 
increasing the value of heat flux � . In addition, the evo-
lution of the sublimation interface increases rapidly.

Cotton plug

Solidified ammonium 

chloride NH4Cl

Vapour of NH4Cl

Compound of NH4Cl and 

NaCl (NH4Cl+ NaCl)

Fig. 21  Chemical reaction describing separation process of NH4Cl 
and NaCl [40]
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• Higher the value of � , the steeper is the temperature 
profile within the medium. The sublimation front cor-
respondingly grows at a slower rate.

• Increasing the value of latent heat of sublimation l0 
results in steeper temperature profile within the medium, 
resulting in a reduced rate of propagation of the sublima-
tion front.

In addition, it is expected that the mathematical model pro-
posed in the current study may also aid in chemical process, 
thermal management and energy storage.
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