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Abstract
Objective There is increasing interest in simultaneous endovascular delivery of more than one drug from a drug-loaded 
stent into a diseased artery. There may be an opportunity to obtain a therapeutically desirable uptake profile of the two drugs 
over time by appropriate design of the initial drug distribution in the stent. Due to the non-linear, coupled nature of diffusion 
and reversible specific/non-specific binding of both drugs as well as competition between the drugs for a fixed binding site 
density, a comprehensive numerical investigation of this problem is critically needed.
Methods This paper presents numerical computation of dual drug delivery in a stent-artery system, accounting for diffusion 
as well as specific and non-specific reversible binding. The governing differential equations are discretized in space, followed 
by integration over time using a stiff numerical solver. Three different cases of initial dual drug distribution are considered.
Results For the particular case of sirolimus and paclitaxel, results show that competition for a limited non-specific binding 
site density and the significant difference in the forward/backward reaction coefficients play a key role in determining the 
nature of drug uptake. The nature of initial distribution of the two drugs in the stent is also found to influence the binding 
process, which can potentially be used to engineer a desirable dual drug uptake profile.
Conclusions These results help improve the fundamental understanding of endovascular dual drug delivery. In addition, the 
numerical technique and results presented here may be helpful for designing and optimizing other drug delivery problems 
as well.

Keywords dual drug delivery · endovascular drug delivery · non-specific binding · numerical computation · specific 
binding · stent

Nomenclature
b  bound drug concentration (mol·m−3)
B  binding site density (mol·m−3)
c  free drug concentration (mol·m−3)
D  diffusion coefficient  (m2·s−1)
h  convective mass transfer coefficient (m·s−1)
Sh  Sherwood number

t  time (s)
x  spatial coordinate (m)
γ  non-dimensional interface location
μ  forward reaction coefficient for binding 

(mol·m−3·s)−1

σ  reverse reaction coefficient for binding  (s−1)
τ  non-dimensional time
�   non-dimensional amount of bound drug remaining
�   non-dimensional amount of drug lost
�  non-dimensional amount of free drug remaining
�  non-dimensional spatial coordinate

Subscripts
m  layer number
ref  reference value
in  initial value

Superscripts
A,B  drugs 
ns  non-specific binding
s  specific binding
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Introduction

Mathematical and computational modeling of drug deliv-
ery devices has been gaining in momentum over the past 
two decades. Such models typically aim to better under-
stand the mechanisms of drug release and/or subsequent 
drug transport and retention within the biological environ-
ment. The piece de resistance is the use of the model to 
infer optimal design parameters (e.g. drug physicochemi-
cal properties, drug dose, drug release rate and loading 
strategy) to achieve the desired biological effect. In this 
quest, models have been increasing in sophistication, 
moving from simple descriptions of drug release from the 
device in simple in vitro environments [1–3] to more com-
plex models which incorporate important features of the 
in vivo environment [4–6].

Drug-Eluting Stents (DESs) for the treatment of obstruc-
tive coronary artery disease are a class of drug delivery 
device that has received significant attention in the mod-
eling literature [7]. Over the past two decades, modeling 
has played an important role in explaining deficiencies with 
early devices, and has helped inform subsequent generations 
of stents. For example, through modeling, the importance of 
drug lipophilicity was uncovered, explaining why heparin-
coated stents underperform when compared to paclitaxel- 
and sirolimus-coated stents [8]. Moreover, particularly in 
the case of sirolimus-eluting stents, modeling has revealed 
that it is more important to tune drug-elution rate to sus-
tain saturation of specific-binding sites within tissue than 
to ramp up the drug dose [4, 9]. Accounting for the differ-
ent physicochemical properties of paclitaxel and sirolimus, 
computational modeling has revealed different ‘optimal’ 
drug release strategies for these two drugs [5]. Furthermore, 
modeling has uncovered the importance of accounting for 
both specific and non-specific binding within arterial tis-
sue [6]. While the state-of-the-art computational models in 
this field are 2D-axisymmetric and multilayer, incorporating 
anisotropic diffusion properties, layer-specific parameters 
and two phases of nonlinear saturable binding [2], many of 
the aforementioned discoveries have been made based upon 
simpler one-dimensional models [4, 6, 8, 9].

To the best of our knowledge, the existing DES mode-
ling literature considers the delivery of only a single drug, 
reflecting the current clinical state-of-the-art. However, 
the idea of dual DES (D-DES) (i.e. stents coated with two 
different drugs) was conceived several years ago and there 
have been a number of studies in the literature investigat-
ing different combinations of drugs [10]. Initially, it was 
hypothesized that paclitaxel and sirolimus could be deliv-
ered from a D-DES to reap the benefits of both drugs, fol-
lowing the success of early paclitaxel DESs and sirolimus 
DESs [10]. Each of these drugs targets smooth muscle 

cell proliferation, albeit via different mechanisms. Sev-
eral subsequent studies have attempted to combine alterna-
tive drugs (e.g. sirolimus and heparin/probucol/genistein/
triflusal, zotarolimus and dexamethasone, paclitaxel and 
pimecrolimus/cilostazol, atorvastatin and fenofibrate) that 
target different combinations of complications associated 
with DES placement, for example restenosis, thrombosis 
and delayed endothelial healing [11–15].

As well as the clinical relevance, the simultaneous or stag-
gered delivery of two different drugs with different physicochem-
ical properties is interesting both from a computational modeling 
and an optimization point of view. The state-of-the-art models of 
drug delivery to arterial tissue assume two independent phases of 
nonlinear reversible drug binding: on one hand, drug binds spe-
cifically to target receptors within cells, while on the other hand, 
drugs may bind to non-specific binding sites within the extracel-
lular matrix (Fig. 1a). Each binding phase contributes to drug 
retention, while specific binding is thought to be most important 
in terms of efficacy [9]. While specific binding is drug-depend-
ent, it is probable that different drugs will compete for non-spe-
cific binding sites. This introduces coupling, meaning that it is 
not possible to solve two independent drug-delivery problems. 
Depending on the drug release strategy, this has the potential to 
lead to saturation of non-specific binding sites, with a subsequent 
impact on total content of each drug within tissue. Moreover, 
drug binding may, in general, be reversible or non-reversible 
(Fig. 1a). Different binding on and off rates between different 
drugs is likely to alter the time course of drug availability for 
binding to specific receptors. It then follows that the initial load-
ing configuration of each drug on the D-DES will have an impact 
on the binding dynamics and drug retention within the tissue. 
While making the problem considerably more complicated, this 
introduces the possibility of engineering the initial distribution of 
the two drugs on the D-DES to achieve a desired time course of 
drug-uptake and binding within the tissue. Practical considera-
tions to be modeled and optimized include the spatial distribution 
of the two drugs in the stent – for example, should both drug be 
distributed uniformly, or should one drug be distributed closer to 
the artery-side of the stent, in order to promote early binding of 
that drug. Comprehensive modeling of drug diffusion, reversible 
binding – both specific and non-specific – and convective loss is 
needed in order to answer such questions.

This paper presents a theoretical model of D-DES deliv-
ery and retention within tissue, accounting for both reversible 
specific binding as well as reversible non-specific binding, 
in which both drugs compete for a finite binding site density. 
Building upon past work [1], the three novel features of the pre-
sent work from a modeling point of view are (i) the delivery of 
two different drugs; (ii) the modeling of competitive nonlinear 
saturable binding; and (iii) the consideration of different spatial 
drug loading configurations. The inherent nonlinearity in the 
problem prohibits the development of an exact solution, and 
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therefore, a robust numerical method is developed using a  finite 
difference technique to solve the underlying coupled reversible 
two-layer nonlinear diffusion–reaction equations. The model is 
utilized to simulate spatio-temporal drug concentrations within 
the D-DES and tissue, and examine important indices such as 
drug content in tissue, specific and non-specific bound drug, as 
a fraction of the total available binding sites.

Problem Definition

Consider the simultaneous delivery of two drugs, A and B, from 
a stent into an artery. The two-layer geometry considered here 
is shown in Fig. 1b, where layers 1 and 2 refer to stent coat-
ing and artery, respectively. The problem is modeled as one-
dimensional, as is common in the stent modeling literature [3, 
9]. While the artery is, in general, a multilayer structure, it is 
modeled here as a homogeneous body, as has commonly been 
done in the literature [4, 9]. This is justified on the basis of the 
media layer being much thicker than other layers, as well as 
the binding reactions primarily occurring in the media layer, 
where the target smooth muscle cells reside. Moreover, due 
to the large diameter of the artery relative to its thickness, a 
Cartesian coordinate system is used here. The stent coating and 
artery thicknesses are x1 and ( x2 − x1 ), respectively, for the total 
domain size of x2 . Note that while the problem is presented here 
in the context of a stent-artery system, the model presented here, 
with appropriate adaptations is applicable to other drug delivery 
problems as well.

In general, the two drugs A and B are initially loaded with a 
known concentration distribution given by cA

m,in
(x) and cB

m,in
(x) , 

respectively (m = 1,2), and the interest is in understanding 
the nature of drug uptake through binding in the artery over 
time. Concentrations of free and bound drug A in the mth layer 
are denoted by cA

m
 and bA

m
 (m = 1,2), respectively, and a simi-

lar nomenclature is followed for drug B. Starting at t = 0, it is 
assumed that drugs A and B both begin to diffuse with independ-
ent, constant and uniform effective diffusion coefficients given 
by DA

m
 and DB

m
 , respectively, in the two layers m = 1,2. While 

accounting for binding reactions within the tissue is essential, in 
the interest of generality, the model also allows for the possibility 
of drug binding/absorption within the stent coating, a phenom-
enon which may explain incomplete and/or delayed release of 
drug from certain stent platforms [2]. Binding of drugs A and 
B are modeled in a general and coupled fashion, accounting for 
reversible drug binding of both specific and non-specific type 
in each layer. In the latter case, within the tissue, the two drugs 
compete with each other for a finite density of available binding 
sites. The binding site density for specific binding of drug A in 
each layer is denoted by BA,s

m
 , whereas the binding site density 

for non-specific binding in each layer is denoted by Bns
m

 . Forward 
and reverse reaction coefficients for the specific binding process 
for drug A are denoted by �A,s

m
 and �A,s

m
 , respectively, for each 

layer m = 1,2. Forward and reverse reaction coefficients for the 
non-specific binding process for drug A are denoted by �A,ns

m
 and 

�A,ns
m

 , respectively, for each layer m = 1,2. Similar nomenclature 
is followed for drug B. Note that in some cases, there may be no 
binding in the stent coating layer, for which, the corresponding 
coefficients may be set to zero. Further, the general framework 

Fig. 1  (a) Schematics of specific vs. non-specific, and non-reversible vs reversible binding processes; (b) Schematic of the two-layer two-drug 
problem with reversible binding on both specific and non-specific binding sites, along with illustrations of three candidate initial distributions of 
drugs A and B in layer 1, referred to as Cases I, II and III.
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described above may be simplified to the case of irreversible 
binding by setting the reverse reaction coefficients to zero.

Based on the nomenclature and assumptions listed here, the 
governing equations for drug concentrations may be written as

Here, bAB,ns
m

= bA,ns
m

+ bB,ns
m

 is the total non-specific bound 
concentration for drugs A and B. A set of equations similar 
to Eqs. (1)-(3) may also be written for drug B.

Several difficulties are likely to be encountered in solv-
ing these governing equations. Firstly, the governing equa-
tions for drugs A and B are coupled to each other through 
the 

(

B
ns

m
− b

AB,ns
m

)

 term that appears in the equations for both 
drugs. This term represents competitive binding between the 
two drugs on a finite available binding site density. Further, 
the governing equations are, in general, non-linear. Approxi-
mate linearization may only carried out if the specific and 
non-specific bound drug concentrations are expected to be 
very small compared to the density of the corresponding 
available binding sites.

Boundary conditions associated with Eqs. (1)-(3) (and the 
similar set of equations for drug B) may be written as follows:

These equations model a non-penetrable wall at the stent/
coating interface and convective mass loss to the surround-
ing medium at the external boundary of the arterial wall. The 
former is justified in practical scenarios where, for example, 
the drug-carrying polymer layer in a stent is backed by a 
metal support, which the drug cannot diffuse into. How-
ever, it is noted that these equations do not account for drug 
lost to the lumen in practical stent configurations. This may 
be regarded as the extreme case where 100% drug delivery 
efficiency is achieved. Extending the model to higher spa-
tial dimensions, which is left for future work, would more 
readily enable the incorporation of the effects of drug lost 
to the lumen (see, for example, [16] and [17]). The convec-
tive boundary condition is general enough to span the entire 

(1)
𝜕cA

m
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=

𝜕
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(

DA
m
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m

(
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m
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m
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cA
m
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m
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cA
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m
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(4)
�cA

1
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�cB
1

�x
= 0 at x = 0

(5)−DA

2

�cA
2

�x
= h

A
c
A

2
; − D

B

2
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2

�x
= h
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c
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2
at x = x2

convective spectrum between an impenetrable wall (zero 
convective mass transfer coefficients) and an infinite sink 
(very large convective mass transfer coefficients).

In addition, the following equations are assumed at the 

interface between the two layers:

Equations (6) and (7) represent continuity and conserva-
tion of mass flux, respectively, at the interface. More com-
plicated interface models can be mathematically represented 
by modifications in these equations.

Initial conditions associated with the problem may be 
written as

Equation (8) accounts for any arbitrary initial distribution of 
the two drugs. For example, as shown in Fig. 1b, the two drugs 
may be distributed uniformly, or one of the drugs may be dis-
tributed closer to the stent-artery interface, or, in general, the 
drug distribution may be completely arbitrary, possibly based 
on patient-specific needs. In addition, it is assumed that there 
is no bound drug in either layer at the initial time.

Non‑Dimensionalization

Due to the large number of variables and parameters 
involved in the problem definition outlined above, it is help-
ful to non-dimensionalize. For each layer, m = 1,2, variables 
associated with drug A are non-dimensionalized as follows:

with similar nomenclature for drug B. Note that ShA and ShB are 
the Sherwood numbers that characterize the nature of boundary 
condition at x = x2 for drugs A and B, respectively. In addition,

(6)c
A
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2
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B
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Here, Dref  is a reference diffusion coefficient, which may 
be taken to be equal to one of the diffusion coefficients 
appearing in this problem, say, that of drug A in layer 2, DA

2
 . 

cref  is a reference drug concentration that may be obtained 
from the given initial drug distributions. For example, if 
cA
1,in

(�) is constant, then one may choose cref = cA
1,in

.
Based on Eqs. (9) and (10), the following set of non-

dimensional partial differential equations for the concentra-
tions of drug A may be written:

with a similar set of equations for drug B.  Further, in 
Eqs. (11)-(13), the nomenclature �0 = 0 and �2 = 1 is used.

The following boundary and interface conditions may be 
written:

The initial conditions are

This completes the problem definition in non-dimensional 
form. It is of interest to solve these equations in order to 
understand the nature of dualdrug binding, specifically, the 
competition between drugs A and B for non-specific bind-
ing sites, and the interaction between diffusion and bind-
ing processes. The effect of the initial loading of the drugs, 
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i.e., cA
m,in

(�) and cB
m,in

(�) on drug uptake is also of particular 
interest.

These equations, in general, contain twelve drug concen-
tration distributions:  cA

1
 , b

A,s

1
 , b

A,ns

1
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2
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 , cB
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b
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 , b
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 , b
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2
 . These include free, non-specifically 

bound and specifically bound drug concentrations for drugs 
A and B in layers 1 and 2. However, for  special cases, the 
number of variables may be lower. For example, in the case 
of drug delivery from a stent into an artery, it may be reason-
able to neglect drug binding within the stent itself, in which 
case, the forward and reverse binding reaction coefficients 
for layer 1 are zero, and diffusion is the only relevant trans-

port process in the stent layer. Therefore, the drug concentra-
tions distributions of relevance for this problem are cA

1
 , cA

2
 , 

b
A,s

2
 , b

A,ns

2
 , cB

1
 , cB

2
 , b

B,s

2
 and b

B,ns

2
.

Due to the considerable complexity of these equations, 
an exact solution is not likely possible, except under spe-
cial cases. These special cases pertain to irreversible drug 
binding, modeled by setting the reverse reaction coef-
ficients �  to zero and linearizing the forward reaction 
terms by assuming the concentration of bound drug to be 
small. By doing so, this reduces to a two-layer problem 
with diffusion and irreversible consumption, for which 
an exact solution is derivable using the method of separa-
tion of variables. An even more extreme scenario may be 
arrived at by setting all reaction coefficients � and �  to 
zero, which eliminates binding completely, thus reducing 
this to a two-layer pure-diffusion problem, for which an 
exact solution is also similarly derivable. For the general 
case considered here, however, only a numerical solution 
is likely to be possible. Equations (11)-(18) are solved 
numerically, as described in the next section.

Numerical Solution

Equations (11)-(18) are discretized spatially over a grid of uni-
form spacing in each layer, followed by integration over time 
using a stiff numerical solver. A total of N1 and N2 grid points 
are placed in layers 1 and 2, so that the grid spacing in each 
layer is given by Δ�1 =

�1

N1−1
 and Δ�2 =

1−�1

N2−1
 . The jth node in 

layer 1 is located at � = (j − 1)Δ�1 (j = 1,2,…,N1) and the jth 
node is layer 2 is located at � = �1 + (j − 1)Δ�2 (j = 1,2,…,N2). 
Note that in this scheme, one node is located at the interface 
between the two layers and is shared between the two. In order 
to carry out numerical integration over time, the following 
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expressions are derived for the time derivatives for concentra-
tions at each node using central differencing:

For all internal nodes,

where cA
m
(j) denotes the discretized value of cA

m
 at the jth 

node, and so forth. Equations  (19)-(21) are written for 
j = 2,…,N1-1 for the stent, and j = 2,…,N2-1 for the artery.

Note that equations for the boundary and interface nodes 
need to be written separately, since straightforward central dif-
ferencing is not possible at these nodes, and equations for these 
nodes must also account for boundary/interface conditions.

For the left boundary, central differencing using a ghost 
node may be combined with the impermeable boundary condi-
tion, Eq. (14) to write

For the right boundary, one may similarly combine cen-
tral differencing using a ghost node with the convective mass 
transfer boundary condition, Eq. (15) to write
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The treatment of the interface node is somewhat more 
involved. Following the previously proposed procedure for 
an interface node in a multilayer problem [18], the following 
equations are written based on backward and forward finite 
differencing in two nodes adjacent to the interface node in 
each layer:

where the derivatives refer to values at the interface, evalu-
ated in the respective layer. In addition, based on interface 
conditions, one may also write

Note that all derivatives in Eqs. (24)-(29) are evaluated at 
the interface node. Equations (24)-(29) represent six linear 

algebraic equations in six unknowns, cA
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 . A solution for these equations is some-

what cumbersome but nevertheless derivable. In particular, 
expressions for the second derivatives are of interest because 
the diffusion term at the interface may be written approxi-

mately as the mean of 
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��2
 and 
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 in the two layers. Based 

on the expressions for these terms resulting from the treat-
ment above, the following expression for the time derivative 
of concentration at the interface node may be derived:
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Equations (19)-(23) and (30) together define a set of ordi-
nary differential equations in concentrations at the discre-
tized nodes, which can be numerically integrated over time. 
Similar equations may be written for drug B as well. Note the 
coupling between the equations for drugs A and B through 
the b

AB,ns

m
 term that represents competition between drugs A 

and B for non-specific binding sites. Depending on the values 
of the parameters, the discretized equations may present diffi-
culties in numerical computation. For example, it is common 
for the thickness of the drug-carrying stent layer to be much 
smaller than the thickness of the artery, in which case, a stiff 
numerical solver may be needed to reconcile the significant 
variation in length scale. In the present work, this integration 
is carried out using a stiff ODE solver that utilizes a modified 
Rosenbrock formula of the second order [19].

Overall Drug Delivery Indicators

Several integral quantities may be defined to characterize the 
nature of diffusion and binding processes over time. The total 
amount of free drug A remaining in layers 1 and 2 at any time 
may be written in non-dimensional normalized form as follows:

where the normalization is carried out on the basis of the 
reference concentration cref  and the thickness of the drug-
carrying layer 1.

Similarly, the total normalized amount of drug A bound 
in specific and non-specific forms may be written as

Finally, the total amount of drug A lost at the right 
boundary up to a given time may be written as

Equations similar to the ones above may also be written 
for drug B.

Clearly, for overall mass conservation at any time, one 
must have
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and similarly for drug B.
Several terms defined above reduce to zero for common 

scenarios. For example, it is often assumed that no bind-
ing reactions occur in the drug-carrying stent layer (layer 
1) of a stent-artery system. In this specific scenario, when 
the drug is uniformly loaded in the stent, the overall mass 
conservation simplifies to

Values of Problem Parameters for Typical 
Arterial Drug Delivery Problem

While the two-layer drug delivery model discussed here is 
quite general, and may be applicable to a number of distinct 
drug delivery scenarios, the specific focus of this work is 
on stent-based arterial dual drug delivery processes. The 
rest of this work considers simultaneous diffusion and bind-
ing of two commonly used drugs – sirolimus and paclitaxel 
– denoted as Drugs A and B, respectively, in the model pre-
sented above. Each of these drugs has been heavily studied 
[20, 21]. Paclitaxel is known to bind specifically to the subu-
nit of tubulin present on microtubules, predominantly exert-
ing its effect at the G2/M phase of the cell-cycle [22], while 
sirolimus is known to bind to cytosolic protein FKBP12, 
thereby hindering the functionality of FKBP-rapamycin-
associated protein (FRAP) and affecting the mTOR path-
way as a result of growth factor stimulation [23]. Values of 
various diffusion and binding coefficients for each drug are 
taken from past literature [6, 9, 16, 24–28], as summarized 
in Table I. In some cases, these values are based on experi-
mental measurements, while in others, the values have been 
estimated or inferred due to a lack of experimental data. Val-
ues of non-dimensional parameters are calculated based on 
these values, using Eqs. (9) and (10). It is helpful to note a 
few key features of this baseline set of data. Firstly, the stent 
coating thickness is much smaller than that of the artery, 
so that �1 has a very small numerical value. This multiscale 
nature of the problem introduces stiffness in numerical com-
putation. In order to mitigate this, an equal number of nodes 
are considered in each layer, so that the element size in the 
stent is much smaller than in the artery. In addition, a stiff 
numerical solver is used for computation.

Further, Table I shows that the diffusion coefficient of 
each drug in the stent layer is much lower than in the artery 
layer. As a result, the drugs are expected to diffuse very 
slowly in the stent, but diffuse much faster once the drug 
enters the artery. For the specific binding reaction, the for-
ward reaction coefficient for sirolimus is significantly larger 
than for paclitaxel. In addition, the backward reaction coeffi-
cient for sirolimus is significantly smaller than for paclitaxel. 
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As a result, sirolimus is expected to specifically bind much 
faster than paclitaxel, and, once bound, undergo the unbind-
ing reaction much slower than paclitaxel. Specific binding 
reactions for sirolimus and paclitaxel occur independent of 
each other. For non-specific binding, where the two drugs 
compete with each other for a finite number of binding sites, 
data in Table I show that the forward reaction coefficient for 
sirolimus is larger than for paclitaxel. However, unlike spe-
cific binding, the backward reaction coefficient for sirolimus 
is larger than for paclitaxel. This implies that while sirolimus 
may exhibit greater tendency to non-specifically bind than 
paclitaxel, it will also unbind much faster than paclitaxel. 

The magnitudes of these reaction coefficients for the two 
drugs relative to each other play a key role in determining 
the dynamics of drug uptake in the artery. This is discussed 
in more detail in subsequent sections.

Results and Discussion

Comparison with Exact Solutions of Special Cases

It is of interest to compare the results of the numerical 
computation with exact solutions that may be derivable for 

Table I  Values of  problem parameters based on past work [6, 9, 16, 24–28]

A and B refer to sirolimus and paclitaxel, respectively. 1 and 2 refer to the stent coating and artery, respectively
+  This value is based on specifications of the XIENCE V stent
*  No binding is assumed to occur in the polymer layer

Symbol Definition Value Unit Reference

x1 Thickness of stent coating 10 µm [6]
x2 − x1 Thickness of artery 500 µm [6]
c
in

Initial concentration of drugs A and B in layer 1 211 mol·m−3 [16]+

D
A

1
Diffusion coefficient of drug A in layer 1 1.2 ×  10–16 m2·s−1 [6]

D
B

1
Diffusion coefficient of drug B in layer 1 1.2 ×  10–16 m2·s−1 [6]

D
A

2
Diffusion coefficient of drug A in layer 2 7 ×  10–12 m2·s−1 [24]

D
B

2
Diffusion coefficient of drug B in layer 2 2 ×  10–12 m2·s−1 [24]

�
A,s

1
Forward specific reaction coefficient for drug A in layer 1 0 m3·s−1·mol−1 *

�
B,s

1
Forward specific reaction coefficient for drug B in layer 1 0 m3·s−1·mol−1 *

�
A,s

1
Reverse specific reaction coefficient for drug A in layer 1 0 s−1 *

�
B,s

1
Reverse specific reaction coefficient for drug B in layer 1 0 s−1 *

�
A,s

2
Forward specific reaction coefficient for drug A in layer 2 800 m3·s−1·mol−1 [25, 26]

�
B,s

2
Forward specific reaction coefficient for drug B in layer 2 3.6 ×  10–3 m3·s−1·mol−1 [25, 26]

�
A,s

2
Reverse specific reaction coefficient for drug A in layer 2 1.6 ×  10–4 s−1 [6, 25]

�
B,s

2
Reverse specific reaction coefficient for drug B in layer 2 9.1 ×  10–2 s−1 [6, 25]

�
A,ns

1
Forward non-specific reaction coefficient for drug A in layer 1 0 m3·s−1·mol−1 *

�
B,ns

1
Forward non-specific reaction coefficient for drug B in layer 1 0 m3·s−1·mol−1 *

�
A,ns

1
Reverse non-specific reaction coefficient for drug A in layer 1 0 s−1 *

�
B,ns

1
Reverse non-specific reaction coefficient for drug B in layer 1 0 s−1 *

�
A,ns

2
Forward non-specific reaction coefficient for drug A in layer 2 2 m3·s−1·mol−1 [27, 28]

�
B,ns

2
Forward non-specific reaction coefficient for drug B in layer 2 0.17 m3·s−1·mol−1 [27, 28]

�
A,ns

2
Reverse non-specific reaction coefficient for drug A in layer 2 5.2 ×  10–3 s−1 [6, 27]

�
B,ns

2
Reverse non-specific reaction coefficient for drug B in layer 2 5.27 ×  10–4 s−1 [6, 27]

B
A,s

1
Concentration of specific binding sites for drug A in layer 1 0 mol·m−3 *

B
B,s

1
Concentration of specific binding sites for drug B in layer 1 0 mol·m−3 *

B
A,s

2
Concentration of specific binding sites for drug A in layer 2 3.3 ×  10–3 mol·m−3 [9, 25]

B
B,s

2
Concentration of specific binding sites for drug B in layer 2 1 ×  10–2 mol·m−3 [9, 25]

B
ns

1
Concentration of non-specific binding sites in layer 1 0 mol·m−3 *

B
A,ns

2
Concentration of non-specific binding sites in layer 2 (Drug A) 0.363 mol·m−3 [9, 25, 28]

B
B,ns

2
Concentration of non-specific binding sites in layer 2 (Drug B) 0.117 mol·m−3 [9, 25, 28]
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simplified special cases of the general problem considered 
here. Two cases are considered here. In the first case, only 
irreversible binding of a single drug is considered in the 
two-layer geometry, i.e., the reverse reaction coefficients 
represented by � are all zero for both layers. In such a case, 
the problem is completely uncoupled, and only the free drug 
concentrations cA

1
 and cA

2
 need to be solved, permitting an 

analytical solution can be derived, as outlined in Appendix 
1.

A second scenario of interest for comparison between 
numerical computation and an exact solution pertains to the 
case of pure diffusion, i.e., no drug binding at all, which 
may be modeled by setting all reaction coefficients � and 
� to zero. Exact analytical solution for this problem is also 
derived in Appendix 1.

A comparison of the numerically computed concentra-
tion field with the exact analytical solution for these special 
cases is carried out. Figure 2a and b present this compari-
son when a single drug undergoes irreversible binding or 
no binding at all in layer 2. The analytical solution is based 
on equations (38)-(39) as outlined in Appendix 1, where 
�1 = �2 = 0 for the case of no binding at all. Figure 2a plots 
the free drug concentration distribution in a two-layer body 
at multiple times, starting from uniform drug loading in 
layer 1 at the initial time. Values of problem parameters are 
D1 = 0.4 , �1 = 0.4 and �2 = 12.0 for the irreversible binding 
case shown in Fig. 2b. Note that �m = �s

m
Bm , as defined in 

Appendix 1. A zero concentration boundary is assumed at 
the � = 1 . A total of 40 terms, verified separately to be suffi-
cient to ensure converged results, is used for the exact series 
solution. Curves from the numerical calculations as well as 
the exact solution in Fig. 2 show excellent agreement at each 
time for both cases. In general, the free drug concentrations 
in layer 2 for the case of no binding are greater than the case 

of irreversible binding, because in the latter case, free drug 
gets consumed over time.

A further comparison with exact solution is presented in 
Fig. 3. Drug concentration at the middle of layer 2 is plotted 
as a function of time for four different values of the binding 
coefficient �2 . Other parameters are the same as Fig. 2. In 
each case, curves based on numerical calculations as well 
as the exact solution are plotted. There is excellent agree-
ment between the two for each case considered here. Drug 
concentration at the center of layer 2 rises with time, reaches 
a peak and then decays away. As expected, the curve cor-
responding to the largest value of �2 shows the lowest drug 
concentration, which is due to greater consumption of drug 
in the irreversible binding reaction. These characteristics of 

Fig. 2  Comparison of numerical model with exact solution for the special cases of (a) no binding and (b) irreversible binding of a single drug. 
In each case, numerical model and exact solution are compared with each other in terms of concentration profiles at multiple times. The drug is 
uniformly loaded in layer 1 at the initial time.

Fig. 3  Comparison of numerical model with exact solution for the 
special case of irreversible binding of a single drug: Concentration 
profiles at the center of layer 2 as functions of time for multiple val-
ues of �2 . The drug is uniformly loaded in layer 1 at the initial time.
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curves shown in Fig. 3 are consistent with the nature of dif-
fusion, wherein, the point of interest first receives a large 
influx of drug from layer 1, but once the drug has diffused 
all the way to the right-hand boundary, significant drug loss 
begins to occur, particularly due to the zero concentration 
boundary condition, which explains the decaying nature of 
these curves at larger times. Note also for a very short initial 
time, the curves are nearly flat, which occurs because at very 
early times, drug is still diffusing from layer 1 towards layer 
2, during which time, there is no appreciable rise in drug 
concentration at the center of layer 2.

Overall Mass Balance

For the parameters  listed in Table 1, an overall mass bal-
ance for the problem is carried out. As outlined previously, 

total amounts of free sirolimus and paclitaxel in layers 1 
and 2, and bound drug – specifically or non-specifically – in 
layer 2 are calculated numerically. Total amounts of both 
drugs lost at the right surface ( � = 1 ) are also calculated. 
Overall mass conservation of these quantities over time, 
per Eq. (34) is examined using parameter values listed in 
Table I. In addition, the value of the Sherwood number is 
taken to be 0.1 for each drug throughout this work. Note 
that quantitative information about the Sherwood number 
is generally unavailable in the literature, and the assumed 
value quite likely corresponds to slow convective conditions 
at the boundary. For this set of parameters, Fig. 4 plots the 
total amounts of free drug remaining in each layer, as well 
as specifically and non-specifically drug bound in layer 2. 
The total amount of drug lost to the surrounding medium at 
the convective boundary up to a given time is also plotted. 

Fig. 4  Plots of total amounts of free drugs in layers 1 and 2, �A
1
 and �A

2
 , specifically and non-specifically bound drug in layer 2, �A,s

2
 and �A,ns

2
 , 

and drug lost to the surrounding medium, �A

2
 as functions of time for a baseline set of parameters. The total sum of these amounts is also plotted. 

(a) and (b) present plots for sirolimus and paclitaxel, respectively.

Fig. 5  Total bound sirolimus and paclitaxel in artery as functions of time: (a) Non-specifically bound quantities, �A,ns

2
 and �B,ns

2
, and (b) specifi-

cally bound quantities, �A,s

2
 and �B,s

2
 as functions of time. Both sirolimus and paclitaxel are assumed to be initially uniformly distributed in the 

stent. Other parameter values are listed in Table I.
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Curves for sirolimus and paclitaxel are plotted in parts (a) 
and (b), respectively. Note that curves for drug bound in the 
stent coating layer are not plotted, since there is no drug 
uptake in the stent for the parameter values simulated. It 
is important to note that the total sum of these curves, also 
plotted in Fig. 4a and b are found to be very close to 1 for 
both drugs, except for a small numerical error at early times, 
which is found to reduce with finer mesh discretization. This 
is consistent with Eq. (34) and demonstrates that the numeri-
cal calculations satisfy overall mass balance. This provides 
additional confidence in the accuracy of the numerical tech-
nique utilized in this work.

These plots show that as drug diffuses into the artery, 
the amount remaining in the stent coating layer reduces 

steadily. The free drug remaining in the artery increases 
initially, as more and more drug is received from the 
stent coating layer, while the drug has not yet diffused 
to the convective boundary. At later times, once drug 
begins to be lost at the convective boundary, the amount 
of drug remaining in the artery layer saturates and 
decreases very slowly over time. The amount of drug 
lost at the convective boundary is very small at early 
times, due to the large diffusive time scales and drug 
binding, but rises at later times. The plots for sirolimus 
and paclitaxel are broadly similar.

The amounts of drug bound specifically or non-specifi-
cally are both small relative to other quantities. This shows 
that the amount of drug bound in the artery is only a small 

Fig. 6  Plots of non-specifically bound drug concentration distribution at different times for (a) sirolimus and (b) paclitaxel. Data are presented as a 
fraction of total number of binding sites. Both drugs are assumed to be uniformly distributed in layer 1 at the initial time. Other parameter values are 
listed in Table I.

Fig. 7  Plots of specifically bound drug concentration distribution at different times for (a) sirolimus; and (b) paclitaxel. Data are presented as a 
fraction of total number of binding sites. Both drugs are assumed to be uniformly distributed in layer 1 at the initial time. Other parameter values 
are listed in Table I.
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fraction of the drug loaded in the stent. This is largely 
dependent on the specific values of key parameters govern-
ing binding and drug loss, such as binding site density, reac-
tion coefficients and the Sherwood number. These important 
quantities are difficult to discern due to the scale in these 
plots, but are of interest from a safety and efficacy stand-
point. As a result, these quantities are plotted separately in 
Fig. 5, where the total non-specifically bound sirolimus and 
paclitaxel are plotted as functions of time in Fig. 5a and total 
specifically bound sirolimus and paclitaxel are plotted as 
functions of time in Fig. 5b.

The effect of various problem parameters on the dynam-
ics of drug binding is investigated in detail in subsequent 
sub-sections.

Dynamics of Specific and Non‑Specific Two‑Drug 
Binding

Sirolimus and paclitaxel undergo binding through two dis-
tinct mechanisms – non-specific binding, in which the two 
compete with each other for binding sites, and specific bind-
ing, in which the binding processes for the two drugs are 
independent of each other. The dynamics of non-specific 
binding is considered first.

Figure 6a plots non-specifically bound sirolimus concen-
tration distributions in the artery at multiple times. A similar 
plot for paclitaxel is presented in Fig. 6b. These plots show that 
non-specifically bound sirolimus concentration is very high at 
small times, compared to paclitaxel. The sirolimus binding front 

moves rightwards with time, as shown in Fig. 6a. However, the 
concentration curves for sirolimus also drop off very rapidly 
at subsequent times. On the other hand, paclitaxel is slow to 
bind at initial times, but catches up with, and indeed exceeds, 
sirolimus at later times, as seen in total bound drug plots shown 
in Fig. 5a. At early times, most of the non-specific binding sites 
are occupied by sirolimus, whereas the competition for binding 
sites shifts more and more in favor of paclitaxel at larger times. 
This characteristic of non-specific binding may be explained on 
the basis of the values of non-specific forward and backward 
reaction coefficients for sirolimus and paclitaxel. While the for-
ward reaction coefficient for sirolimus is one order of magnitude 
larger than paclitaxel, the backward coefficient for sirolimus is 
also one order of magnitude larger than paclitaxel. This is the 
reason why sirolimus dominates the competition for non-specific 
binding sites at early times. However, at later times, bound siroli-
mus also unbinds faster than paclitaxel, which is why, at later 
times, paclitaxel catches up with sirolimus, especially away from 
the convective boundary.

A similar comparison between the two drugs for specific 
binding is presented in Fig. 7. Specifically bound sirolimus and 
paclitaxel concentration distributions are plotted as functions 
of time in Fig. 7a and b, respectively. Figure 7a shows that spe-
cific binding of sirolimus occurs very rapidly, i.e., the diffusion 
of sirolimus from stent into the artery very quickly saturates 
specific sirolimus binding sites, following which, the binding 
front simply propagates towards the right over time. After some 
time, nearly all available specific binding sites for sirolimus are 
occupied. Note that the peak value of 1 in the curves shown in 

Fig. 8  Effect of initial drug distributions: Free sirolimus concentration distribution in (a) stent, and (b) artery at multiple times for the three 
cases illustrated in Fig. 1b.



Pharmaceutical Research 

1 3

Fig. 7a indicate that all binding sites are occupied. This char-
acteristic of sirolimus is consistent with the relative values of 
binding reaction coefficient. For specific binding reactions, the 
forward coefficient for sirolimus is five orders of magnitude 
larger than paclitaxel, which is why sirolimus is seen to saturate 
its specific binding sites so quickly. Moreover, the backward 
coefficient for sirolimus is three orders of magnitude smaller 
than paclitaxel, which is why sirolimus, once bound, does not 
appreciably unbind, and nearly all sirolimus binding sites remain 
occupied. On the other hand, due to more moderate values of 
forward and backward binding reaction coefficients, paclitaxel 
undergoes much more binding and unbinding, which is why, 
the paclitaxel concentration distribution fluctuates up and down 
with time, as seen in Fig. 7b between curves corresponding to 
� = 0.003, � = 0.03 and � = 0.3 . Unlike sirolimus, specific 
binding sites for paclitaxel are not fully occupied at small or 
large times.

Effect of Initial Drug Distributions in Stent

All analysis presented in prior sub-sections assumes uniform 
initial distribution of each drug in the stent coating layer, 
as shown schematically in Fig. 1b. Since the two drugs can 
potentially be embedded in the stent coating independent 
of each other, it is of interest to understand how the initial 
drug distributions in the stent coating affect drug diffusion 
and uptake over time. This is particularly important in the 
present problem due to the coupled nature of sirolimus and 
paclitaxel uptake in non-specific binding sites. In order to 
investigate this further, numerical computation is carried 
out for three Cases illustrated in Fig. 1b. In Case I, both 
drugs are distributed uniformly in the stent. In Case II, siroli-
mus is loaded only in the left half (closest to the lumen) 
and paclitaxel is loaded only in the right half (closest to 
the tissue). In Case III, the distribution is flipped, so that 
sirolimus and paclitaxel are loaded only in the right and 
left half, respectively. The total amount loaded remains the 
same in the three Cases, for both sirolimus and paclitaxel, to 
facilitate comparison between the three Cases. These Cases, 

illustrated in Fig. 1b may be used to understand how such 
relative positioning of the drugs affects uptake.

In order to understand this further, Fig. 8 plots free drug dis-
tributions for all three Cases at multiple times, including at the 
initial time. Due to the significant difference in length scales of 
the stent and artery, distributions in the two layers are presented 
separately in Figs. 8a and b, respectively. The initial drug dis-
tribution for the three Cases can be easily visualized in the � =0 
curves in Fig. 8a. It is seen in Fig. 8a that for the baseline case 
of uniform drug distribution, the free drug distribution in the 
stent coating decreases slowly over time, starting from the right 
end of the stent, as the drug diffuses into the artery. For Case 
III, in which, sirolimus is loaded only in the second half of the 
stent, located next to the artery, the drug distribution exhibits a 
non-monotonic behavior, which may be because of much faster 
sirolimus diffusion into the artery, within which sirolimus dif-
fuses even faster once entered. This results in a rapid reduction in 
sirolimus concentration in stent regions very close to the artery, 
but farther away from the stent-artery interface, the sirolimus 
concentration reduces due to diffusion towards the left since 

Fig. 9  Effect of initial distributions of sirolimus and paclitaxel: (a) Total bound sirolimus and paclitaxel as functions of time, and (b) Total sirolimus 
and paclitaxel lost from the right boundary as functions of time. Both plots show curves corresponding to Cases I, II and III illustrated in Fig. 1b.

Fig. 10  Effect of initial drug distribution: Free sirolimus concentra-
tion as functions of time for three Cases I, II and III illustrated in 
Fig. 1b.
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the first half of the artery does not initially contain sirolimus. 
Between these two diffusion processes causing sirolimus deple-
tion, at �=0.5, there appears a peak in sirolimus concentration 
at a point that remains relatively unaffected by both. The peak, 
however, disappears at larger times, when reduction in sirolimus 
concentration due to diffusion into the artery dominates.

Figure 8b plots free drug distributions in the artery at mul-
tiple times for the three Cases. In general, drug concentration 
in the artery increases with time in each Case, due to increased 
diffusion of the drug from the stent. In Case II, where sirolimus 
is loaded away from the artery, there is reduced drug in the 
artery at small times, but at larger times, Case II catches up 
with Case I, so that the curves for τ = 10 are similar for these 
two Cases. Free sirolimus available in the artery is modestly 
larger for Case III, in which, sirolimus is loaded only on the 
artery-facing half of the stent coating, compared to the other 
two Cases, as seen in the third plot in Fig. 8b.

The impact of initial drug distribution on drug binding in the 
artery is examined next. Figure 9a plots total amount of drug 
bound, both specifically and non-specifically, as a function of 
time for the three Cases. Figure 9a shows that for the fast dif-
fusing and fast binding sirolimus, the bound drug concentra-
tion curves for Cases I and III peak very quickly due to faster 
diffusion of sirolimus into the artery and subsequent saturation 
of binding sites. However, this does not occur for Case II, in 
which sirolimus is loaded in the left half of the stent, away from 
the artery, due to which it takes a longer time for sirolimus to 
diffuse into the artery. The opposite trend is seen for Paclitaxel, 
as expected. When Paclitaxel is loaded close to the artery (Case 
II), Fig. 9a shows rapid binding of paclitaxel due to faster diffu-
sion into the artery, relative to sirolimus. In this case, Paclitaxel 
dominates over sirolimus for non-specific binding at early times 
due to greater availability. On the other hand, when Paclitaxel is 
loaded away from the artery (Case III), there is less binding of 
Paclitaxel, especially at early times. These observations indicate 
that the relative distribution of drug in the stent has a profound 
impact on the dynamics of binding in the artery. Therefore, the 
relative distribution of drug in the stent can potentially be used 
to achieve a desirable binding profile in the artery.

The impact of initial drug distribution on drug lost from 
the right side boundary is examined in Fig. 9b. Compared to 
the baseline Case I, there is lower and greater sirolimus lost 
in Cases II and III, respectively, due to the sirolimus being 
loaded away from and next to the artery in these Cases, 
respectively. Similar observations along expected lines can 
be made for paclitaxel. Note that the amount of drug lost is 
also likely to be a strong function of the Sherwood number, 
as it governs the nature of the convective boundary.

Figure 10 plots total free sirolimus in the artery for the three 
Cases. For Cases I and III, in which sirolimus is loaded uni-
formly and in the artery-facing half of the stent coating, respec-
tively, the curves in Fig. 10 rise rapidly at initial time, because 
sirolimus is available to diffuse into the artery starting at the 

initial time. In contrast, when sirolimus is loaded in the half 
of the stent away from the artery (Case II), the curve is slow to 
rise at early time, which is because it takes a finite amount of 
time for sirolimus to diffuse through the stent and then enter the 
artery. Free drug concentrations in Cases I and II reach a peak 
and then slowly go down, because of consumption of the drug 
in binding reactions.

Conclusions

A number of physical processes contribute towards the complex-
ity of endovascular drug delivery, including diffusion and bind-
ing, which may be specific or non-specific, as well as reversible 
or irreversible. This problem is made even more complicated 
when the simultaneous delivery of multiple drugs is desired. In 
order to maximize the therapeutic benefits of dualdrug delivery, 
the key contribution of this work is in the development of a rig-
orous and general numerical computation model. Key insights 
gained from this work include the importance of relative values 
of diffusion coefficients and binding reaction coefficients of the 
two drugs, as well as the nature of competitive non-specific bind-
ing in determining dual drug uptake. Further, the role of initial 
distribution of the two drugs in determining drug uptake as a 
function of time may be of much practical interest, for example, 
in determining drug distribution strategies to meet desirable drug 
uptake goals. Such insights can be used to balance safety and 
efficacy of dual drug delivery.

While the model is formulated in a very general fash-
ion, nevertheless, it is important to recognize key underlying 
assumptions. The artery is modeled as a homogeneous material, 
although extension of the present work to account for multilayer 
nature of the artery is quite straightforward. Convective flow 
and the resulting mass transfer due to transvascular pressure is 
neglected. This assumption is valid in cases where the arterial 
Péclet number (Pe) is less than 1, in which case diffusion domi-
nates over advection. Further, it is assumed that the application 
of the stent does not influence local geometry or properties of 
the artery. Based on past work, these assumptions may be rea-
sonable in a broad range of parameters. Finally, the predictive 
accuracy of the numerical model depends critically on the accu-
racy of values of underlying parameters. While these parameter 
values have been obtained from past work, more detailed meas-
urements in a variety of arterial conditions may be beneficial. It 
is hoped that this work will inspire experimental measurements 
that would facilitate validation of the mathematical model.

This work contributes towards an improved mathematical 
understanding of a promising dualdrug delivery technique, 
which may be useful for design and optimization. While dis-
cussed here in the context of endovascular drug delivery, the 
numerical model is equally applicable for other drug delivery 
problems, with appropriately chosen parameter values.
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Appendix 1: Exact Solution for Irreversible 
Single Drug Binding in a Two‑Layer 
Geometry

This Appendix derives an exact solution for two special 
cases of the general model, for comparison with numerical 
computations.

Special Case of Diffusion and Irreversible Binding 
of a Single Drug

First, diffusion and irreversible binding of a single drug in a 
two-layer geometry is considered. For simplicity, superscript 
A is dropped from the derivation below. In this case, it is 
assumed that the binding site density is much larger than 
the concentration of bound drug, and therefore, the problem 
defined by equations (11), m=1,2 in non-dimensional form 
can be linearized as follows:

where �m = �s
m
Bm for m = 1,2, following lineariza-

tion, and diffusion coefficient in the second layer is used for 
non-dimensionalization.

The associated boundary and interface conditions are 
given by equations (14)–(15).

Due to the linearization of this problem, an exact solution 
may be derived using the method of separation of variables. 
One may write the solution in the following form

Note that sine and cosine terms are not included in 
Eqs. (38) and (39), respectively, in order to satisfy the 
boundary conditions at � = 0 and � = 1 . In addition, in 
order for Eqs. (38) and (39) to satisfy the governing equa-
tions  (36) and (37), one must have

Further, in order for Eqs. (38) and (39) to satisfy the 
interface conditions, one must require

(36)
𝜕c1

𝜕𝜏
= D1

𝜕2c1

𝜕𝜉2
− 𝛽1c1 0 < 𝜉 < 𝛾1

(37)
𝜕c2

𝜕𝜏
=

𝜕2c2

𝜕𝜉2
− 𝛽2c2 𝛾1 < 𝜉 < 1

(38)c1(�, �) =

∞
∑

n=1

pnAn cos
(

�1,n�
)

exp
(

−�2
n
�
)

(39)c2(�, �) =

∞
∑

n=1

pnBn sin
(

�2,n(1 − �)
)

exp
(

−�2
n
�
)

(40)�1,n =

√

√

√

√

�2
n
− �1

D1

; �2,n =

√

�2
n
− �2

Dividing Eq. (41) by (42), and rearranging, one may 
derive the following eigenequation to determine the eigen-
values �n:

Also, without loss of generality, one may assume An = 1 

and obtain, from Eq. (41), Bn =
cos

(

�1,n�1
)

sin
(

�2,n

(

1 − �1
)).

Finally, the remaining constants pn may be obtained 
using the principle of orthogonality for a two-layer body 
as follows:

This completes the exact solution for the special case of 
irreversible drug binding in a two-layer body, with which 
the numerical solution may be compared.

Special Case of Pure Diffusion of a Single Drug

The exact solution for the case of pure diffusion of a single 
drug in a two-layer geometry can be easily obtained from 
the derivation above by setting �1 = �2 = 0 in Eq. (40), 
resulting in �1,n = �n∕

√

D1; �2,n = �n . The rest of the 
solution is identical to the one presented in the previous 
section.
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