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a b s t r a c t 

Thermal effusivity is a thermophysical property of materials that combines thermal conductivity and vol- 

umetric heat capacity. Thermal effusivity is often interpreted in terms of a body’s ability to exchange 

heat when brought in contact with another body at a different temperature, and is relevant in thermal 

property measurements, such as the transient plane source method as well as in energy harvesting and 

thermal management. Well-known theoretical models show that thermal effusivity is the only thermo- 

physical property that governs heat exchange between two semi-infinite bodies. In contrast, there is a 

lack of work on heat exchange between bodies of finite thickness, which may be a relevant considera- 

tion in several practical scenarios. This work presents an analytical solution for heat exchange between 

two finite bodies initially at different temperatures. The effect of thermal contact resistance is accounted 

for. Results from this work are shown to approach semi-infinite results when the layer thickness becomes 

large. It is shown that while the heat flux for finite thickness in general depends on both thermal effusiv- 

ity and thermal diffusivity, exclusive dependence on effusivity may occur under certain conditions, partic- 

ularly for poorly conducting materials. The sensitivity of interfacial heat flux on these thermal properties 

is examined in the regimes in which most materials of interest lie. The limits in which the semi-infinite 

approximation is reasonable are determined. A practical problem is solved as an illustration. This work 

improves the fundamental understanding of thermal effusivity and thermal interaction between finite- 

sized bodies, and may find applications in a variety of engineering problems such as thermal property 

measurement, energy harvesting and thermal management. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Thermal conductivity k and volumetric heat capacity ρC p are 

he most commonly encountered thermophysical properties of ma- 

erials [1–3] . In addition, the thermal diffusivity, α = k/ ( ρC p ) that 

ppears in the transient energy conservation energy equation is 

lso commonly used. In contrast, the thermal effusivity, e = 

√ 

kρC p 
s found in the literature to a much lesser extent. Unlike other 

roperties, effusivity does not appear explicitly in governing equa- 

ions, and, therefore, its role as a fundamental thermophysical 

roperty has been open to debate. 

The role of thermal effusivity is most commonly understood on 

he basis of perceived warmth or coldness of a body upon touch 

 4 , 5 ]. Using Laplace transforms technique, it can be shown that 

hen two semi-infinite bodies initially at different temperatures 

such as a human hand and a doorknob) are brought in contact 

ith each other, the resulting temperature distribution in both lay- 

rs is based on error functions [2] . Subsequently, the temperature 
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t the interface can be shown to attain a constant value whereas 

he heat flux can be shown to decay as 1 / 
√ 

t as follows [2] : 

 12 , inf = T 2 , in + 

e 1 
e 1 + e 2 

(
T 1 , in − T 2 , in 

)
(1) 

 12 ,in f ( τ ) = 

e 1 e 2 
e 1 + e 2 

( T 1 ,in − T 2 ,in ) √ 

πt 
(2) 

here e 1 and e 2 are the thermal effusivities of the two bodies, 

hile T 1 ,in and T 2 ,in are the initial temperatures. Eq. (2) can also 

e derived by starting with an error function temperature distri- 

ution in the semi-infinite bodies and applying an energy balance 

t the interface. 

Eqs. (1) and (2) show that thermal effusivity is the only ther- 

ophysical property that governs the interfacial temperature and 

eat flux in this problem. The perception of coldness or warmth of 

n object upon touch, referred to as thermoreception [6] , is based 

n how much heat is drawn from or supplied to the skin upon 

ouch [7] . Therefore, Eq. (2) explains why certain materials such 

s metals or plastics feel relatively cold or warm, respectively, to 

he touch. For this reason, thermal effusivity has also been re- 
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Fig. 1. Schematic of the finite-body heat exchange problem showing the geometry 

and coordinate system used in this work. 
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Nomenclature 

C p heat capacity (Jkg −1 K 

−1 ) 

k thermal conductivity (Wm 

−1 K 

−1 ) 

L layer thickness (m) 

L re f reference length scale (m) 

q heat flux (Wm 

−2 ) 

T temperature (K) 

t time (s) 

x spatial coordinate (m) 

α diffusivity (m 

2 s −1 ) 

e effusivity (Js −0.5 m 

−2 K 

−1 ) 

ξ non-dimensional spatial coordinate 

ρ density (kgm 

−3 ) 

τ non-dimensional time 

θ non-dimensional temperature 

λ eigenvalue 

Subscripts 

12 interface 

1,2 layer number 

in initial values 

ref reference 

erred to by other names such as thermal responsivity and ther- 

al absorptivity. Material recognition based on tactile heat trans- 

er is an interesting application of this theory [5] . Other engineer- 

ng applications where thermal effusivity has been shown to play 

n important role include thermal management of buildings [8] , 

hermal performance of textiles [9] , geothermal heat transfer [10] , 

nergy harvesting [11] , phase change based thermal management 

12] , heat transfer in semiconductors [13] and periodic heat trans- 

er processes [14] . 

In addition to engineering problems referenced above, ther- 

al effusivity also often appears in thermal property measurement 

echniques. For example, the transient plane source method [ 15 , 16 ]

easures thermal effusivity by measuring the interfacial temper- 

ture as a function of time when two semi-infinite samples are 

eated by a thin heater placed in between [17] . Thermal contact 

esistance at the interface can be accounted for in such measure- 

ents [18] . This technique has also been extended to account for 

nite thickness of the sample by dividing the time period of inter- 

st into two domains, which separately provide information about 

he thermal conductivity and heat capacity of the sample [19] . 

ther measurement techniques for thermal effusivity include hot 

trip [20] , thermoreflectance [21] , dual lock-in method [22] and 

hotopyroelectric calorimetry [23] . 

The common interpretation of thermal effusivity as the prop- 

rty that governs heat exchange between two bodies upon touch 

4] is based on the assumption that the two bodies are ther- 

ally semi-infinite, i.e., the boundaries are far enough to not in- 

uence heat transfer in the time period of interest. While this 

ay be a reasonable assumption in several engineering problems, 

t is clearly not universally true. Specifically, the finite nature of 

he body must be accounted for when the physical size of the 

ody is relatively small, such as in semiconductor devices [13] , 

nd/or when the time period of interest is very large, such as in 

eothermal problems [10] . In such cases, the interfacial tempera- 

ure and heat flux given by Eqs. (1) and (2) are no longer valid, and

t is unclear whether thermal effusivity continues to be the only 

hermophysical property governing the interfacial temperature and 

eat flux, or whether other properties also become relevant. As an 

ngineering approximation, the calculation of thermal penetration 

epth may be used to estimate whether the semi-infinite assump- 
2 
ion is within acceptable tolerance. However, this calculation ig- 

ores the interaction between the two bodies. A more accurate 

pproach would be to solve the governing equations in the finite 

omain and determine how much the predicted interfacial heat 

ransfer and temperature deviate from the standard values for the 

emi-infinite problem given by Eqs. (1) and (2) . This finite thick- 

ess problem has not been sufficiently addressed in the literature. 

ecently, the problem of heat exchange between a finite body, such 

s a human hand and a semi-infinite body has been solved using 

he technique of Laplace transforms [24] . While this helps better 

nderstand tactile perception of large objects, it may still not be 

pplicable in cases where both bodies are finite in size. 

The present work considers and solves the problem of heat ex- 

hange between two bodies of finite size. Using multilayer diffu- 

ion analysis, expressions for transient temperature distributions in 

oth bodies are derived in the form of infinite series. Expressions 

or interfacial heat flux and temperature are derived and shown 

o reduce to well-known results from semi-infinite analysis when 

he size of the bodies becomes very large. The sensitivity of inter- 

acial heat flux on thermophysical properties in regimes represen- 

ative of most materials is discussed. It is shown that while the 

nterfacial temperature and heat flux, in general, depend both on 

hermal effusivity as well as another thermophysical property, such 

s thermal diffusivity, under certain regimes, exclusive dependence 

n effusivity may be possible. This work extends the heat transfer 

heory related to thermal effusivity by accounting for the practical 

ut previously overlooked consideration of finite thickness. Results 

ay help improve the design of materials and devices in a variety 

f engineering problems where thermal effusivity plays an impor- 

ant role. 

. Mathematical modeling 

As shown in Fig. 1 , consider the problem of one-dimensional 

hermal conduction in a stack of two layers of dis-similar materi- 

ls and of thickness L each. The two layers are initially at distinct 

emperatures, T 1 ,in and T 2 ,in , respectively. At t= 0, the two layers are 

rought in contact with each other at x = 0. The other ends of 

oth layers are assumed to be sufficiently insulated and the tem- 

erature rise low enough for heat loss to the external ambient to 

e negligible. A thermal contact resistance R is assumed between 

he layers. The layers exchange heat with each other at the inter- 

ace until thermal equilibrium. The interest is in determining the 

emperature fields in the two bodies, T ( x, t ) and T ( x, t ) , and thus,
1 2 
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ᾱ1 

)]
he interface temperature T 12 (t) and heat flow from layer 1 to layer 

 q 12 (t) as functions of time. In particular, it is of interest to de-

ermine which thermophysical properties govern these parameters. 

n contrast with well-known results for semi-infinite bodies, where 

hermal effusivity is the only property that appears in expressions 

or these parameters, the interest here is to examine whether ther- 

al effusivity remains the only thermophysical properties govern- 

ng interfacial parameters in the case of finite thickness. 

The two independent material thermal properties are taken 

o be the thermal effusivity and diffusivity, denoted by e and 

, respectively. Note that other thermal properties can be writ- 

en in terms of e and α. For example, the thermal conductiv- 

ty may be obtained as k = e 
√ 

α. Subscripts 1 and 2 denote the

wo layers. All properties are assumed to constant, uniform and 

ndependent of temperature. Without loss of generality, it is as- 

umed that layer 1 is hotter than layer 2 initially, i.e., T 1 ,in > T 2 ,in .

n order to obtain a solution for this two-layer finite-body prob- 

em, it is helpful to first carry out a non-dimensionalization. Us- 

ng θi = 

( T i −T 2 ,in ) 

( T 1 ,in −T 2 ,in ) 
( i = 1,2), ξ = x/L re f , τ = α2 t/L 2 

re f 
, ᾱ1 = α1 /α2 ,

¯ 1 = e 1 /e 2 , L̄ = L/L re f , R̄ = e 2 
√ 

α2 R/L re f , where L re f is an arbitrary

eference length scale, the following energy conservation equations 

or temperature fields in the two layers may be obtained: 

∂ 2 θ1 

∂ξ 2 
= 

1 

α1 

∂θ1 

∂τ

(
0 < ξ < L 

)
(3) 

∂ 2 θ2 

∂ξ 2 
= 

∂θ2 

∂τ

(
−L < ξ < 0 

)
(4) 

The ends of the layers are assumed to be adiabatic, while tem- 

erature continuity and heat flux conservation is assumed at the 

nterface. This results in the following boundary and interface con- 

itions: 

∂θ1 

∂ξ
= 0 

(
ξ = L 

)
(5) 

∂θ2 

∂ξ
= 0 

(
ξ = −L 

)
(6) 

1 = θ2 + e 1 
√ 

α1 R 

∂θ1 

∂ξ
( ξ = 0 ) (7) 

 1 

√ 

α1 
∂θ1 

∂ξ
= 

∂θ2 

∂ξ
( ξ = 0 ) (8) 

Note that in Eq. (8) above, thermal conductivity is expressed as 
¯
 1 = ē 1 

√ 

ᾱ1 in order to write the equations only in terms of two 

roperties – effusivity and diffusivity. 

Finally, the initial condition is given by 

1 = 1 ; θ1 = 0 ( τ = 0 ) (9) 

Therefore, the non-dimensional problem comprises layers 1 and 

 at a unit and zero temperature, respectively at the initial time. 

ote that an arbitrary reference length scale L re f is used for non- 

imensionalization instead of the layer thickness L in order to ex- 

licitly preserve the layer thickness in the form of L̄ . This makes it 

asier to examine the impact of finite layer thickness on interfacial 

emperature and heat flux, and to compare with the semi-infinite 

roblem. 

 n = 

ē 1 
√ 

ᾱ1 ∫ L̄ 0 cos 

(
λn ( ̄L −ξ ) √ 

ᾱ1 

)
dξ

ē 1 
√ 

ᾱ1 ∫ L̄ 0 cos 2 
(

λn ( ̄L −ξ ) √ 

ᾱ1 

)
d ξ + ∫ 0 −L̄ 

[
cos 

(
λn ̄L / 

√ 

ᾱ1 

)
−ē 1 ̄R λn sin 

(
λn ̄L / 

√
cos ( λn ̄L ) 
3 
The problem described by Eqs. (3) –(9) is a multilayer diffusion 

roblem [1] . The solution may be written in the form of an infinite 

eries, the eigenvalues and various coefficients of which may be 

btained using the boundary and interface conditions, as well as 

he principle of quasi-orthogonality [25] in conjunction with the 

nitial condition. The following general form for the temperature 

istributions may be written 

1 ( ξ , τ ) = c 0 + 

∞ ∑ 

n =1 

c n 

[ 

A 1 ,n cos 

( 

λn 

(
L̄ − ξ

)
√ 

ᾱ1 

) 

+ B 1 ,n sin 

( 

λn 

(
L̄ − ξ

)
√ 

ᾱ1 

) ] 

exp 

(
−λ2 

n τ
)

(10) 

2 ( ξ , τ ) = c 0 + 

∞ ∑ 

n =1 

c n 
[
A 2 ,n cos 

(
λn 

(
L̄ + ξ

))
+ B 2 ,n sin 

(
λn 

(
L̄ + ξ

))]
exp 

(
−λ2 

n τ
)

(11) 

Note the Eqs. (10) and (11) satisfy the respective governing en- 

rgy equations. The c 0 term appearing in both equations corre- 

ponds to the zero eigenvalue, which must be explicitly included in 

his problem because both external boundary conditions are adia- 

atic [1] . c 0 may be interpreted as the steady state temperature 

hat both layers equilibrate to at large time, and may be deter- 

ined by noting that the total energy at large time must equal the 

otal initial energy in this perfectly insulated two-layer geometry. 

his can be shown to result in 

 0 = 

ē 1 

ē 1 + 

√ 

ᾱ1 

(12) 

In order to satisfy the boundary conditions given by 

qs. (5) and (6) , it can be seen that B 1 ,n = B 2 ,n = 0 . Further,

he use of the interface conditions shows that 

 2 ,n cos 
(
λn ̄L 

)
= A 1 ,n 

[ 
cos 

(
λn ̄L / 

√ 

ᾱ1 

)
− ē 1 ̄R λn sin 

(
λn ̄L / 

√ 

ᾱ1 

)] 
(13) 

¯
 1 A 1 ,n sin 

(
λn ̄L / 

√ 

ᾱ1 

)
= −A 2 ,n sin 

(
λn ̄L 

)
(14) 

Dividing Eq. (13) by Eq. (14) results in the following eigenequa- 

ion, the positive roots of which determine the eigenvalues λn : 

ot 

( 

λn ̄L √ 

ᾱ1 

) 

+ ē 1 cot 
(
λn ̄L 

)
− ē 1 ̄R λn = 0 (15) 

Therefore, the temperature distributions may be written in sim- 

ler form as 

1 ( ξ , τ ) = c 0 + 

∞ ∑ 

n =1 

c n cos 

( 

λn 

(
L̄ − ξ

)
√ 

ᾱ1 

) 

exp 

(
−λ2 

n τ
)

(16) 

2 ( ξ , τ ) = c 0 + 

∞ ∑ 

n =1 

c n 

cos 

(
λn ̄L / 

√ 

ᾱ1 

)
− ē 1 ̄R λn sin 

(
λn ̄L / 

√ 

ᾱ1 

)
cos 

(
λn ̄L 

)
cos 

(
λn 

(
L̄ + ξ

))
exp 

(
−λ2 

n τ
)

(17) 

Finally, the use of the initial condition along with the princi- 

le of orthogonality results in the following expression, which has 

een simplified using the eigenequation 

2 

cos 2 
(
λn 

(
L̄ + ξ

))
d ξ

(18) 
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Fig. 2. Non-dimensional interfacial heat flux q̄ 12 as a function of time for different values of layer thickness L̄ . Two material pairs are considered: (a) ē 1 = 0 . 95 , ᾱ1 = 5 . 83 

(quartz and human hand) and (b) ē 1 = 15 . 2 , ᾱ1 = 678 . 3 (aluminum and human hand). For comparison, the interfacial heat flux curves for the respective semi-infinite 

problems are also shown. 
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This results in the following expressions for the two quantities 

f specific interest – the interface temperature and interface heat 

ux (from layer 1 to layer 2) – as functions of time 

12 ( τ ) = θ1 ( 0 , τ ) = c 0 + 

∞ ∑ 

n =1 

c n cos 

( 

λn ̄L √ 

ᾱ1 

) 

exp 

(
−λ2 

n τ
)

(19) 

 12 ( τ ) = e 1 
√ 

α1 

(
∂θ1 

∂ξ

)
ξ=0 

= e 1 

∞ ∑ 

n =1 

c n λn sin 

( 

λn L √ 

α1 

) 

exp 
(
−λ2 

n τ
)

(20) 

It is of interest to compare these characteristics of heat ex- 

hange between bodies of finite thickness with the semi-infinite 

roblem, for which, the interface temperature and heat flux are 

iven by Eqs. (1) and (2) , respectively. Note that for the semi- 

nfinite problem, the interface temperature remains constant with 

ime, and thermal effusivity is the only property that appears in 

he expressions for the interface temperature and flux. In compar- 

son, it is of interest to determine if the same holds in the present

ase or not. 

. Results and discussion 

.1. Comparison with semi-infinite solution 

It is of interest to compare the finite thickness solution derived 

n Section 2 with the well-known semi-infinite solution. Such com- 

arison may be carried out in terms of the interfacial heat flux 

¯ 12 or the interfacial temperature θ12 , both as functions of time. 

ig. 2 presents this comparison for the interfacial heat flux. For two 

epresentative materials – quartz and aluminum – coming in con- 

act with human skin (mimicking the process of touching an object 

ade of these materials), Fig. 2 (a) and 2(b) plot the respective heat 

ux curves as functions of time for multiple values of the layer 

hickness L̄ . Standard material properties are assumed [3] . For gen- 

rality, the plots are presented in non-dimensional form. The semi- 

nfinite solution given by Eq. (2) is also plotted for reference. Un- 

ess stated otherwise, perfect thermal contact is assumed between 

he two materials in this and subsequent Figures. As expected, the 

nterfacial heat flux reduces as time increases, and the curves for 

he finite thickness cases are lower than the semi-infinite curve. 

his is mainly because of greater thermal energy content avail- 

ble in a thicker layer that can sustain greater interfacial heat flux 

or a longer time. As expected, the finite thickness curves shift 
4 
pwards and approach the semi-infinite curve as the layer thick- 

ess increases. For example, Fig. 2 (a) shows that for quartz, L̄ = 5 

s practically coincident with the semi-infinite curve in the time 

eriod considered here. 

It is also interesting to note that even curves for relatively small 

ayer thickness are in excellent agreement with the semi-infinite 

urve at small times. For example, the L̄ = 2 curve in Fig. 2 (a) is co-

ncident with the semi-infinite curve up to around τ = 0 . 2 , beyond

hich, it begins to deviate. This is because for a given layer thick- 

ess, the semi-infinite assumption is still valid at small times, by 

hen the thermal wave has not yet reached the boundaries, and, 

herefore, thermal conduction occurs in an apparently semi-infinite 

edium. As expected, as L̄ grows, the time period of good agree- 

ent with the semi-infinite solution also goes up due to greater 

pace available, and, therefore, greater time taken by the thermal 

iffusion wave to reach the boundary. 

Fig. 2 (a) and 2(b) may also be used to compare the performance 

f two distinct materials – quartz and aluminum – that are repre- 

entative of poorly conductive and highly conductive materials, re- 

pectively. For the same layer thickness, these plots show greater 

eat flux for aluminum than quartz, similar to the semi-infinite 

ase. Therefore, the perception of a metal being colder to the hu- 

an touch than a non-metal due to greater heat flux is also valid 

or a finite thickness geometry. Similar to Fig. 2 (a) for quartz, the 

urves in Fig. 2 (b) for aluminum also approach the semi-infinite 

urve as the layer thickness increases. However, it is seen that in 

his case, it takes a larger thickness to approach the semi-infinite 

urve. For example, while the L̄ = 5 curve for quartz is practically 

dentical to the semi-infinite curve, the two are not in similarly 

ood agreement for aluminum, which is seen to require an even 

reater thickness for the finite thickness model to approach the 

emi-infinite model. This is primarily due to the greater diffusiv- 

ty of metals compared to non-metals, which causes the external 

oundary condition to play a more important role, even for the 

ame thickness. 

Fig. 3 presents a similar comparison between the finite thick- 

ess model presented in Section 2 and the standard semi-infinite 

odel in terms of the interface temperature as a function of time. 

hile the interface temperature is invariant with time for the 

emi-infinite model, as given by Eq. (1) , in the case of the finite 

hickness model, it is found that the interface temperature reaches 

ts steady state value c 0 given by Eq. (12) quite rapidly. For this rea-

on, comparison between finite thickness and semi-infinite models 

n terms of the interface temperature are plotted over a very short 

ime period. These comparison plots are presented in Fig. 3 (a) and 
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Fig. 3. Non-dimensional interfacial temperature θ12 as a function of time for different values of layer thickness L̄ . Two material pairs are considered: (a) ē 1 = 0 . 95 , ᾱ1 = 5 . 83 

(quartz and human hand) and (b) ē 1 = 15 . 2 , ᾱ1 = 678 . 3 (aluminum and human hand). For comparison, the interfacial temperatures for the respective semi-infinite problems 

are also shown. 
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properties of water at 300 K and 1 atm. 
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(b) for quartz and aluminum, respectively. These plots show that 

n case of quartz, the interface temperature predicted by the fi- 

ite thickness model is quite close to the semi-infinite model even 

hen the layer thickness is quite small. In contrast, there is large 

isagreement between the two in the case of aluminum when the 

ayer thickness is relatively small. In both cases, the interface tem- 

erature undergoes a rapid evolution at small times, and reaches 

 value lower than the one predicted by the semi-infinite model. 

hen the layer thickness is larger, L̄ = 0 . 1 and L̄ = 0 . 5 for quartz

nd aluminum, respectively, the two models begin to agree nearly 

xactly with each other in the time period considered here. 

.2. Sensitivity of interfacial heat flux to thermal effusivity and 

hermal diffusivity 

It is of interest to determine whether the interfacial heat flux 

n case of finite thickness layers remains sensitive only to the ther- 

al effusivity, as is well known to be the case for semi-infinite 

odies ( Eq. (2) ). Eq. (20) provides an analytical expression for the 

nterfacial heat flux for finite thickness. Both ē 1 and ᾱ1 appear in 

q. (20) , and, in addition, the eigenvalues λn and coefficients c n im- 

licitly depend on both thermal effusivity and diffusivity. Yet, it is 

ossible that in certain regimes, q̄ 12 may be only weakly sensitive 

o one of the properties. 

Before investigating this in detail, it is helpful to understand the 

anges of ē 1 and ᾱ1 for common materials. Fig. 4 presents a plot of 

¯ 1 and ᾱ1 for common materials, ranging from poorly conducting 

aterials such as plastics to highly conducting metals. Note that 

he properties of water at 300 K and 1 atm are used for non-

imensionalization. Fig. 4 shows that even though thermal diffu- 

ivity and effusivity are, in principle, independent of each other, 

et, most materials tend to fall in one of two categories – low ē 1 
nd ᾱ1 materials, which are mostly non-metals, or high ē 1 and ᾱ1 

aterials, which are mostly metals. It is unlikely, based on the def- 

nitions of ē 1 and ᾱ1 in terms of thermal conductivity and heat ca- 

acity that a material may have low ē 1 but high ᾱ1 , or high ē 1 but 

ow ᾱ1 . 

In order to investigate the sensitivity of interfacial heat flux on 

he thermophysical properties for finite thickness, q̄ 12 at a specific 

ime is plotted as a function of the thermal properties. A num- 

er of layer thicknesses are considered, and the analysis is car- 

ied out for both thermal effusivity as well as thermal diffusivity. 

ig. 5 presents these plots for examining the dependence on ther- 

al diffusivity while the thermal effusivity is held constant. Plots 

t τ = 0 . 2 corresponding to ē = 0 . 3 , representative of poorly con-
1 

5 
ucting materials and ē 1 = 12 . 0 , representative of highly conduct- 

ng materials, both relative to human skin are presented in Fig. 5 (a) 

nd 5(b), respectively. Based on the findings in Fig. 4 , the ᾱ1 region 

n which most practical materials do not appear has been shaded 

ut in both Fig. 5 (a) and 5(b). Curves corresponding to the semi- 

nfinite model are also presented in Fig. 5 (a) and 5(b) for compar- 

son. These curves are flat lines because of zero dependence of the 

nterfacial heat flux on thermal diffusivity, per Eq. (1) . 

For each layer thickness considered in Fig. 5 , q̄ 12 is found to be 

nsensitive to ᾱ1 for very small and very large values of ᾱ1 , while 

xhibiting strong sensitivity at intermediate values. The reduced 

ensitivity at large ᾱ1 is primarily because most of the thermal 

nergy has already been conducted due to high diffusivity and the 

wo layers are now close to thermal equilibrium, leading to q̄ 12 be- 

oming nearly zero. The reduced sensitivity at small ᾱ1 is because 

t a small enough diffusivity, the finite thickness body behaves like 

 semi-infinite body due to the thermal diffusive wave being lim- 

ted to within the body. As the layer thickness increases, the lack 

f sensitivity expands to increasingly larger values of ᾱ1 , also due 

o diffusion being limited to within the body, and eventually, at a 

arge enough value of the layer thickness, the results for the finite 

hickness body become completely insensitive to ᾱ1 and identical 

o the semi-infinite model. Fig. 5 (a) and 5(b) also show that the 
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Fig. 5. Interfacial heat flux q̄ 12 at τ = 0 . 2 as a function of ᾱ1 for multiple layer thicknesses. Plots are shown for (a) ē 1 = 0 . 3 , (b) (a) ē 1 = 12 . 0 . The curves corresponding to 

the semi-infinite solution are also shown for reference. For the given value of ē 1 , the ᾱ1 region in which most practical materials do not appear has been shaded out. 

Fig. 6. Interfacial heat flux q̄ 12 at τ = 0 . 2 as a function of ε̄ 1 for multiple layer thicknesses. Plots are shown for (a) ᾱ1 = 0 . 93 , (b) ᾱ1 = 12 . 0 . The curves corresponding to the 

semi-infinite solution are also shown for reference. For the given value of ᾱ1 , the ē 1 region in which most practical materials do not appear has been shaded out. 
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Fig. 7. Sensitivity of interfacial heat flux to thermophysical properties: q̄ 12 in the 

ē 1 - ̄α1 space for L̄ = 0 . 5 and τ = 0 . 2 . 
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s
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ntermediate region of high sensitivity is much broader when the 

ffusivity is large. 

A similar analysis for sensitivity of the interfacial heat flux is 

resented in terms of thermal effusivity in Fig. 6 (a) and 6(b) for 

wo values of the thermal diffusivity, ᾱ1 = 0 . 93 and ᾱ1 = 229 . 5 ,

espectively. These plots show, similar to the semi-infinite body, 

ery high sensitivity to ē 1 at small values regardless of the value 

f thermal diffusivity. The sensitivity reduces as ē 1 increases, al- 

hough, unlike the case of ᾱ1 , it never becomes completely insen- 

itive. With reference to the common range of ē 1 and ᾱ1 shown in 

ig. 4 , the plots shown in Fig. 6 (a) and 6(b) imply that measuring

he interfacial heat flux to determine the thermal effusivity of the 

aterial is likely to work much better for non-metallic materials 

hat have both low effusivity and diffusivity. Finally, note that sim- 

lar to Fig. 2 , the curves in Fig. 6 approach the semi-infinite curve

hen the layer thickness becomes sufficiently large. 

In order to comprehensively understand the dependence of q̄ 12 

n ē 1 and ᾱ1 , a colorplot of q̄ 12 at τ = 0 . 2 in the ē 1 - ̄α1 space is

resented in Fig. 7 . Unlike the semi-infinite body, in which the in- 

erfacial heat flux is a function of only ē 1 , in the finite thickness 

ase, the interfacial heat flux in general depends on both ē 1 and 

¯ 1 . Note that most materials are located along the antidiagonal of 

his plot, with metals located in the top right quadrant (high ē 1 
nd ᾱ1 ) and non-metals in the bottom left quadrant (low ē 1 and 

¯ 1 ). The bottom half of this colorplot shows that for low diffusivity 

aterials such as plastics and other insulators, the interfacial heat 
6 
ux may be reasonably considered to be independent of diffusivity 

ince the iso- ̄q 12 curves are vertical in that region. This is, however, 

ot the case for high diffusivity materials such as metals where the 

so- ̄q 12 curves are tilted, thus indicating sensitivity to both ē 1 and 

¯ . The results discussed above are specific for the particular layer 
1 
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Fig. 8. Effect of thermal contact resistance: Nondimensional interfacial heat flux q̄ 12 as a function of time for different values of thermal contact resistance R̄ for contact 

between (a) human hand and quartz, and (b) human hand and aluminum. A thickness of L̄ = 2 . 0 is used in both cases. 
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hickness and time used in this plot. At smaller thicknesses and/or 

t larger times, the departure from exclusive dependence on ē 1 is 

xpected to become even more pronounced. On the other hand, as 

he layer thickness grows, the behavior of the finite-thickness body 

s expected to get closer and closer to that of a semi-infinite ge- 

metry. This may be the regime in which measurement of thermal 

ffusivity of a finite-sized body may be most effective. 

.3. Effect of thermal contact resistance 

While the discussion of the finite thickness problem in previ- 

us sections assumed perfect thermal contact, in some cases, ther- 

al contact resistance at the interface between the two layers may 

nfluence heat exchange between the two. This phenomenon, rep- 

esented in the mathematical model by the non-dimensional ther- 

al contact resistance R̄ may be important in practical scenarios, 

or example, when the interface between the layers is rough, or 

hen the two materials have very different phonon transport char- 

cteristics. Fig. 8 investigates the impact of R̄ on q̄ 12 as a function 

f time. Plots are presented for quartz and aluminum in Fig. 8 (a) 

nd 8(b), respectively. In each case, a constant thickness L̄ = 2 . 0 is

ssumed. Both plots show that increasing the thermal contact re- 

istance reduces the heat flux at small times while increasing it at 

arger times. This is because of the impedance to heat flow offered 

y the interfacial thermal contact resistance, per Eq. (7) . As a result 

f this effect, heat flux at early times comes down as the resistance 

ncreases. However, the total heat exchange over large time is fixed 

rrespective of the thermal contact resistance, i.e., the area under 

he heat flux vs time curve must remain constant. Therefore, heat 

ux catches up at large times and is greater in the presence of con- 

act resistance compared to the perfect contact case. Fig. 8 shows 

imilar impact of R̄ on q̄ 12 for both quartz and aluminum. 

Note that the value of R̄ is usually obtained from the nature of 

he materials and the surface roughness, based on which, Fig. 8 can 

e used as a design tool to determine the heat flux to be expected 

s a function of time. 

.4. Limits for semi-infinite assumption to be reasonably accurate 

While the finite thickness problem has been shown in previous 

ections to exhibit characteristics that are distinct from the semi- 

nfinite problem, it is of interest to determine the regimes in which 

he body can be reasonably approximated to be semi-infinite. This 

s of particular practical importance because the semi-infinite so- 

ution is quite straightforward, given by Eqs. (1) and (2) , whereas, 

he results of the finite thickness model, Eqs. (19) and (20) are 
7

ore difficult to compute, as they involve calculating a number of 

igenvalues and other coefficients. 

Clearly, the larger the layer thickness L̄ , the more accurate 

ould the semi-infinite assumption be. An estimate of the valid- 

ty limit of this assumption may be obtained by calculating the 

hermal penetration depth up to a given time (which involves 

nly the thermal diffusivity) and comparing against the thickness 

f the sample. However, this is merely an approximation that 

oes not account for interaction between the two bodies. A more 

igorous analysis of the validity of the semi-infinite assumption 

ould require comparison of the semi-infinite solution, given by 

q. (2) with the solution for finite thickness, given by Eq. (20) . This

omparison is presented in Fig. 9 , wherein the minimum thickness 

f a finite body needed for the semi-infinite assumption to be ac- 

urate within a given tolerance is plotted as a function of time. 

lots are presented for four different tolerance levels – 5%, 10%, 

5% and 20% – and for two different materials – quartz and alu- 

inum –in contact with human skin. Fig. 9 presents these results 

n dimensional form, so as to serve as design guidelines for practi- 

al problems involving these materials. Similar plots for other ma- 

erial pairs can be easily generated based on Eqs. (2) and (20) . 

Fig. 9 (a) and 9(b) show that the larger the time, the larger is 

he minimum thickness needed for accurate representation by the 

emi-infinite model. This is because the thermal diffusion wave 

ropagates farther and farther with increasing time, thereby re- 

uiring greater thickness for the semi-infinite assumption to be 

alid. As expected, the tighter the tolerance demanded, the larger 

s the minimum layer thickness required for the semi-infinite as- 

umption to be within tolerance. When comparing quartz and alu- 

inum, it is found that for the same time and tolerance, the min- 

mum thickness needed for quartz is much smaller – by nearly an 

rder of magnitude – compared to aluminum. Further, it is found 

hat making the tolerance tighter does not result in as much in- 

rease in the minimum thickness for the case of quartz as it does 

or aluminum. For example, in going from 20% tolerance to 5% tol- 

rance, the minimum quartz thickness increases by only around 

5%, whereas it goes up for aluminum by about 2.5 times. This is 

xplainable on the basis of larger thermal diffusivity and effusivity 

f aluminum, due to which, a tighter tolerance presents a much 

ore stringent requirement for aluminum than for quartz. 

Note that the curves in Fig. 9 rise rapidly at first, and then 

low down, which at first may appear indicative of a thermal pen- 

tration depth related 

√ 

t dependence of the minimum thickness 

eeded. However, it is verified separately that a 
√ 

t curve does not 

ccurately fit these results, indicating that the use of only the ther- 

al penetration depth concept to estimate the minimum thickness 



A. Jain International Journal of Heat and Mass Transfer 202 (2023) 123721 

Fig. 9. Minimum thickness needed for a finite thickness body to be within a prescribed tolerance of the semi-infinite solution in terms of heat flux q 12 as a function of time. 

5%, 10%, 15% and 20% tolerance curves are plotted for two representative materials (a) quartz and (b) aluminum touching human skin. 

Fig. 10. Application of the analytical model for a dimensional problem: Heat ex- 

changed between a human finger and a finite thickness body made of aluminum or 

quartz as a function of time. An initial temperature difference of 20 °C is assumed, 

and a thickness of each layer is assumed to be 1 cm. 
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Data will be made available on request. 
eeded is not accurate. Instead, a comprehensive comparison dis- 

ussed above leads to more accurate results. 

.5. Practical applications 

While much of the prior analysis in this work is presented in 

on-dimensional form for generality, it is also of interest to ex- 

mine practical problems in dimensional form. In particular, it is 

f interest to calculate the heat flux in Wm 

−2 when a material 

uch as quartz or aluminum comes in contact with human skin. 

his quantity is known to be correlated with the tactile sensation 

f warmth or coolness, which is usually the basis for interpret- 

ng thermal effusivity using the semi-infinite assumption. The fi- 

ite thickness model developed in this work makes it possible to 

uantify the same effect when the two bodies are of finite thick- 

ess, as may be the case in several practical scenarios. To examine 

his further, Fig. 10 plots the dimensional interfacial heat flux as 

 function of time when a material of 1 cm thickness comes in 

ontact with human skin of the same thickness, which may rep- 

esent, for example, a finger tip. An initial temperature difference 

f 20 °C between the two bodies is assumed. Similar to the semi- 

nfinite model, Fig. 9 shows that the finite thickness model also 

redicts greater heat flux – and therefore, a perception of cool- 

ess – for aluminum compared to quartz, which, due to lower heat 
8 
ux, is expected to be perceived as warmer. While these results 

re qualitatively similar to the semi-infinite model, the use of the 

nite thickness model is quantitatively more accurate, particularly 

or metals, and at large times. In addition to human touch, the fi- 

ite thickness model presented here may also be relevant for sev- 

ral other engineering problems, such as micromachines, geother- 

al energy and thermal energy storage. 

. Conclusions 

Unlike other well-known thermophysical properties such as 

hermal conductivity, heat capacity and thermal diffusivity, there is 

uch lesser work available on thermal effusivity. While the com- 

on understanding of thermal effusivity is on the basis of ther- 

al contact between two semi-infinite bodies, the present work 

xtends this to finite-sized bodies using multilayer diffusion anal- 

sis. Results presented here indicate that under certain conditions, 

he interfacial heat flux remains largely a function only of ther- 

al effusivity and not any other property, similar to semi-infinite 

heory. The deviation mainly occurs in case of high thermal dif- 

usivity/effusivity materials, at relatively large times and for small 

hicknesses. This insight may help design practical methods to 

easure thermal properties and to estimate the error involved in 

uch measurements. Theoretical analysis presented in this work 

nhances the understanding of a practically important, but rela- 

ively less studied thermophysical property. Curves showing the 

inimum thickness needed for the semi-infinite assumption to be 

alid within a certain tolerance may be useful design tools for 

ractical problems. These results may find applications in thermal 

roperty measurement techniques, as well as in a variety of engi- 

eering problems where thermal effusivity plays a key role. 
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