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a b s t r a c t 

Theoretical analysis of transient thermal conduction in a two-dimensional multilayer structure has been 

limited to problems with isothermal or adiabatic boundary conditions along the walls normal to the lay- 

ered direction. Due to mathematical difficulties pointed out in past work, an analytical solution has not 

been possible so far for the general case where each layer has a distinct convective boundary condi- 

tion. This work presents an analytical technique to solve this general problem using Laplace transforms 

followed by derivation of a sufficient number of linear algebraic equations based on given boundary con- 

ditions to determine the coefficients of an eigenfunction-based series solution. This technique makes it 

possible to solve the problem when each layer may have a different convective heat transfer coefficient 

along the walls normal to the layered direction. Results from this general analysis are shown to correctly 

reduce to past work for the special cases of very small or very large Biot number. Good agreement with 

specific results presented in a past paper is also demonstrated. The technique is used to investigate the 

impact of key dimensionless parameters on the temperature field. This work significantly generalizes past 

work that was limited only to adiabatic or isothermal boundary conditions. Results presented here may 

help improve the theoretical understanding of multilayer diffusion problems, and make theoretical mod- 

els much more representative of realistic conditions. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat and mass transfer in a multilayer body is of much in- 

erest in a broad variety of engineering processes. For example, 

eat transfer in multilayer Li-ion cells ultimately determines the 

afety and efficiency of the cells [1] . Multilayer heat transfer also 

ccurs in semiconductor devices/systems [2] , atmospheric re-entry 

3] , extended surfaces [4] and nuclear engineering [5] . In addition, 

ultilayer mass transport is also relevant in problems related to 

onic transport in Li-ion cells [ 6 , 7 ] and drug delivery [8] . 

The theoretical modeling of one-dimensional multilayer diffu- 

ion is quite well developed. While complex variables [9] and the 

djoint method [10] have been used for this purpose, the most 

ommon technique is separation of variables with quasi-orthogonal 

igenfunctions [11] . In this technique, an infinite series solution is 

ritten for each layer, and a single set of eigenvalues is derived 

y accounting for all boundary and interface conditions. Quasi- 

rthogonality of eigenfunctions is utilized for deriving the coef- 
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cients that appear in the series solution [12] . Multilayer prob- 

ems with more complicated features, such as spatially-dependent 

13] or time-dependent [14] boundary conditions, convective trans- 

ort [15] , reaction [16] , multispecies advection-dispersion [17] and 

 large number of layers [18] have also been analyzed in the past. 

maginary eigenvalues are known to appear in a subset of such 

roblems, which have been related to divergence of the temper- 

ture field at large times [ 15 , 16 , 19 ]. 

While one-dimensional analysis is sufficient for a large num- 

er of engineering problems, in some cases, a two- or three- 

imensional analysis is necessitated. Such problems have been an- 

lyzed in both steady-state [20] and transient conditions [21–24] . 

ig. 1 presents a general schematic of this problem both for an M - 

ayer body and the special case of a two-layer body. Steady-state 

nalysis of a two-dimensional multilayer body is, in principle, sim- 

lar to transient analysis of a one-dimensional multilayer body [11] . 

owever, transient analysis of two-dimensional multilayer prob- 

ems is a lot more complicated, particularly with general boundary 

onditions. 

Past literature on multilayer two- or three-dimensional prob- 

ems is limited to cases where boundary conditions along the walls 

ormal to the layered direction are either isothermal or adiabatic 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123723
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2022.123723&domain=pdf
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Nomenclature 

Bi Biot number, Bi = 

hx M 
k M 

h convective heat transfer coefficient (Wm 

−2 K 

−1 ) 

k thermal conductivity (Wm 

−1 K 

−1 ) 

k̄ non-dimensional thermal conductivity, k̄ m 

= 

k m 
k M 

M number of layers 

s Laplace variable 

T temperature (K) 

t time (s) 

w half-width of the body in the y direction (m) 

w̄ non-dimensional half-width of the body in the y di- 

rection, w̄ = 

w 

x M 
x , y spatial coordinates (m) 

α diffusivity (m 

2 s −1 ) 

ᾱ non-dimensional diffusivity, ᾱm 

= 

αm 
αM 

η, ξ non-dimensional spatial coordinates, η = 

y 
x M 

; ξ = 

x 
x M 

γ non-dimensional interface location, γm 

= 

x m 
x M 

τ non-dimensional time, τ = 

αM t 

x 2 
M 

θ non-dimensional temperature, θm 

= 

T m −T amb 
T re f −T amb 

ˆ θ Laplacian of the temperature field 

λ non-dimensional eigenvalue in η direction 

Subscripts 

A x = 0 boundary 

amb ambient 

B x = x M 

boundary 

in initial temperature 

m layer number 

ref reference 

21–24] . For these special cases, it is possible to derive an infinite 

eries solution with the same set of eigenvalues for each layer, 

hich can easily satisfy interface conditions. In addition to such 

eparation of variables based techniques, a technique that uses 

aplace transforms has also been used to analyze such problems 

ith isothermal or adiabatic boundary conditions [25–27] . How- 

ver, the more general case of convective boundary conditions in 

he direction normal to the layers presents considerable mathe- 
ig. 1. Schematic of the two-dimensional multilayer diffusion-reaction problem 

onsidered here: (a) The general M -layer problem, and (b) specific two-layer prob- 

em ( M = 2). In both cases, each layer has distinct convective heat transfer coefficient 

 m ( m = 1,2.. M ) along the walls normal to the layered direction. 
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atical difficulty and has explicitly not been solved in past work 

21–24] . For example, past work on transient two-dimensional 

ultilayer analysis [ 21 , 22 ] has clearly excluded the case where this 

oundary condition is not isothermal or adiabatic. When each layer 

as unique thermal properties and convective heat transfer coeffi- 

ients, such as shown in Fig. 1 (a), the separation of variables tech- 

ique results in a unique set of eigenvalues for each layer, which 

resents an “unconditional mathematical difficulty” [22] by mak- 

ng it difficult to satisfy interface conditions. This difficulty does 

ot arise in the special cases of isothermal or adiabatic boundary 

onditions (i.e., Bi → ∞ or Bi = 0 , respectively), for which, solutions 

re readily available [21–24] . 

It is desirable to extend theoretical analysis of thermal conduc- 

ion in a two-dimensional multilayer geometry to include general 

onvective boundary conditions on the walls normal to the layered 

irection. Despite the difficulties presented by the general convec- 

ive case, as outlined above, such analysis will be more represen- 

ative of realistic scenarios, where a convective coefficient is more 

ppropriate than the extreme isothermal or adiabatic conditions. 

oreover, doing so may advance the state-of-the-art in multilayer 

iffusion/reaction analysis by overcoming a known theoretical dif- 

culty, as acknowledged by past work [ 21 , 22 ]. One possible tech- 

ique to solve this general problem is to consider a finite number 

f terms in the series solution and then derive a sufficient number 

f linear algebraic equations to determine the unknown but finite 

umber of coefficients. This technique has been used in the past 

or solving problems related to thermal conduction in fins [28] , 

ylinders [29] and multilayer structures [ 13 , 30 ]. In addition, a sim- 

lar technique has recently been used to solve a 2D steady-state 

iffusion problem in a locally-isotropic heterogeneous body [31] . 

ven though considering a finite number of terms in the series so- 

ution involves an approximation, doing so is no worse than practi- 

al computation of the infinite series solution, for which also, only 

 finite number of terms can be practically considered. 

This work analyzes a transient two-dimensional multilayer dif- 

usion problem with general convective boundary conditions along 

he surfaces normal to the layered direction. A Laplace transform 

s first carried out, followed by a variable transformation. A series 

olution for the resulting problem is written using the separation 

f variables technique. Finally, a sufficient set of algebraic equa- 

ions is derived for determining the coefficients that appear in the 

eries solution. By doing so, an explicit solution for the problem is 

erived, despite unequal thermal properties and general convective 

oefficients in each layer. This represents a significant generaliza- 

ion of past results that were limited only to adiabatic or isother- 

al conditions. Results from the present work are shown to cor- 

ectly reduce to past results for various special cases. The general- 

zation to convective conditions offered by the present technique 

elps improve the theoretical understanding of multilayer diffu- 

ion, and makes theoretical models much more representative of 

ealistic conditions. 

Section 2 defines the problem addressed in this work, as well 

s non-dimensionalization scheme. Results for the general two- 

imensional M -layer case are presented in Section 3 , followed by 

he special case of a two-layer body. A discussion of key results, 

ncluding verification of results and comparison with past work is 

resented in Section 4 . 

. Mathematical modeling 

.1. Problem definition for general M -layer case 

Consider the transient diffusion problem in a two-dimensional 

 -layer body of width 2 w and thicknesses x m 

− x m −1 for each 

ayer, m = 1,2.. M , as shown in Fig. 1 (a). Isotropic thermal conduc-

ivity and diffusivity of each layer is k m 

and αm 

, respectively. Ad- 
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acent layers are assumed to be in perfect thermal contact with 

ach other. All properties are assumed to be independent of tem- 

erature. The top and bottom boundaries of the geometry are char- 

cterized with convective heat transfer coefficients h A and h B , re- 

pectively, as shown in Fig. 1 (a). Both side walls of each layer are

haracterized by a general convective heat transfer coefficient h m 

, 

 = 1,2.. M . Each layer in the body is at an initial non-zero and uni-

orm temperature T in,m 

, and the interest is in determining the evo- 

ution of the temperature distribution in each layer as a function 

f time. 

The problem defined here is a generalization of past papers on 

hermal conduction in two-dimensional multilayer bodies. For ex- 

mple, both Haji-Sheikh & Beck [21] and de Monte [22] consid- 

red only isothermal and adiabatic boundary conditions on the 

ide walls. In contrast, the present work accounts for the more 

eneral convective boundary condition that was explicitly excluded 

n such past work. Moreover, while such papers were limited to a 

wo-layer body, the present work generalizes the treatment to an 

rbitrary number of layers. 

Since the problem is symmetric about the center line of the 

eometry, it is possible to consider only one half of the problem. 

n such a case, the governing energy equation for the temperature 

eld T m 

( x, y, t ) in the right half of the geometry is 

m 

(
∂ 2 T m 

∂x 2 
+ 

∂ 2 T m 

∂y 2 

)
= 

∂T m 

∂t 
( m = 1 , 2 ..M ) (1) 

ubject to boundary conditions given by 

−k 1 
∂T 1 
∂x 

+ h A ( T 1 − T amb ) = 0 ( x = 0 ) (2) 

k M 

∂T M 
∂x 

+ h B ( T M 

− T amb ) = 0 ( x = x M 

) (3) 

∂T m 
∂y 

= 0 ( y = 0 ) (4) 

k m 

∂T m 
∂y 

+ h m 

(T m 

− T amb ) = 0 ( y = w ) (5) 

In addition, based on interfacial energy conservation and tem- 

erature continuity, the following interface conditions apply for 

 = 1,2.. M -1. 

T m 

= T m +1 ( x = x m 

) (6) 

k m 

∂T m 
∂x 

= k m +1 
∂T m +1 

∂x ( x = x m 

) (7) 

A uniform initial temperature is assumed in each layer, i.e., 

 m 

= T m, in ( t = 0 ) ( m = 1 , 2 ..M ) (8) 

.2. Non-dimensionalization 

Before solving this problem with general convective boundary 

onditions along the boundary normal to the layered direction ( y = 

 ) given by Eq. (5) , a non-dimensionalization is first carried out 

ased on the following: 

m 

= 

T m −T amb 

T re f −T amb 
, ξ = 

x 
x M 

, η = 

y 
x M 

, τ = 

αM t 

x 2 
M 

, γm 

= 

x m 
x M 

, 

¯
 = 

w 

x M 
, ̄k m 

= 

k m 
k M 

, ᾱm 

= 

αm 

αM 
;

m,in = 

T m,in −T amb 

T re f −T amb 
, Bi A = 

h A x M 
k M 

, Bi B = 

h B x M 
k M 

, Bi m 

= 

h m x m 
k m 

(9) 

The non-dimensional set of equations for the temperature field 

m 

( ξ , η, τ ) is given by 

m 

(
∂ 2 θm 

∂ξ 2 
+ 

∂ 2 θm 

∂η2 

)
= 

∂θm 

∂τ
( m = 1 , 2 ..M ) (10) 

−k̄ 1 
∂θ1 

∂ξ
+ Bi A θ1 = 0 ( ξ = 0 ) (11) 
3 
∂θM 

∂ξ
+ Bi B θM 

= 0 ( ξ = 1 ) (12) 

∂θm 

∂η
= 0 ( η = 0 ) (13) 

¯
 m 

∂θm 

∂η
+ Bi m 

θm 

= 0 ( η = w̄ ) (14) 

θm 

= θm +1 ( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (15) 

k̄ m 

∂θm 

∂ξ
= k̄ m +1 

∂θm +1 

∂ξ ( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (16) 

m 

= θm, in ( τ = 0 ) ( m = 1 , 2 ..M ) (17) 

.3. Laplace transforms based solution technique 

In order to derive an expression for the temperature field, a 

aplace transformation of Eqs. (10) –(16) is first carried out. Using 

he initial condition given by Eq. (17) , the governing equation for 

he Laplacian of the temperature field, ˆ θm 

( ξ , η) is given by 

¯ m 

(
∂ 2 ˆ θm 

∂ξ 2 
+ 

∂ 2 ˆ θm 

∂η2 

)
= s ̂  θm 

− θm,in ( m = 1 , 2 ..M − 1 ) (18) 

here s is the Laplace variable. 

The applicable boundary and interface conditions are 

−k̄ 1 
∂ ̂  θ1 

∂ξ
+ Bi A ̂  θ1 = 0 ( ξ = 0 ) (19) 

∂ ̂  θM 

∂ξ
+ Bi B ̂  θM 

= 0 ( ξ = 1 ) (20) 

∂ ̂  θm 

∂η
= 0 ( η = 0 ) ( m = 1 , 2 ..M ) (21) 

¯
 m 

∂ ̂  θm 

∂η
+ Bi m ̂

 θm 

= 0 ( η = w̄ ) ( m = 1 , 2 ..M ) (22) 

ˆ θm 

= 

ˆ θm +1 ( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (23) 

¯
 m 

∂ ̂  θm 

∂ξ
= k̄ m +1 

∂ ̂  θm +1 

∂ξ
( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (24) 

Solving Eq. (18) –(24) directly is difficult due to the inhomo- 

eneity in Eq. (18) as well as the different Biot numbers along the 

all in different layers. In order to proceed, the following transfor- 

ation is first made: 

ˆ θm 

= ˆ ϕ m 

( ξ , η) + 

ˆ u m 

( η) (25) 

By inserting Eq. (25) into Eq. (18) , the ˆ u m 

(η) problem may be 

efined by 

¯ m 

d 2 ˆ u m 

dη2 
= s ̂  u m 

− θm,in (m = 1 , 2 , 3 . . . M) (26) 

Similarly, boundary conditions for ˆ u m 

(η) may be defined as fol- 

ows 

d ̂ u m 
dη

= 0 ( η = 0 ) ( m = 1 , 2 ..M ) (27) 

 m 

d ̂ u m 
dη

+ Bi m ̂

 u m 

= 0 ( η = w ) ( m = 1 , 2 ..M ) (28) 

A solution for ˆ u m 

may be easily derived as follows: 

ˆ 
 m 

( η) = C m 

cosh 

(√ 

s 

ᾱm 

η

)
+ 

θm,in 

s 
(29) 
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 m 

= 

−Bi m 

θm, in /s 

k m 

√ 

s 
αm 

sinh 

(√ 

s 
αm 

w 

)
+ Bi m 

cosh 

(√ 

s 
αm 

w 

) (30) 

The remainder of the problem, ˆ φm 

( ξ , η) is then governed by 

¯ m 

(
∂ 2 ˆ φm 

∂ξ 2 
+ 

∂ 2 ˆ φm 

∂η2 

)
= s ̂  φm 

(m = 1 , 2 , 3 . . . M) (31) 

ubject to 

k 1 
∂ ˆ φ1 

∂ξ
+ Bi A ̂  φ1 = −Bi A ̂  u 1 ( η) ( ξ = 0 ) (32) 

∂ ̂  φM 

∂ξ
+ Bi B ̂  φM 

= −Bi B ̂  u M 

( η) ( ξ = 1 ) (33) 

∂ ̂  φm 

∂η
= 0 ( η = 0 ) ( m = 1 , 2 ..M ) (34) 

¯
 m 

∂ ̂  φm 

∂η
+ Bi m ̂

 φm 

= 0 ( η = w̄ ) ( m = 1 , 2 ..M ) (35) 

ˆ 
m 

+ 

ˆ u m 

( η) = 

ˆ φm +1 + 

ˆ u m +1 ( η) ( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (36) 

k̄ m 

∂ ̂  φm 

∂ξ
= k̄ m +1 

∂ ̂  φm +1 

∂ξ ( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (37) 

The general solution for ˆ φm 

is 

ˆ 
m 

( ξ , η) = 

n = N ∑ 

n =1 

( A m,n cosh ( ω m,n ξ ) + B m,n sinh ( ω m,n ξ ) ) 

cos ( λm,n η) ( m = 1 , 2 , 3 . . . M ) (38) 

Where ω m,n = 

√ 

λ2 
m,n + 

s 
ᾱm 

. 

Note that the sine term in the η direction is not considered in 

q. (38) due to the boundary condition at η= 0, given by Eq. (34) .

ased on the boundary condition at η = w̄ given by Eq. (35) , the 

igenvalues λm,n for the m 

th layer may be obtained as follows: 

¯
 m 

λm,n sin ( λm,n w̄ ) − Bi m 

cos ( λm,n w̄ ) = 0 ( m = 1 , 2 ..M ) (39) 

Note that, in general, each layer has a unique set of eigenvalues. 

Now, considering the first N terms of the series solution for ˆ φm 

, 

 total of 2 · N · M coefficients ( A m,n and B m,n with m = 1,2.. M and

 = 1,2.. N ) are unknown. In order to determine these coefficients 

nd thus complete the solution, a set of 2 · N · M linear algebraic 

quations are derived based on the boundary and interface condi- 

ions given by Eqs. (32) , (33) , (36) , (37) . This procedure is described

ext. 

Inserting Eq. (38) in the boundary condition at ξ= 0 given by 

q. (32) results in 

N 
 

 =1 

(
−Bi A A 1 ,n + ̄k 1 ω 1 ,n B 1 ,n 

)
cos ( λ1 ,n η) = Bi A ̂  u 1 ( η) (40) 

Multiplying Eq. (40) by cos ( λ1 ,n ′ η) and integrating from η = 0 

o η = w̄ results in 

N 1 ,n ′ 
(
−Bi A A 1 ,n ′ + ̄k 1 ω 1 ,n ′ B 1 ,n ′ 

)
= Bi A 

w̄ 

∫ 
0 

cos (λ1 ,n ′ η) ̂  u 1 ( η) dη(n 

′ 

= 1 , 2 , .., N) (41) 

Where N m,n ′ = 

w̄ 

∫ 
0 

cos 2 ( λm,n ′ η) dη is the norm for each layer. Sim- 

larly, inserting Eq. (38) in the boundary condition at ξ= 1 given by 

q. (33) , followed by multiplication by cos ( λM,n ′ η) and integration 

rom η = 0 to η = w̄ results in 

N M,n ′ [ ( Bi B cosh ( ω M,n ′ ) + ω M,n ′ sinh ( ω M,n ′ ) ) A M,n ′ 
4 
+ ( Bi B sinh ( ω M,n ′ ) + ω M,n ′ cosh ( ω M,n ′ ) ) B M,n ′ ] 

= −Bi B 
w̄ 

∫ 
0 

cos (λM,n ′ η) ̂  u M 

( η) dη (42) 

The heat flux and temperature conditions at each interface are 

tilized next. Inserting Eq. (38) into Eq. (37) for each m results in 

k̄ m 

N ∑ 

n =1 

ω m,n ( A m,n sinh ( ω m,n γm 

) 

+ B m,n cosh ( ω m,n γm 

) ) cos (λm,n η) 

= k̄ m +1 

N ∑ 

n =1 

ω m +1 ,n ( A m +1 ,n sinh ( ω m +1 ,n γm 

) 

+ B m +1 ,n cosh ( ω m +1 ,n γm 

) ) cos (λm +1 ,n η) (43) 

Multiplying Eq. (43) by cos ( λm,n ′ η) and integrating from η = 0 

o η = w̄ results in 

k̄ m 

ω m,n ′ ( A m,n ′ sinh ( ω m,n ′ γm 

) + B m,n ′ cosh ( ω m,n ′ γm 

) ) N m,n ′ 

= k̄ m +1 

N ∑ 

n =1 

ω m +1 ,n ( A m +1 ,n sinh ( ω m +1 ,n γm 

) 

+ B m +1 ,n cosh ( ω m +1 ,n γm 

) ) 
w̄ 

∫ 
0 

cos (λm +1 ,n η) cos ( λm,n ′ η) dη

(44) 

Eq. (44) may be written for each n ′ = 1 , 2 , ..N and for each

nterface m = 1 , 2 , ..M − 1 , and therefore represents a total of

( M − 1 ) equations. 

Similarly to the procedure above, the temperature interface 

ondition may be shown to result in the following set of equations 

s a result of multiplication by cos ( λm +1 ,n ′ η) and integration from 

= 0 to η = w̄ along with the use of principle of orthogonality. 

N ∑ 

n =1 

( A m,n cosh ( ω m,n γm 

) + B m,n sinh ( ω m,n γm 

) ) 
w̄ 

∫ 
0 

cos (λm,n η) 

cos ( λm +1 ,n ′ η) dη = N m +1 ,n ′ ( A m +1 ,n ′ cosh ( ω m +1 ,n ′ γm 

) 

+ B m +1 ,n ′ sinh ( ω m +1 ,n ′ γm 

) ) 

+ 

w̄ 

∫ 
0 

(
ˆ u m +1 ( η) − ˆ u m 

( η) 
)

cos (λm +1 ,n ′ η) dη (45) 

or n ′ = 1 , 2 , ..N and m = 1 , 2 , ..M − 1 . 

Together, Eqs. (41) , (42) , (44) and (45) represent 2 · N · M equa- 

ions each in an equal number of unknown coefficients A m,n and 

 m,n . Therefore, this set of linear algebraic equations can be solved 

o determine these coefficients, which completes the solution of 

he problem in the Laplace domain. 

Finally, inverse Laplace transformation of the solution, given by 

q. (25) may be carried out in order to determine the solution 

or θ ( ξ , η, τ ) . Due to the cumbersome nature of the solution in 

he Laplace domain, analytical inversion is not likely to be possi- 

le. Instead, several numerical algorithms for numerical inversion 

re available, such as Hollenbeck’s algorithm [32] , Talbot method 

33] and the Carathéodory–Fejér method as used by Trefethen, 

t al. [34] . In the present work, Hollenbeck’s algorithm is used. This 

lgorithm has been used extensively for inverse Laplace transfor- 

ation in past papers [ 6 , 35 ]. 

Even though the technique used here to solve the problem in 

he Laplace domain does not result in explicit expressions for all 

he coefficients in the infinite series, the approximation incurred 

s no worse than practical computation of the infinite series, for 

hich also, only a finite number of terms can be practically com- 

uted. Similar to such computation, the accuracy of the present 

echnique can be improved simply by considering a greater num- 

er of terms of the series solution. 
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. Special Case – two-layer body 

While the previous section derived the solution for a general 

 -layer problem, many practical problems involve only two lay- 

rs. Moreover, much of past work on two-dimensional multilayer 

eat transfer considers only two-layer bodies [20–22] . Therefore, 

his section discusses the special case of a two-layer body, shown 

chematically in Fig. 1 (b). An analytical solution for this case may 

e obtained from the general results of Section 2 by setting M = 2.

urther simplifications are also possible for this special case. It can 

e shown that the solution in Laplace domain is given by 

ˆ 
1 ( ξ , η) = C 1 cosh 

(√ 

s 

ᾱ1 

η

)
+ 

θ1 ,in 

s 
+ 

n = N ∑ 

n =1 

( A 1 ,n cosh ( ω 1 ,n ξ ) 

+ B 1 ,n sinh ( ω 1 ,n ξ ) ) cos ( λ1 ,n η) (46) 

ˆ 
2 ( ξ , η) = C 2 cosh 

(√ 

s η
)

+ 

θ2 ,in 

s 
+ 

n = N ∑ 

n =1 

( A 2 ,n cosh ( ω 2 ,n ( 1 − ξ ) ) 

+ B 2 ,n sinh ( ω 2 ,n ( 1 − ξ ) ) ) cos ( λ2 ,n η) (47) 

Where 

 1 = − Bi 1 θ1 , in 

s 
[
k 1 

√ 

s 
α1 

sinh 

(√ 

s 
α1 

w 

)
+ Bi 1 cosh 

(√ 

s 
α1 

w 

)] (48) 

 2 = − Bi 2 θ2 , in 

s 
[√ 

s sinh 

(√ 

s w 

)
+ Bi 2 cosh 

(√ 

s w 

)] (49) 

Further, B 1 ,n and B 2 ,n are obtained from the solution of the fol- 

owing linear algebraic equations 

N 1 ,n ’ k 1 ω 1 ,n ’ 

( 

−sinh 

(
ω 1 ,n ’ γ1 

)
N 1 ,n ’ 

w ∫ 
0 

ˆ u 1 ( η) cos 
(
λ1 ,n ’ η

)
dη

+ B 1 ,n ’ 

[
cosh 

(
ω 1 ,n ’ γ1 

)
+ 

k 1 ω 1 ,n ’ 

Bi A 
sinh 

(
ω 1 ,n ’ γ1 

)])

= 

N ∑ 

n =1 

−ω 2 ,n 

w ∫ 
0 

cos ( λ2 ,n η) cos 
(
λ1 ,n ’ η

)
dη

×
( 

−sinh ( ω 2 ,n ( 1 − γ1 ) ) 

N 2 ,n 

w ∫ 
0 

ˆ u 2 ( η) cos ( λ2 ,n η) dη

+ B 2 ,n 

[ 

cosh ( ω 2 ,n ( 1 − γ1 ) ) + 

ω 2 ,n 

Bi B 
sinh 

( 

ω 2 ,n ( 1 − γ1 ) 

) ] ) 

(50) 

N ∑ 

n =1 

w ∫ 
0 

cos ( λ1 ,n η) cos 
(
λ2 ,n ’ η

)
dη

( 

− cosh ( ω 1 ,n γ1 ) 

N 1 ,n 

w ∫ 
0 

ˆ u 1 ( η) 

× cos ( λ1 ,n η) dη + B 1 ,n 

[
sinh ( ω 1 ,n γ1 ) + 

k 1 ω 1 ,n 

Bi A 
cosh ( ω 1 ,n γ1 ) 

]

= N 2 ,n ’ 

( 

− cosh 

(
ω 2 ,n ’ ( 1 − γ1 ) 

)
N 2 ,n ’ 

w ∫ 
0 

ˆ u 2 ( η) cos 
(
λ2 ,n ’ η

)
dη

+ B 2 ,n ’ 

[ 
sinh 

(
ω 2 ,n ’ ( 1 − γ1 ) 

)
+ 

ω 2 ,n ’ 

Bi B 
cosh 

(
ω 2 ,n ’ ( 1 − γ1 ) 

)] ) 

+ 

w ∫ 
0 

cos 
(
λ2 ,n ’ η

)(
ˆ u 2 ( η) − ˆ u 1 ( η) 

)
dη (51
5 
Finally, A 1 ,n and A 2 ,n are given by 

 1 ,n = 

k̄ 1 ω 1 ,n B 1 ,n 

Bi A 
− 1 

N 1 ,n 

w̄ 

∫ 
0 

ˆ u 1 ( η) cos (λ1 ,n η) dη (52) 

 2 ,n = 

ω 2 ,n B 2 ,n 

Bi B 
− 1 

N 2 ,n 

w̄ 

∫ 
0 

ˆ u 2 ( η) cos (λ2 ,n η) dη (53) 

Setting Bi 1 and Bi 2 to infinity reduces the general solution de- 

ived here to the one for isothermal conditions derived in past 

ork. 

. Results and discussion 

.1. Number of terms needed in series solution 

It is important to carry out convergence analysis for an infinite 

eries based solution, such as the one derived in this work. In par- 

icular, it is critical to determine the minimum number of terms, N , 

eeded to be included in the system of linear equations Eqs. (41) , 

 (42) , (44) and (45) ) in order to appropriately balance computa- 

ional time and accuracy. Towards this, a representative two-layer 

roblem is solved with different values of N while all other param- 

ters are held constant. The problem parameters used for this anal- 

sis are Bi A = 2 , Bi B = 4 , Bi 1 = 1 , Bi 2 = 10 γ1 = 0 . 5 , w̄ = 2 , k̄ 1 = 4 ,

¯ 1 = 1 . 8 . The initial temperature is assumed to be 1 through- 

ut each layer in this and all subsequent analysis presented in 

his work. Results are presented in Fig. 2 , in which temperature 

istributions in the ξ and η directions at τ = 1 are plotted for 

ifferent values of N in Fig. 2 (a) and 2 (b), respectively. Tempera- 

ure in the ξ direction is plotted at η = 1 , whereas temperature in 

he η direction is plotted at ξ = 0 . 75 . Results indicate convergence 

f predicted temperature distribution as N increases. In particular, 

he predicted temperature distribution in both directions remains 

ractically the same between N = 30 and N = 40. Therefore, all cal- 

ulations in this work are carried out with 30 terms in the series 

olution. Note that there is minimal increase in computational cost 

etween N = 30 and N = 40 because even a linear system of 40 equa-

ions is relatively straightforward to compute. Therefore, in general, 

n this case, it is recommended to include a large number of terms 

n order to improve accuracy without significant penalty in terms 

f computational cost. 

Note that a rigorous mathematical convergence analysis for this 

roblem is not possible because the coefficients for various terms 

re expressed in terms of the solution of a system of linear equa- 

ions. Nevertheless, the analysis described above helps estimate 

he number of terms needed for reasonable accuracy in the range 

f parameters considered here. For other problems in which the 

alues of these parameters may be very different than ones con- 

idered here, it is recommended to carry out an analysis simi- 

ar to one described above. Moreover, given the small incremental 

enalty of computational cost, it is recommended not to be con- 

ervative about the number of terms considered in calculations. 

.2. Comparison with numerical simulations 

In order to further establish the accuracy of the theoretical 

echnique used in this work, results from the present work are 

ompared against fully numerical simulations for the problem 

ased on finite-element analysis. For a representative set of param- 

ters ( Bi A = 2 , Bi B = 4 , γ1 = 0 . 5 , w̄ = 2 , k̄ 1 = 4 , ᾱ1 = 1 . 8 ), Fig. 3 (a)

lots temperature distributions in the η direction at ξ = 0 . 25 at 

ultiple times. Fig. 3 (b) plots the variation of temperature over 

ime at the centers of the two layers. Curves based on the present 

ork and numerical simulations are both presented for compari- 

on. Note that both layers have a general convective boundary con- 

ition, with Bi = 1 and Bi = 10 for the wall normal to the layered
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Fig. 2. Effect of number of eigenvalues: (a) θ vs ξ at η = w̄ / 2 and τ = 1, (b) θ vs η at ξ = 0.75 and τ = 1. Problem parameters are ᾱ1 = 1.8, k̄ 1 = 4, γ1 = 0.5, w̄ = 2, Bi 1 = 1, Bi 2 = 10, 

Bi A = 2 and Bi B = 4. 

Fig. 3. Comparison of present work with numerical simulations: (a) θ vs η at ξ = 0.25 for multiple times, (b) θ vs τ at the center of layers 1 and 2. Problem parameters are 

ᾱ1 = 1.8, k̄ 1 = 4, γ1 = 0.5, w̄ = 2, Bi 1 = 1, Bi 2 = 10, Bi A = 2 and Bi B = 4. 
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irection. Fig. 3 shows excellent agreement between the present 

ork and numerical simulations, both in terms of spatial and tem- 

oral distributions. The worst-case deviation between the two is 

ound to be less than 1%. As expected, the temperature distribu- 

ion decays over time, and the solution based on the theoretical 

echnique is able to correctly capture the nature of the tempera- 

ure solution over time and in space. 

Note that the total computation time for calculating the tem- 

erature at one specific location and time using the theoretical 

echnique is estimated to be around 2.5 s, compared to 20.0 s 

or the finite-element numerical simulations discussed above. This 

omparison is even more favorable for the theoretical technique at 

arge times, since numerical simulations typically need to march 

hroughout the entire duration prior to the time of interest. Fur- 

her, the theoretical technique does not require time for geomet- 

ical modeling or mesh generation, and provides a more compre- 

ensive fundamental understanding of the problem. On the other 

and, the theoretical technique is limited in its capability to handle 

omplicated geometry and secondary effects such as temperature- 

ependent properties, which numerical techniques are usually bet- 

er at. Regardless, it is to be noted that the goal of the present

ork is to develop a novel theoretical technique rather than to 

ompete with numerical methods. 
6 
.3. Comparison with past work 

The theoretical model discussed in Section 2 represents a gen- 

ralization of past work, in that general convective boundary con- 

itions are considered in the η direction, whereas past work is only 

ble to account for the limiting cases of isothermal and adiabatic 

oundary conditions. Therefore, it is instructive to compare the re- 

ults from the present work with past papers for special cases of 

sothermal and adiabatic boundary conditions in the η direction. 

Two special cases are considered for comparison with past 

ork. Firstly, for very small values of Bi 1 and Bi 2 , thermal con- 

uction in the two-layer geometry is expected to become purely 

ne-dimensional in the ξ direction, since the initial temperature 

istribution is also independent of η. In such a case, the prob- 

em reduces to a one-dimensional multilayer diffusion problem, 

or which, standard analytical solutions based on multilayer quasi- 

rthogonality of eigenfunctions is available [ 11 , 16 ]. Therefore, a 

omparison of the present work with a one-dimensional multilayer 

roblem is carried out. For a representative problem with Bi A = 2 , 

i B = 2 , γ1 = 0 . 5 , w̄ = 2 , k̄ 1 = 4 , ᾱ1 = 1 . 8 , Fig. 4 plots the temper-

ture distribution as a function of ξ at τ = 0 . 3 for multiple values

f the Biot number at η = w̄ / 2 , assumed to be the same for both

ayers. For comparison, the temperature distribution predicted for a 
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Fig. 4. Comparison of present work with past work [16] : θ vs ξ at η = ̄w / 2 and τ

= 0.3 for multiple values of η direction Biot number ( Bi 1 = Bi 2 ). Problem parameters 

are ᾱ1 = 1.8, k̄ 1 = 4, γ1 = 0.5, w̄ = 2, Bi A = 2 and Bi B = 2. 

Fig. 5. Comparison of present work with past work [36] : θ vs ξ at η = 0 and τ= 0.8 

for multiple values of η direction Biot number ( Bi 1 = Bi 2 ). Problem parameters are 

ᾱ1 = 1.8, k̄ 1 = 4, γ1 = 0.5, w̄ = 2.5, Bi A = 2 and Bi B = 2. 
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Fig. 6. Comparison of present work with past work [22] : θ vs η at ξ= γ1 for mul- 

tiple times. Problem parameters are ᾱ1 = 1, k̄ 1 = 0.25, γ1 = 0.33, w̄ = 0.66, Bi 1 = 10 0 0, 

Bi 2 = 10 0 0, Bi A = 0.75 and Bi B = 1.5. 
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ne-dimensional multilayer problem [16] with the same set of pa- 

ameter values is also plotted. As the value of the Biot number at 

= w̄ decreases, Fig. 4 shows that the temperature distribution for 

he 2D multilayer problem approaches that for a one-dimensional 

ultilayer problem. At a value of 0.0 0 01 for the Biot number, the 

wo curves are practically identical. This shows that the 2D multi- 

ayer problem solved in this work correctly reduces to a 1D mul- 

ilayer form for the special case of small Biot number in the η di- 

ection. 

A second comparison with past work is carried out for the spe- 

ial case where the Biot number in the η direction becomes very 

arge. In this case, the general convective problem considered in 

his work reduces to one in which the boundaries are isothermal. 

his problem has been recently solved for a two-dimensional mul- 

ilayer geometry [36] . A comparison between the present work and 

his past work is carried out for this special case. Problem pa- 

ameter values are taken to be Bi A = 2 , Bi B = 2 , γ1 = 0 . 5 , w̄ = 2 . 5 ,
¯
 1 = 4 , ᾱ1 = 1 . 8 along with an initial condition of 1 throughout

he body. Fig. 5 presents this comparison in terms of temperature 

istribution as a function of ξ for multiple values of the Biot num- 

er in the η direction at τ = 0 . 8 and η = 0 . As expected, results

rom the present work get closer and closer to the isothermal re- 

ult from past work as the value of the Biot number increases. For 

i = 10 0 0 , the two curves practically coincide. 

The good agreement between the present work and past the- 

retical models for special cases of small and large values of the 

iot number as shown in Figs. 4 and 5 is encouraging. 

Further, a comparison of the present work is carried out with 

ork by de Monte [22] that addressed the two-dimensional two- 
7 
ayer diffusion problem only for the special case of isothermal or 

diabatic boundary conditions in the η direction. This past paper 

tilized a separation of variables approach for this transient prob- 

em, due to which, the analysis was limited only to adiabatic or 

sothermal boundary conditions, and, in addition, the two layers 

ere also assumed to have the same thermal diffusivity. While the 

resent analysis is a lot more general, allowing for general convec- 

ive boundary conditions, as well as unequal thermal diffusivities 

f the layers, it is instructive to compare the present work with 

e Monte [22] for a special case that satisfies the restrictions of 

he past work. In order to do so, calculations based on the present 

ork are carried out for the parameter values specified in the nu- 

erical results presented by de Monte. These non-dimensional pa- 

ameters are carefully transformed to the non-dimensional scheme 

sed in the present work. The transformed parameters used for 

omparison are Bi A = 0 . 75 , Bi B = 1 . 5 , γ1 = 0 . 33 , w̄ = 0 . 66 , k̄ 1 =
 . 25 , ᾱ1 = 1 . Note that the values of the non-dimensional time

re different between de Monte and the present work due to dif- 

erences in the non-dimensionalization scheme. Fig. 6 presents a 

omparison between the present work and de Monte [22] in terms 

f interfacial temperature distribution in the η direction at mul- 

iple times, starting with a uniform initial temperature. Note that 

he values of non-dimensional time shown in Fig. 6 correspond to 

he non-dimensionalization scheme followed in the present work. 

ig. 6 shows excellent agreement between the two at each time 

onsidered and demonstrates that the present work correctly re- 

uces to de Monte’s results for the special case that the past work 

s valid for. By allowing for a general convective boundary con- 

ition and unequal thermal diffusivities, the present work is a 

ot more general than de Monte [22] and encompasses a much 

roader set of two-dimensional multilayer problems. 

.4. Typical temperature colorplots 

Based on the solution technique described in previous sections, 

 representative two-layer problem is solved. The problem param- 

ters are ᾱ1 = 1.8, k̄ 1 = 4, γ1 = 0.5, w̄ = 2.5, Bi 1 = 1, Bi 2 = 10, Bi A = 2 and

i B = 4. Fig. 7 presents colorplots of the temperature distribution in 

he entire body at multiple times, starting with a uniform initial 

emperature of one. As expected, the temperature field decays over 

ime, faster in layer 1, due to greater thermal conductivity and dif- 

usivity of layer 1 and despite the smaller Biot number at the ξ = 0

nd than at the ξ = 1 end. Within each layer, the temperature field 

lose to the convective boundaries is lower than away from it, par- 

icularly near the adiabatic boundary, which is also along expected 

ines. As time increases, the temperature field, in general, decays 

ue to heat removal from the convective boundaries. The impact 
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Fig. 7. Temperature contours for a representative two-layer problem at (a) τ= 0, (b) τ= 0.1, (c) τ= 0.3, (d) τ= 0.5. Problem parameters are ᾱ1 = 1.8, k̄ 1 = 4, γ1 = 0.5, w̄ = 2.5, Bi 1 = 1, 

Bi 2 = 10, Bi A = 2 and Bi B = 4. 

Fig. 8. Impact of η direction Biot number: (a) θ vs η at ξ = 0 . 25 and τ = 0.3, (b) θ vs η at ξ = 0 . 75 and τ = 0.3. Problem parameters are ᾱ1 = 1.8, k̄ 1 = 4, γ1 = 0.5, w̄ = 2, Bi 1 = 1, 

Bi 2 = 10, Bi A = 2 and Bi B = 4. 
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to zero. This illustrates the eventual loss of all of the initial ther- 
f key parameters, such as the Biot numbers and the ratio of dif- 

usivities is presented in the next sub-sections. 

.5. Impact of Biot number in η direction on temperature distribution 

In addition to verification, Figs. 4 and 5 also illustrate interest- 

ng features of thermal conduction in a 2D multilayer geometry, 

articularly the impact of the Biot number in the η direction. For 

xample, both Figures show a reduction in the temperature distri- 

ution as the Biot number in the η direction increases, which is 

onsistent with more effective heat removal at large values of the 

iot number. Further investigation of the impact of the Biot num- 

er in the η direction on temperature distribution is presented in 

ubsequent Figures. 

The effect of the Biot number in the η direction on temperature 

istribution along the η direction at τ = 0 . 3 is presented in Fig. 8 .

he Biot numbers at ξ = 0 and ξ = 1 are Bi A = 2 and Bi B = 4 , re-

pectively. All the other problem parameter values are the same as 

ig. 4 . Fig. 8 (a) and 8 (b) present plots along the middle of layers 1

nd 2, respectively. These plots, as expected, show spatial variation 

f temperature in the η direction as the value of Biot number along 

he η = w̄ boundary increases. In contrast, the temperature distri- 
8 
ution is quite flat when the Biot number is relatively small. This 

s because of significant heat removal from the η = w̄ boundary at 

arge Biot numbers, whereas, when the Biot number is small, there 

s no heat loss from this boundary, resulting in heat flow only 

long the ξ direction, and, therefore, a largely one-dimensional 

emperature distribution. In addition, these plots also show, as ex- 

ected, lower temperature with increasing value of Biot number, 

ue to improved heat removal from the boundaries. Finally, as 

he Biot number in the η direction becomes larger and larger, the 

emperature at the η = w̄ boundary is seen to become closer and 

loser to zero, which is consistent with the boundary approaching 

sothermal conditions for large values of the Biot number. In con- 

rast, as the Biot number reduces, the curves in Fig. 8 (a) and 8 (b)

re found to become flatter and flatter, indicating that the temper- 

ture distribution becomes more and more one-dimensional, i.e., 

ndependent of η. 

The evolution of the temperature field over time is illustrated 

n Fig. 9 (a), which plots temperature at a fixed location as a func- 

ion of time for the same parameter values as Fig. 8 . As expected, 

his plot shows that the temperature at a point reduces over time, 

apidly at first and then slower at larger time, eventually decaying 
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Fig. 9. Special cases showing the effect of η direction Biot number ( Bi 1 = Bi 2 = Bi ): (a) θ vs τ at the center for multiple values of Bi , (b) θ vs Bi at the center for multiple 

times. Problem parameters are ᾱ1 = 1.8, k̄ 1 = 4, γ1 = 0.5, w̄ = 2, Bi A = 2 and Bi B = 4. 

Fig. 10. Effect of thermal diffusivity: (a) θ vs τ at the center of the geometry for multiple values of ᾱ1 , (b) θ vs η at ξ = 0 . 5 and τ = 0.4 for multiple values of ᾱ1 . Parameters 

for this two-layer problem are k̄ 1 = 4, γ1 = 0.5, w̄ = 2.5, Bi 1 = 10, Bi 2 = 10, Bi A = 2 and Bi B = 2. 
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al energy in the two-layer body from the convective boundaries 

n the ξ and η directions. Further, Fig. 9 (a) shows greater rate of 

eduction of temperature at larger values of the Biot number in 

he η direction due to stronger convective heat removal from the 

oundaries, although this is not a strong influence at small times, 

hen conduction to the boundary is not well established, or at 

arge times, when most of the heat has already conducted away 

rom the body. 

Fig. 9 (b) presents the impact of the Biot number in the η di- 

ection on temperature at the same location as Fig. 9 (a). As ex- 

ected, for a given time, as the Biot number increases, the temper- 

ture reduces due to the boundary permitting more and more heat 

emoval. For a sufficiently large value of the Biot number, how- 

ver, the boundary is sufficiently close to isothermal, and, there- 

ore, there is no significant further reduction in temperature with 

urther increase in the Biot number. Fig. 9 (b) also illustrates the 

ecay in the temperature field over time. Curves plotted at increas- 

ng values of time show lower and lower temperature. 

.6. Impact of thermal diffusivity 

Finally, the effect of thermal diffusivity on the temperature dis- 

ribution is analyzed. For a representative problem, temperature at 

he center of the two-layer body is plotted as a function of time for 

ultiple values of ᾱ in Fig. 10 (a). The associated problem param- 
1 

9

ters are Bi 1 = 10 , Bi 2 = 10 , Bi A = 2 , Bi B = 2 , γ1 = 0 . 5 , w̄ = 2 . 5 , ̄k 1 =
 . As expected, increasing ᾱ1 results in greater heat dissipation 

rom the first layer to the heat-removing boundaries, and, there- 

ore, reduction in temperature and the rate of thermal decay. The 

patial variation of interface temperature in the η direction at τ = 

 . 4 is plotted in Fig. 10 (b). Consistent with Fig. 10 (a), as the value

f ᾱ1 increases, Fig. 10 (b) shows reduced temperature. Fig. 10 (b) 

lso shows greater thermal uniformity within the body at large 

alues of ᾱ1 , which is consistent with greater ability to diffuse heat 

ithin the first layer. 

. Conclusions 

The transient multilayer two-dimensional diffusion problem has 

een solved in the past only for the special case of isothermal 

r adiabatic conditions normal to the layered direction. The key 

ontribution of this work is in generalizing this to include gen- 

ral convective boundary conditions instead. While presented in 

he context of a heat transfer problem, the technique is also ap- 

licable for equivalent mass transfer problems. Further, the pure 

iffusion analysis presented in this work can be easily extended to 

ultilayer two-dimensional diffusion-reaction problems by appro- 

riately accounting for the reaction coefficient in the definition of 

he eigenvalues, as has been done for one-dimensional diffusion- 

eaction problems [ 15 , 16 , 19 ]. Extension to three-dimensional prob- 
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ems is also fairly straightforward, as this will only involve one 

ew set of eigenvalues. Finally, note that the derivation in this 

ork explicitly assumes uniform initial temperature in each layer, 

hich is a reasonable assumption for a wide variety of problems. 

xtension to account for non-uniformity, such as in the η direction 

s cumbersome, but possible. Depending on the specific nature of 

uch non-uniformity, this may require deriving a new solution for 

q. (26) , since Eq. (29) in the present work is specific to a uniform

nitial temperature. The rest of the methodology is expected to re- 

ain unaffected. 

The analytical technique discussed here improves the funda- 

ental understanding of multilayer diffusion problems. In addi- 

ion, the capability to analyze two-dimensional multilayer diffusion 

ith general convective boundary conditions may be pertinent to 

everal practical engineering problems. 
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