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Abstract
Li-ion diffusion in electrodes and separator plays a key role in determining the charge/discharge characteristics of a Li-ion 
cell. Past papers have analyzed solution-phase limitation diffusion in a Li-ion cell for constant current conditions. In the 
present work, an analytical model is presented for concentration diffusion under solution-phase limitation in a three-layer 
structure under arbitrary, time-dependent current conditions that may be encountered in practical scenarios. The eigenvalue-
based solution is shown to agree well with numerical simulations and may be suitable for implementation in practical battery 
management systems since only a few eigenvalues are shown to offer excellent accuracy. Computed concentration distri-
butions are analyzed for sinusoidal and step function current profiles. The impact of electrode porosities on concentration 
distribution is also investigated. This work improves the theoretical understanding of diffusion in Li-ion cells and offers 
practical tools for modeling and optimization of electrochemical energy conversion and storage devices.
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Nomenclature
Brugg  Bruggeman coefficient
ci  Concentration in region i (mol  m−3)
ci,in  Initial concentration (mol  m−3)
Ci  Dimensionless concentration in region i
Ci,in  Dimensionless initial concentration in region i
c0  Reference concentration (mol  m-3)
D  Diffusion coefficient of lithium ions in the elec-

trolyte  (m2  s−1)
Deff,i  Effective diffusion coefficient of lithium ions in 

each layer  (m2  s−1)
F  Faraday’s constant (C  mol−1)
iapp  Applied current density (A  m−2)
Ji  Dimensionless flux density in region i
K  Ratio of electrode thicknesses
L  Total width of cell (m)
t  Time (s)

t+  Transference number
x  Position (m)
εi  Porosity in region i
γi  Dimensionless position at the interface i
λn  Eigenvalue
τ  Dimensionless time
ξ  Dimensionless position

Introduction

Mathematical modeling of Li-ion cells operating under dif-
ferent conditions is critical for performance prediction and 
design optimization [1–3]. In general, mathematical models 
for describing the behavior of Li-ion cells can be categorized 
as empirical or electrochemical models [2]. Electrochemical 
models are more sophisticated and provide detailed insights 
on multiple transport phenomena and kinetics occurring 
inside the cell [2, 4, 5]. Electrochemical models are based 
on solutions of governing equations for Li-ion concentra-
tion in solid and solution phase, intercalation reactions, and 
electrode potential in each phase [6–8].

One of the earliest and most extensively used electro-
chemical models for Li-ion batteries is the pseudo-2D 
(P2D) model, originally proposed by Doyle et al. [8–11]. 
P2D model is based on porous electrode theory [12] and the 
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concentrated solution theory [13], and it represents mass and 
charge transport, kinetics, and thermodynamics in both solid 
phase and the electrolyte [4, 14, 15]. However, P2D model is 
highly non-linear and coupled in nature since the concentra-
tion and potential fields in both electrodes and electrolyte 
are interrelated and must be solved simultaneously [16]. At 
low to moderate discharge rates or in sufficiently thin elec-
trodes, a simplified version of P2D model known as single 
particle model (SPM) has been proposed [17–19]. In SPM, 
the dynamics of the solution phase is completely neglected, 
the entire electrode is represented by a single particle, and 
the solid phase diffusion becomes dominant [2, 20]. The 
assumptions associated with SPM do not hold at high dis-
charge rates or for thick electrodes, where the concentration 
gradient in the electrolyte cannot be ignored anymore.

Due to the non-linear and coupled nature of the equa-
tions involved, exact solutions exist only for a few simpli-
fied problems and limiting operating cases. For example, 
Doyle and Newman proposed three different limiting cases 
including solution-phase diffusion limitation, solid-phase 
diffusion limitation, and ohmically dominated cell [1]. For 
solution-phase diffusion limitation, they suggested decou-
pling the governing equations for concentration, potential, 
and current density by considering a certain form for distri-
bution of the reaction rate [1]. The separation of variables 
(SOV) technique was used to solve for these limiting cases 
[1]. SOV has also been used to determine the concentra-
tion profile in solution-phase diffusion limitation in a single 
insertion electrode [21]. This work was later extended to 
a Li-ion cell with two insertion electrodes and a separa-
tor [22]. Mathematical model of solution-phase diffusion 
in single insertion electrode has also been presented using 
Green’s function approach [23]. Integral transform method 
has been used to address solid-phase diffusion limitation in 
different geometries and solution-phase diffusion limitation 
in a single insertion electrode [24]. Laplace transformation 
technique has been also used to predict the Li-ion concentra-
tion under both solid and solution-phase diffusion limitation 
assumptions [25]. In addition to such exact solutions, a vari-
ety of approximate analytical solutions such as the Parabolic 
Profile (PP) method [26, 27], Electrode Averaged Model 
(EAM) [28], and Proper Orthogonal Decomposition (POD) 
[29] have also been proposed.

While there is a long history of solving multilayer diffu-
sion problems for applications such as porous media [30] 
and semiconductor devices [31], using a variety of meth-
ods such as Laplace transforms [32], eigenvalue expansion 
[33], and Duhamel theorem [34], as well as semi-analytical 
methods [35], there is, in general, a lack of such work in the 
context of Li-ion cells, particularly in the presence of time-
dependent current.

Most analytical models for diffusion processes in a Li-
ion cell assume constant current conditions. Even though 

time-varying current can be handled by numerical tools, 
there is still a need for analytical models capable of 
accounting for time-dependent current. Such problems 
are encountered in realistic scenarios such as dynamic 
charge/discharge in electric vehicles, as well as sinusoi-
dal/harmonic current profiles used in battery diagnostics 
and electrochemical impedance spectroscopy (EIS) [36]. 
While such time-dependence can potentially be handled 
by a numerical simulation, it is desirable to develop ana-
lytical models for a better fundamental understanding 
of the effect of time-dependent current. A few previous 
studies have presented analytical and approximate analyt-
ical solutions to such problems. For example, Duhamel’s 
superposition method has been used to develop an 
approximate solution for porous electrode model [8, 9]. 
An approximate solution for solid-phase diffusion limi-
tation has been presented by developing an approximate 
eigenfunction and estimating the truncation error [19]. 
An exact solution for solid-phase diffusion limitation in 
a spherical electrode particle has been developed using 
finite integral transform method [37]. Recently Green’s 
function based solution has been presented for solution-
phase diffusion limitation in a two-layer body [38] and 
for solid-phase diffusion limitation [39] undergoing a 
variety of time-dependent charge/discharge. Separation 
of variable technique has been used to solve solution-
phase diffusion limitation in a single insertion electrode 
[40] with time-dependent current.

This paper presents an analytical model to predict 
concentration profile in a three-layer Li-ion cell 
sandwich comprising of a positive and a  negative 
electrode with a separator in between. Solution-phase 
diffusion limitation originally presented by Doyle 
and Newman [1] is considered in this study, and solid 
phase diffusion is neglected because it occurs much 
faster than solution-phase diffusion. The importance 
of concentration gradient in the electrolyte and 
consequently solution-phase diffusion limitation has 
been highlighted in previous studies [1]. This work 
generalizes a previous study [22] by accounting for a 
time-dependent reaction rate. Separation of variables 
(SOV) technique is used to derive a solution for 
concentration profile in a cell operating under time-
dependent discharge current, which results in a time-
dependent reaction rate. Note that, similar to previous 
studies [1, 8, 22], it is assumed that the reaction rate 
is uniform throughout the cell. The analytical model 
developed in this study is verified against independent, 
f inite-element numerical simulations. This paper 
presents a useful mathematical tool to predict the 
concentration profile for more general and realistic 
conditions, which may contribute towards improved 
design and control of Li-ion cells.
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Analytical modeling

Dimensionless governing equations

Consider Li-ion diffusion in a three-layer geometry, as 
shown in Figure 1, where layers 1 and 3 are the positive and 
negative electrodes, respectively, and layer 2 is the separator. 
In this paper, similar to previous studies [1, 8, 22], only solu-
tion-phase diffusion is considered, and the solid-phase diffu-
sion is neglected. The transference number t+ is assumed to 
be constant, based on the ionic mobility being independent 
of concentration, as is commonly assumed in the battery 
modeling literature [1, 8, 12]. In general, the concentration 
and potential fields in an electrochemical system are coupled 
with each other. Specifically, the migration of ions due to 
the potential field as well as the variation of the pore wall 
flux with potential is to be considered in the concentration 
conservation equation. However, the migration term is zero 
in this case due to the constant transference number, t+ [1, 8, 
12], and the assumption of uniform reaction rate uncouples 
the concentration calculations from the potential field. Only 
diffusion of Li ions is modeled, as the concentration distribu-
tion of the anions can be obtained using the electroneutral-
ity equations. Further, the impact of crystal structure and 
chemical composition on the rate of diffusion is neglected.

Let ci(x,t) and εi be the concentration and the porosity 
of the ith layer, respectively, and xi-1 and xi be the boundary 
coordinates of the ith layer, respectively, where x0 = 0. The 
initial concentration in the layers at t = 0 is given by ci, in(x).

Conservation equations governing the concentration 
fields in the three layers are given in the following form 
[8, 22]:

where iapp(t) is the time-dependent current density and F 
is Faraday’s constant. Source terms in Eqs. (1) and (3) are 
based on charge balance assuming a constant and uniform 
pore wall flux [22].

Note that Eqs. (1)–(3) represent a balance between tran-
sient, diffusion, and generation/consumption terms. The 
migration term, which represents motion of charged species 
due to the imposed electric field [12], is not present in these 
equations, since the transference number t+ is assumed to be 
independent of concentration [8].

Note that the diffusivities in each layer, Deff,i, can 
be written in terms of D, the diffusion coefficient of Li 
ions in the electrolyte, and porosities of each layer as: 
Deff ,i = D�

Brugg

i
(i = 1, 2, 3) . Therefore, the governing 

equations may be written as:

Equations (4)–(6) represent a balance between diffusion 
and species consumption/generation due to the reaction in 
the electrodes. Note that there is no consumption/generation 
term in the equation for the separator since Li intercalation/
de-intercalation occurs only in the electrodes.

Related boundary and interfacial conditions may be 
obtained from continuity of concentration and mass flux as 
follows:

(1)𝜀1

𝜕c1

𝜕t
= Deff ,1

𝜕
2c1

𝜕x2
−

iapp(t)
(

1 − t+
)

F
(

x1 − x0
) (0 < x < x1)

(2)𝜀2
𝜕c2

𝜕t
= Deff ,2

𝜕
2c2

𝜕x2
(x1 < x < x2)

(3)𝜀3
𝜕c3

𝜕t
= Deff ,3

𝜕
2c3

𝜕x2
+

iapp(t)(1−t+)
F(x3−x2)

(x2 < x < x3)

(4)𝜀1
𝜕c1

𝜕t
= D𝜀

Brugg

1

𝜕
2c1

𝜕x2
−

iapp(t)(1−t+)
F(x1−x0)

(0 < x < x1)

(5)𝜀2
𝜕c2

𝜕t
= D𝜀

Brugg

2

𝜕
2c2

𝜕x2
(x1 < x < x2)

(6)𝜀3
𝜕c3

𝜕t
= D𝜀

Brugg

3

𝜕
2c3

𝜕x2
+

iapp(t)(1−t+)
F(x3−x2)

(x2 < x < x3)

(7a)
�c1

� x
= 0 (x = 0)

(7b)
�c3

� x
= 0 (x = x3)

(7c)c1 = c2 (x = x1)

(7d)
�c1

� x
=

�
Brugg

2

�
Brugg

1

�c2

� x
(x = x1)Fig. 1  Schematic of Li-ion cell comprising three regions – positive 

electrode, separator, and negative electrode
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Equations 7(a) and 7(b) represent zero flux at the two 
ends of the geometry where the electrodes come in contact 
with the current collector. Equations 7(c) and 7(e) represent 
species continuity at the two interfaces in the problem, while 
Eqs. 7(d) and 7(f) are obtained from mass flux balance at 
the interfaces.

For generality, the following dimensionless terms are 
introduced:

where c0 is a reference concentration and L is the total 
width of the three-layer structure.

Using Eq. (6), the following non-dimensional partial dif-
ferential equations as well as the associated boundary and 
initial conditions are derived:

where J1 =
iapp(�)(1−t+)L

Fc0�1D
 is the non-dimensional current 

and K =
�1

1−�2
 is the ratio of electrode thicknesses.

The non-dimensional boundary conditions are:

(7e)c2 = c3 (x = x2)

(7f)
�c2

� x
=

�
Brugg

3

�
Brugg

2

�c3

� x
(x = x2)

(8)ci = ci,in(x) (t = 0) (i = 1, 2, 3)

(9)Ci =
ci

c0
;� =

x

L
;�i =

xi

L
;� =

Dt

L2

(10)𝜀1
𝜕C1

𝜕𝜏
= 𝜀

Brugg

1

𝜕
2C1

𝜕𝜉2
− J1(𝜏) (0 < 𝜉 < 𝛾1)

(11)𝜀2
𝜕C2

𝜕𝜏
= 𝜀

Brugg

2

𝜕
2C2

𝜕𝜉2
(𝛾1 < 𝜉 < 𝛾2)

(12)𝜀3

𝜕C3

𝜕𝜏
= 𝜀

Brugg

3

𝜕
2C3

𝜕𝜉2
+ KJ1(𝜏) (𝛾2 < 𝜉 < 1)

(13a)
�C1

��
= 0 (� = 0)

(13b)
�C3

��
= 0 (� = 1)

(13c)C1 = C2 (� = �1)

(13d)
�C1

��
=

�
Brugg

2

�
Brugg

1

�C2

��
(� = �1)

(13e)C2 = C3 (� = �2)

where Ci,in(�) =
ci,in(x)

c0
 is the non-dimensional initial con-

dition. This completes the non-dimensional set of equations 
that needs to be solved in order to determine the concentra-
tion distribution in the three-layer electrode. Note that Eqs. 
(10)–(14) represent a generalization of a constant current 
model presented in the past [22]. Consideration of time-
dependent currents in the present work has practical rele-
vance due to time-varying loads encountered in electric 
vehicles. Accounting for such time dependence is theoreti-
cally non-trivial.

Solution method

Equations (10)–(14) represent a set of partial differential 
equations with homogeneous boundary and initial condi-
tions. Equations (10) and (12) for the two electrodes contain 
non-homogeneous source terms.

In order to solve these equations, series forms are 
assumed for the concentration fields C1(ξ, τ), C2(ξ, τ), and 
C3(ξ, τ) as follows:

where ϕ1, n(ξ), ϕ2, n(ξ), and ϕ3, n(ξ) are the eigenfunctions 
for the first, second, and third layers, respectively, and qn(τ) 
is a time-dependent function.

By inserting the forms of the solution in the boundary 
conditions, the eigenfunctions are found to be:

where

(13f)
�C2

��
=

�
Brugg

3

�
Brugg

2

�C3

��
(� = �2)

(14)Ci = Ci,in(�) (� = 0) (i = 1, 2, 3)

(15)C1(𝜉, 𝜏) =

∞
∑

n=0

𝜙1,n(𝜉) qn(𝜏) (0 < 𝜉 < 𝛾1)

(16)C2(𝜉, 𝜏) =

∞
∑

n=0

𝜙2,n(𝜉) qn(𝜏) (𝛾1 < 𝜉 < 𝛾2)

(17)C3(𝜉, 𝜏) =

∞
∑

n=0

𝜙3,n(𝜉) qn(𝜏) (𝛾2 < 𝜉 < 1)

(18)�1,n(�) = cos
(

�n�
)

(19)�2,n(�) = �2n sin
(

�2n�
)

+ �2n cos
(

�2n�
)

(20)�3,n(�) = �3n sin
(

�3n�
)

+ �3n cos
(

�3n�
)
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Further, using boundary conditions given by Eqs. 
(13a)–(13f), the eigenvalues λn can be shown to satisfy the 
following transcendental equation:

Finally, note that the orthogonality relationship for the 
eigenfunctions is given by:

where the norm is given by:

Dividing the governing equations given by Eqs. (10), 
(11), and (12) by ε1, ε2, and ε3, respectively, and introduc-
ing the assumed forms of the concentration fields given by 
Eqs. (15), (16), and (17) result in:

(21a)�2n =

(

�1

�2

)
Brugg−1

2

�n

(21b)�3n =

(

�1

�3

)
Brugg−1

2

�n

(22a)

�2n = cos
(

�n�1

)

sin
(

�2n�1

)

−

(

�1

�2

)

Brugg+1

2

sin
(

�n�1

)

cos
(

�2n�1

)

(22b)

�2n =

(

�1

�2

)

Brugg+1

2

sin
(

�n�1

)

sin
(

�2n�1

)

+ cos
(

�n�1

)

cos
(

�2n�1

)

(22c)
�3n =

sin
(

�3n

)

{

cos
(

�n�1

)

cos
[

�2n

(

�2 − �1

)]

−

(

�1

�2

)
Brugg+1

2

sin
(

�n�1

)

sin
[

�2n

(

�2 − �1

)]

}

cos
[

�3n

(

1 − �2

)]

(22d)
�3n =

cos
(

�3n

)

{

cos
(

�n�1

)

cos
[

�2n

(

�2 − �1

)]

−

(

�1

�2

)
Brugg+1

2

sin
(

�n�1

)

sin
[

�2n

(

�2 − �1

)]

}

cos
[

�3n

(

1 − �2

)]

(23)tan
(

�n�1

)

=

tan
[

�2n

(

�2 − �1

)]

+

(

�3

�2

)
Brugg+1

2

tan
[

�3n

(

1 − �2

)]

(

�1

�2

)
Brugg+1

2

{

(

�3

�2

)
Brugg+1

2

tan
[

�3n

(

1 − �2

)]

tan
[

�2n

(

�2 − �1

)]

− 1

}

(24)

1

�
Brugg−1

1

∫ �1

0
�1,m(�)�1,n(�)d� +

�2

�
Brugg

1

∫ �2

�1
�2,m(�)�2,n(�)d�

+
�3

�
Brugg

1

∫ 1

�2
�3,m(�)�3,n(�)d� =

{

0 m ≠ n

Nn m = n

(25)
Nn =

1

�
Brugg−1

1

∫
�1

0

�
2

1,n
(�)d� +

�2

�
Brugg

1

∫
�2

�1

�
2

2,n
(�)d� +

�3

�
Brugg

1

∫
1

�2

�
2

3,n
(�)d�

where ���
1,n
(�) , ���

2,n
(�) , and ���

3,n
(�) are separately the 

second-order derivatives of functions ϕ1, n(ξ), ϕ2, n(ξ), and 
ϕ3, n(ξ) with respect to ξ, and q̇n(𝜏) is the derivative of func-
tion qn(τ) with respect to τ.

Now, Eqs. (26)–(28) are multiplied by 1

�
Brugg−1

1

�1,m(�) , 
�2

�
Brugg

1

�2,m(�), and �3

�
Brugg

1

�3,m(�) , respectively, integrated in their 

respective ranges and added up. Algebraic simplification 
using the principle of orthogonality results in a much-sim-
plified ordinary differential equation for qn(τ):

where

In order to determine the initial condition for qn(τ), Eqs. 
(15)–(17) are substituted in the initial conditions given by 
Eq. (14), which, with the use of the orthogonality relation-
ship given by Eq. (24), results in:

(26)
∞
∑

n=0

𝜙1,n(𝜉)q̇n(𝜏) = 𝜀
Brugg−1

1

∞
∑

n=0

𝜙
��
1,n
(𝜉)qn(𝜏) −

J1(𝜏)

𝜀1

(0 < 𝜉 < 𝛾1)

(27)

∞
∑

n=0

𝜙2,n(𝜉)q̇n(𝜏) = 𝜀
Brugg−1

2

∞
∑

n=0

𝜙
��

2,n
(𝜉)qn(𝜏) (𝛾1 < 𝜉 < 𝛾2)

(28)

∞
∑

n=0

𝜙3,n(𝜉)q̇n(𝜏) = 𝜀
Brugg−1

3

∞
∑

n=0

𝜙
��
3,n

(𝜉)qn(𝜏) + K
J1(𝜏)

𝜀3

(𝛾2 < 𝜉 < 1)

(29)q̇n(𝜏) + 𝜆
2

n
𝜀
Brugg−1

1
qn(𝜏) = 𝜒n J1(𝜏)

(30)

�n =
1

Nn

⎡

⎢

⎢

⎣

−
1

�
Brugg

1

�1

∫
0

�1,n(�)d� + K
1

�
Brugg

1

1

∫
�2

�3,n(�)d�

⎤

⎥

⎥

⎦
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The ordinary differential equation for qn(τ), given by Eq. 
(29) subject to the initial condition given by Eq. (31), has a 
straightforward solution given by

This completes the solution. Substituting Eqs. (18), (19), 
and (20) into Eqs. (15), (16), and (17) separately, the analyti-
cal solutions for the concentration distribution are given by:

Results and discussion

Number of eigenvalues needed

Since the solution for the concentration field defined by Eqs. 
(33)–(35) is in the form of an infinite series, it is impor-
tant to examine the convergence of the series and determine 

(31)
qn(0) =

1

�
Brugg−1

1

∫ �1

0
Cin(�)�1,n(�)d� +

�2

�
Brugg

1

∫ �2

�1
Cin(�)�2,n(�)d� +

�3

�
Brugg

1

∫ 1

�2
Cin(�)�3,n(�)d�

Nn

(32)

qn(�) = qn(0)e
−�2

n
�
Brugg−1

1
� + �n∫

�

0

J1(�
∗)e�

2
n
�
Brugg−1

1
(�∗−�)d�∗

(33)C1(𝜉, 𝜏) =

∞
∑

n=0

cos
(

𝜆n𝜉
)

qn(𝜏) (0 < 𝜉 < 𝛾1)

(34)

C2(𝜉, 𝜏) =

∞
∑

n=0

[

𝛼2n sin
(

𝜇2n𝜉
)

+ 𝛽2n cos
(

𝜇2n𝜉
)]

qn(𝜏) (𝛾1 < 𝜉 < 𝛾2)

(35)

C3(𝜉, 𝜏) =

∞
∑

n=0

[

𝛼3n sin
(

𝜇3n𝜉
)

+ 𝛽3n cos
(

𝜇3n𝜉
)]

qn(𝜏) (𝛾2 < 𝜉 < 1)

the minimum number of eigenvalues needed for accurate 
computation of the concentration field. This is particularly 
important in this problem because of the need to compute 
the solution in the battery management system (BMS) of a 
Li-ion battery pack where only limited memory and com-
putation resources may be available. Figure 2 plots concen-
tration at ξ = 0 as a function of time for a problem with ε1 
= 0.385, ε2 = 0.724, ε3 = 0.485, γ1 = 0.414, γ2 = 0.544, 
and Brugg = 4. Results are plotted for constant current and 
time-dependent current conditions in Figure 2a and 2b, 
respectively. In each case, a number of curves are plotted 
with different number of eigenvalues used for computing 
the concentration field based on Eqs. (33)–(35). Both Fig-
ure 2a and 2b show that only a few number of eigenvalues 
is sufficient for convergence of the infinite series. There is 
negligible difference between the curves corresponding to 4 
and 5 eigenvalues. In addition, even if only one eigenvalue 
is used, the maximum error (compared to the 5 eigenvalue 
case) is still less than 3.6% and 12.8% for the two cases 
considered here. This illustrates a significant advantage of 
the analytical model presented here compared to numerical 
simulations that are memory-intensive and may require spe-
cialized software. Even using a single term in Eqs. (33)–(35) 
may be sufficient within reasonable engineering accuracy. 
Note that the analysis presented in Figure 2 is specific to the 
parameters chosen, and similar investigation of convergence 
characteristics should ideally be carried out for the specific 
set of parameters to be expected in a particular application 
of the analytical model presented here.

Fig. 2  Effect of number of eigenvalues: concentration as a function of τ at ξ = 0 for (a) constant reaction rate J1 = 0.09625; (b) time-dependent 
current reaction rate, J1 = 0.1925 if 0 < τ < 2.5 and  J1 = − 0.09625 if 2.5 ≤ τ < 5
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Model verification by comparison with numerical 
simulations

The analytical model presented in the previous section is 
verified by comparison with rigorous numerical simulations. 
A fully implicit finite difference method is used for solving 
the governing equations and boundary conditions defined 
in Eqs. (10)–(14). Equations are discretized in space and 
time in an implicit fashion. A total number of 1000 nodes 
are found to be sufficient in the one-dimensional geometry 
to ensure mesh independence. The non-dimensional time 
range is also divided into 1000 steps. Spatial discretization 
is carried out in such a way that a node is always assigned at 
each interface between layers. This helps implement inter-
facial requirements of continuity of concentration and flux. 
The resulting system of algebraic equations is solved using 
a tri-diagonal matrix algorithm (TDMA).

In the first comparison, a constant current density is con-
sidered in the three-layer geometry, with γ1 = 0.4 and γ2 = 
0.6. Values of other parameters are Brugg = 4, ε1 = 0.385, 
ε2 = 0.724, and ε3 = 0.485. Figure 3 compares the concen-
tration field computed from Eqs. (33)–(35) with numeri-
cal simulation results for a constant current of J1 = 0.1925. 
Figure 3a plots spatial distribution in concentration at three 
different times, and Figure 3b plots variation with time at 
the two ends (ξ = 0, 1) and two interfaces (ξ = γ1, γ2). Both 
figures show excellent agreement between the present work 
ad numerical simulations.

For further verification of the present model, results are 
compared with numerical simulations for a time-varying 
current boundary condition. A commonly encountered 
charge-rest-discharge scenario is modeled, wherein, the 
boundary flux J1 = 0.1925 for 0 < τ < 2, J1 = 0 for 2 < τ <3, 

and J1 = − 0.28875 for 3 < τ < 5. The geometry and other 
properties are the same as Figure 3. For this set of param-
eters, Figure 4 plots and compares results from the present 
analytical model against numerical simulations. Figure 4a 
plots the concentration distribution at three different times, 
one each in the charge, rest, and discharge phases. Figure 4b 
plots concentration as a function of time at four locations in 
the cell. In both cases, there is very good agreement between 
the analytical model and numerical simulations. The maxi-
mum error between the two for Figure 4a and 4b is less than 
1% in each case.

Model applications: sinusoidal current

Concentration distribution due to a sinusoidal current is 
studied next. An investigation of sinusoidal currents is car-
ried out here because of the practical relevance of sinusoidal 
current profiles. An appropriate Fourier series expansion can 
be used to represent any general current profile with a series 
of sinusoidal terms. Therefore, responses to sinusoidal cur-
rents determined from the analytical model can be used to 
construct responses for any general function.

Two specific current profiles are considered. The first 
case considers J1(τ) = 0.1925 sin (2πωτ), which represents a 
scenario where the cell cycles sinusoidally between charge 
and discharge at a frequency ω. For the same geometry and 
parameter values considered in Figure 2, the concentration 
field is computed for this sinusoidal current density and plot-
ted in Figure 5. In particular, concentration is plotted as a 
function of time at the two ends, ξ = 0 and ξ = 1 in Figure 5a 
and 5b, respectively. In each case, curves for four different 
values of frequency, ω, are presented. As expected, for the 
plot at ξ = 0, the concentration starts by going down for 

Fig. 3  Verification against numerical simulations for the special case of constant reaction rate, J1 = 0.1925: (a) concentration as a function of ξ 
at τ = 0, 0.4, 0.8; (b) concentration as a function of τ at ξ = 0, γ1, γ2, 1
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each frequency, before rising and cycling a number of times 
according to the frequency for each case. In contrast, the 
concentration first rises for the plot at ξ = 1. This is consist-
ent with the initially negative and positive values of the gen-
eration term in the first and third layer (Eqs. (10) and (12), 
respectively) for the given current profile. The amplitude of 
the concentration harmonics in Figure 5a and 5b reduce with 
increasing ω, which is because as the frequency increases, 
the current switches direction between charge and discharge 
much faster. Thus, the cell undergoes charge or discharge for 
a shorter period of time, leading to lower amplitude for the 
concentration. On average, there is a no significant change 
in the concentrations at ξ = 0 and ξ = 1, respectively, over 
the time period plotted in Figure 5. This is because based on 
the current profile, the cell spends an equal amount of time 
in charge and discharge over a cycle.

Results for a contrasting sinusoidal current profile are 
presented in Figure 6. In this case, J1(τ) = 0.1925(1 +  sin 
(2πωτ)), which represents a combination of constant and 
sinusoidal current. Unlike the previous problem, J1 always 
remains non-negative and thus there is no discharge in 
this scenario. Concentration profiles at the two ends of the 
geometry, ξ = 0 and ξ = 1, are presented in Figure 6a and 
6b, respectively. Similar to the previous figure, the concen-
trations at ξ = 0 and ξ = 1 vary sinusoidally, with an initial 
decrease and increase, respectively. This remains consistent 
with the sinusoidal nature of the charge profile. A key dis-
tinction in the concentration profiles in this case and the pre-
vious case is that there is an overall reduction and increase 
in concentrations at ξ = 0 and ξ = 1, respectively, over time. 
This is because, unlike the previous case, where the current 
profile comprised of both charge and discharge periods that, 

Fig. 4  Verification against numerical simulations for a time-dependent reaction rate, J1 = 0.1925 if 0 < τ < 2, J1 = 0 if 2 ≤ τ < 3 and J1 = − 
0.28875 if 3 ≤ τ < 5: (a) concentration as a function of ξ at τ = 1.5, 2.5, and 4.5; (b) concentration as a function of τ at ξ = 0, γ1, γ2, 1

Fig. 5  Application of the model for a periodic reaction rate, J1(τ) = 0.1925 sin (2πωτ): (a) concentration as a function of τ at ξ = 0 for 0 < τ < 6, 
(b) concentration as a function of τ at ξ = 1 for 0 < τ < 6 for ω = 0.25, 0.5, 0.75, 1
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on average, canceled each other out, in the present case, the 
current always remains non-negative, even though its value 
varies over time. This results in the cell getting charged over 
time, represented by the trends in concentration seen in Fig-
ure 6a and 6b over time.

Model applications: step function current

A step function current profile is also of practical relevance 
since sudden changes in charge/discharge in practical appli-
cations can be modeled as a step function. For example, 
sudden breaking or acceleration of an electric vehicle can, 
to the first order, be modeled as a step function change in the 
current profile. The impact of step changes in current on the 
concentration distribution is examined in Figure 7. Concen-
trations at ξ = 0 and ξ = 1 are plotted as functions of time for 

two different step functions. The case of an increasing step 
function, J1 = 0.0481 if 0 ≤ τ < 1, J1 = 0.0.9625 if 1 ≤ τ < 
3 and J1 = 0.1925 if 3 ≤ τ < 5, is presented in Figure 7a. A 
contrasting step function that decreases, then increases (J1 
= 0.28875 if 0 ≤ τ < 1, J1 = − 0.385 if 1 ≤ τ < 3, and J1 = 
0.1925 if 3 ≤ τ < 5), is presented in Figure 7b. In the first 
case, concentration at ξ = 0 monotonically decreases, while 
concentration at ξ = 1 monotonically increases through 
all three phases of the current profile. As expected, both 
curves become steeper as the current increases. In contrast, 
as shown in Figure 7b, when the current profile is such that 
current decreases, then increases, the concentration profiles 
are no more monotonic. Instead, concentration at ξ = 0 
decreases, then increases, and then finally decreases, while 
concentration at ξ = 1 follows the opposite trend. On the 
overall, there is a slight reduction in concentration at ξ = 0 

Fig. 6  Application of the model for a periodic reaction rate, J1(τ) = 0.1925(1 +  sin (2πωτ)): (a) concentration as a function of τ at ξ = 0 for 0 < τ 
< 5; (b) concentration as a function of τ at ξ = 1 for 0 < τ < 5 for ω = 0.25, 0.5, 0.75, 1

Fig. 7  Application of the model for step function reaction rate: concentration as a function of τ at ξ = 0, 1 for (a) J1 = 0.0481 if 0 ≤ τ < 1, J1 = 
0.09625 if 1 ≤ τ < 3, and J1 = 0.1925 if 3 ≤ τ < 5; (b) J1 = 0.28875 if 0 ≤ τ < 1, J1 = − 0.385 if 1 ≤ τ < 3, and J1 = 0.1925 if 3 ≤ τ < 5
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and slight increase in concentration at ξ = 1 over the entire 
time period because of the net-charging nature of the specific 
current profile considered here.

Effect of electrode porosities

The porosities of the electrodes, ε1 and ε3, are key param-
eters of this diffusion problem. In order to determine the 
impact of porosities on concentration distribution in the cell, 
the concentration field is computed for a number of cases 
with varying values of the porosities.

Figure 8a and 8b plot concentration distributions in the 
three-layer structure at multiple times for two different val-
ues of ε1 while all other parameters, including ε2 and ε3, are 
held constant. The concentration, initially uniform in each 
layer, becomes more and more distributed as time passes, as 
a result of diffusion. As seen from Eq. (10), a higher value of 

ε1 results in reduced rate at which species distribution occurs 
due to diffusion. This is the reason why the concentration 
distributions in the first layer at various times are grouped 
closer in Figure 8b, where the value of ε1 is greater than 
in Figure 8a, where the curves are farther apart due to the 
lower value of ε1. Further, based on Eq. (7d), a higher value 
of ε1 is expected to result in lower slope of the concentration 
distribution in the first layer at the interface with the second 
layer. This is also clearly seen in Figure 8a and 8b.

Further analysis of the impact of porosity values is pre-
sented in Figures 9 and 10. While keeping all other param-
eters constant, including ε3, concentration is computed and 
plotted as function of space for five different values of ε1 at 
two different times in Figure 8a and 8b, respectively. The 
current density is assumed to be a step function, with J1 = 
0.1925 for 0 < τ < 2.5 and J1 = 0.09625 afterwards. The 
specific values of porosities in these plots are chosen to be 

Fig. 8  Effect of porosity of the first layer. Concentration as a function of ξ at τ = 0, 0.4, 0.8, and 1.0, with J1 = 0.28875: (a) for ε1 = 0.285, (b) ε1 
= 0.585. Other porosities and parameters are held constant

Fig. 9  Effect of porosity of the first layer. Concentration as a function of ξ for four different values of ε1, with J1 = 0.1925 if 0 < τ < 2.5 and J1 
= − 0.09625 if 2.5 ≤ τ < 5: (a) at τ = 2, (b) at τ = 3. Other porosities and parameters are held constant
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consistent with past work [22]. As the value of ε1 increases, 
Figure 9a shows reduced spatial gradient in the concentra-
tion distribution in the first layer, while the distribution in 
the third layer is relatively unaffected. This is consistent with 
greater rate of diffusion of species at low values of ε1. A 
similar behavior is also observed at a later time shown in 
Figure 9b, when the current is lower due to the nature of 
the step function current profile. Consistent with Figures 8 
and 9a, a greater gradient in concentration in the first layer 
is observed for a lower value of ε1. Figure 9a also shows 
greater slope in concentration in the first layer at the inter-
face with the separator at lower values of ε1, as expected 
from Eq. (7d).

A similar analysis is carried out to investigate the impact 
of porosity of the other electrode, ε3. Results are plotted in 
Figure 10a and 10b in the form of concentration distributions 
at two different times for different values of ε3. As expected, 
in this case, since ε3 is being varied, the impact of varying 
ε3 is seen predominantly in the concentration distribution in 
the third layer, with greater concentration gradient at lower 
value of ε3. There is relatively lesser impact of changing ε3 
on concentration distribution. Similar to Figure 9, the con-
centration distribution in the third layer becomes broader as 
the value of ε3 decreases. In addition, a smaller value of ε3 
also results in a greater slope at the interface between the 
second and third layers.

Conclusions

Accurate modeling of concentration diffusion in multilayer 
Li-ion cells, such as electrode-separator-electrode stack, is 
critical for understanding and optimizing the overall per-
formance of the system. While past work is available for 
constant current conditions, this work presents a model for 

a more realistic condition where the applied current may 
vary with time, including switch between charge and dis-
charge. Such models may be applicable in several practical 
scenarios, such as in electric vehicles, where the electrical 
load on the battery varies widely over time, and therefore, 
the direct application of constant current models is not valid. 
It must be noted that the model presented above is valid in 
the solution-phase limitation, where diffusion within solid 
particles in the electrode may be neglected. The importance 
of solution-phase diffusion limitation has been highlighted 
in previous studies [1, 21, 22]. Also, the present analysis 
may break down at high currents and thick electrodes since 
the constant reaction rate assumption may not be valid in 
such cases. Further, the present model neglects the depend-
ence of diffusion coefficients and transference number on 
concentration. Such non-linear effects are often difficult to 
capture in analytical models and may also not be significant 
in several practical scenarios. Finally, the present model is 
isothermal, and temperature effects on problem parameters 
have been neglected. Several of these assumptions are rea-
sonably valid in practical applications, and therefore, the 
results presented here may be of practical relevance. Further, 
it must be noted that the theoretical framework developed 
here helps provide insights into the physics of the problem 
that may not be possible through numerical simulations and 
that the theoretical framework may be useful as a starting 
point for solving more complicated problems such as those 
with concentration-dependent reaction rate [41].

By showing that only a few number of eigenvalues offer 
reasonable accuracy in results, this work offers a practical 
method to compute concentration diffusion problems in 
practical electrochemical systems. Specifically, the analyti-
cal model can be computed using limited computing capa-
bilities available in battery management systems, compared 
to numerical simulations. It is expected that the results 

Fig. 10  Effect of porosity of the third layer. Concentration as a function of ξ for five different values of ε3, with J1 = 0.1925 if 0 < τ < 2.5 and J1 
= − 0.09625 if 2.5 ≤ τ < 5: (a) at τ = 2, (b) at τ = 3. Other porosities and parameters are held constant
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presented here may help improve our capability to model, 
analyze, and optimize the performance of practical electro-
chemical energy conversion and storage systems.
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