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A B S T R A C T   

Thermal management of multilayer microelectronic devices such as three-dimensional integrated circuits re-
mains an important technological challenge. In such systems, inter-layer thermal contact resistance may vary 
spatially due to spatial variation in bond pad density and size. However, past theoretical heat transfer models 
mostly assume perfect thermal contact between adjacent layers, or, at most, uniform thermal contact resistance. 
This work presents a theoretical model to determine the steady state temperature distribution in a general M- 
layer structure with spatial variation in thermal contact resistance between adjacent layers. An infinite series 
solution is derived, for which, once truncated to a finite number of terms, the coefficients are determined from 
algebraic equations derived from the given spatially varying thermal contact resistances. Results for the special 
case of a two-layer body are presented. It is shown that the degree of alignment between heat flux and thermal 
contact resistance distributions plays a key role in determining the overall temperature distribution. Compared to 
numerical simulations, the analytical technique offers more efficient computation, and a better fundamental 
understanding of the problem. This work contributes towards improved thermal design tools for multilayer 
semiconductor devices. The theoretical technique developed here may find applications in other heat transfer 
problems as well.   

1. Introduction 

Heat removal from semiconductor devices and systems continues to 
remain a key technological challenge that often limits performance and 
reliability [1,2]. Heat generated during the operation of a semi-
conductor device must be efficiently removed in order to minimize chip 
temperature rise. A variety of thermal management techniques have 
been used, ranging from passive cooling for low power chips [3], to air 
cooling aided by heat sinks for medium power chips [4] and advanced 
techniques such as liquid [5] and two-phase cooling [1] for high-power 
chips. 

The thermal management challenge in semiconductor devices has 
been exacerbated by recent advances in heterogeneous integration in 
chip and package level architecture [2,6,7]. For example, the bonding of 
multiple dies to produce three-dimensional integrated circuits (3D ICs) 
offers several important electrical benefits [8], contributing towards 
continuation of Moore's law [9], but also leads to significant thermal 
contact resistance between dies [10,11], which may increase total 
temperature rise in the chip [12]. The use of dis-similar materials in 
different dies (heterogeneous integration, such as memory-on-logic 

chips) or within a single die (due to the use of through‑silicon vias 
(TSVs)) also presents thermal management challenges. 

In this context, one specific problem of interest is that of interfacial 
thermal contact resistance between adjacent layers in a multi-die stack. 
Typically, adjacent layers are bonded to each other by depositing metal 
pads on the mating surfaces. These pads, usually made of Copper, Tin or 
similar metals are then aligned and pressed on to each other at high 
temperature and pressure to form a metal-to-metal bond [13–15]. Such a 
bond provides mechanical integration and electrical interconnection. 
The region surrounding the bond pads may be filled with a low thermal 
conductivity epoxy, or may simply remain unfilled. In addition, such 
metal-to-metal bonding often results in the formation of low thermal 
conductivity eutectics [14]. These factors may all contribute towards 
significant interfacial thermal contact resistance between adjacent die. 
Past papers have measured this thermal contact resistance [10,11,16], 
although measured values are averages over the entire bonded surface, 
and spatial variation in thermal contact resistance has not been char-
acterized. Such spatial variation may arise from variation in the number 
and size of metal pads from one part of the interface to the other, in 
order to cater to inter-die electrical interconnection requirements in 
different blocks. For example, some regions may contain a large number 

* Corresponding author. 
E-mail address: jaina@uta.edu (A. Jain).  

Contents lists available at ScienceDirect 

International Communications in Heat and Mass Transfer 

journal homepage: www.elsevier.com/locate/ichmt 

https://doi.org/10.1016/j.icheatmasstransfer.2022.106482    

mailto:jaina@uta.edu
www.sciencedirect.com/science/journal/07351933
https://www.elsevier.com/locate/ichmt
https://doi.org/10.1016/j.icheatmasstransfer.2022.106482
https://doi.org/10.1016/j.icheatmasstransfer.2022.106482
https://doi.org/10.1016/j.icheatmasstransfer.2022.106482
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icheatmasstransfer.2022.106482&domain=pdf


International Communications in Heat and Mass Transfer 140 (2023) 106482

2

of bond pads and/or bond pads of larger size, depending on TSV size and 
current requirements, and therefore may have lower thermal contact 
resistance locally. Such variation in interfacial thermal contact resis-
tance is clearly important to account for in thermal management design, 
since, for example, heat will travel more easily through regions with low 
interfacial thermal contact resistance, and may be heavily impeded 
where interfacial thermal contact resistance is high, leading to thermal 
gradients within the chips, and possibly larger peak temperature rise. 

Unfortunately, thermal models for heat transfer in 3D ICs account 
for, at most, a uniform thermal contact resistance [12,17,18]. Devel-
oping more sophisticated heat transfer models for a multidie stack with 
spatially-varying thermal contact resistance between layers may not 
only help understand the fundamental nature of this problem, but may 
also help in experimental design, such as in thermally optimal placement 
and sizing of TSVs and/or inter-die bond pads [19,20]. Experimental 
measurements are often limited by costs and complexity. Theoretical 
models can help evaluate multiple designs even before manufacturing, 
and thus, maximize the benefit of thermal test vehicles. 

Theoretical heat transfer modeling in semiconductor chips often in-
volves developing exact, closed-form solutions to differential equations 
that govern the temperature field in the chip based on the principle of 
energy conservation [12,17,18]. Theoretical analysis offers several ad-
vantages and a few limitations compared to numerical simulations, as 
summarized in Table 1. Such closed-form solutions have been derived 
for a wide variety of problems in multilayer problems, including for 
thermal conduction in a multi-die chip stack with constant [18] or 
spatially varying [21] convective heat transfer coefficient, stacks of 
unequally sized die [22], etc. Even when such models account for inter- 
die thermal contact resistance, they do so only as a uniform quantity 
over the entire die surface. The introduction of a spatially-dependent 
contact resistance makes it difficult to solve this problem using stan-
dard methods such as separation of variables, because when the contact 
resistance is a function of space, explicit expressions for the coefficients 

can no longer be determined using the principle of orthogonality. There 
is a lack of analytical methods in the literature to account for spatial 
variation in inter-die thermal contact resistance, which, as summarized 
above, may play an important role in thermal management of multilayer 
chip stacks. While analytical methods to account for spatial variation in 
convective heat transfer coefficient have been applied in the past for 
analyzing heat transfer in fins [23], cylinders [24], as well as for 
multilayer bodies [21], there does not appear to be much literature on 
modeling of spatial variation in thermal contact resistance in semi-
conductor chips. 

This work presents theoretical analysis of the problem of thermal 
conduction in a multi-die chip stack with spatial variation in interfacial 
thermal contact resistance between layers. It is shown that an 
eigenfunction-based series solution for this problem may be obtained, 
and coefficients occurring in the series may be determined to account for 
the various boundary and interface conditions. Specifically, a system of 
linear algebraic equations for the unknown coefficients may be derived 
in order to account for the spatially varying thermal contact resistance. 
A general M-layer problem is first solved, followed by illustration of a 
specific two-layer problem. The resulting closed-form solution for the 
temperature distribution is shown to agree well with numerical simu-
lations, and is used to develop a fundamental understanding of the na-
ture of thermal transport in this problem. The solution is used for 
analyzing practical problems in semiconductor thermal management. 

The next section defines the problem considered in this work, and 
then outlines a theoretical solution for the problem. Section 3 discusses 
key results based on this theoretical model. Concluding remarks, 
including limitations of the present work and possible future work are 
given in Section 4. 

2. Mathematical modeling 

2.1. Description of the problem 

Consider the problem of steady-state thermal conduction in an M- 
layer geometry as shown in Fig. 1(a). Each layer has a given thermal 
conductivity, km, assumed to be constant and uniform for each layer, m 
= 1,2,.. M. For simplicity, the geometry is taken to be two-dimensional, 
although extension to three-dimensional geometry is quite straightfor-
ward. The sidewalls are assumed to be adiabatic, as is commonly the 
case due to the thin nature of semiconductor devices [18]. As shown in 
Fig. 1(a), the width of the geometry is w, and thickness of the mth layer is 
zm-zm-1. Total thickness of the multilayer body is zM. As is commonly the 
case with semiconductor devices, a general convective heat transfer 
boundary condition, characterized by a constant convective heat 
transfer coefficient h is assumed on the bottom surface. On the top 
surface, a spatially varying heat flux q(y) is assumed in order to model 

Nomenclature 

Bi Biot number, Bi = hzM
kM 

h convective heat transfer coefficient (Wm− 2 K− 1) 
k thermal conductivity (Wm− 1 K− 1) 
k̄ non-dimensional thermal conductivity, k̄m = km

kM 

M number of layers 
N number of eigenvalues 
q′ ′ heat flux (Wm− 2) 
R spatially varying thermal contact resistance (Km2W− 1) 
T temperature (K) 
w width of the body in the y direction (m) 
ḡ non-dimensional thermal contact resistance, ḡm(η) =

Rm(y)kM
zM 

q̄ non-dimensional heat flux, q̄(η) =
q′ ′ (y)zM

kM(Tref − Tamb)

w̄ non-dimensional width of the body in the y direction, w̄ =
w
zM 

y, z spatial coordinates (m) 
η, ξ non-dimensional spatial coordinates, η =

y
zM
; ξ = z

zM 

γ non-dimensional interface location, γm = zm
zM 

θ non-dimensional temperature, θm = Tm − Tamb
Tref − Tamb 

λ non-dimensional eigenvalue 

Subscripts 
amb ambient 
m layer number 
M total number of layers 
ref reference  

Table 1 
Comparison of relative advantages and disadvantages of theoretical thermal 
conduction analysis and numerical simulations.   

Theoretical analysis Numerical simulations 

Advantages  • May offer exact solution.  
• May compute faster.  

• May be easier to set up.  
• May be able to account 

for several secondary 
effects. 

Disadvantages  • May be more difficult to derive.  
• May not easily be able to account 

for secondary effects such as 
temperature-dependent 
properties.  

• May incur greater 
error.  

• May be more time 
consuming.  
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spatial variation in heat generation in semiconductor devices due to 
distribution of heat loads in various functional blocks on the chip. A heat 
flux boundary condition is appropriate for modeling this phenomenon 
because heat generated in the functional blocks enters the geometry 
under consideration. Finally, a spatially varying thermal contact resis-
tance Rm(y) is assumed at the interface between the mth and (m + 1)th 

layers (m = 1,2,..M-1). These contact resistances, in general, depend on 
the nature of the individual interfaces, and need not be equal to each 
other. Assuming all properties are independent of temperature, the in-
terest is in determining the steady-state temperature distribution, and, 
in particular, the peak temperature rise. 

The general M-layer problem is considered first, followed by dis-
cussion of the special case of a two-layer body containing a single 
interface. Based on the problem description and assumptions discussed 
above, the next sub-section defines the problem mathematically. Non- 
dimensionalization is then carried out, followed by an outline of the 
solution procedure. 

2.2. Problem definition and non-dimensionalization 

Based on the problem description above, the steady-state tempera-
ture rise in the M-die stack, Tm(y,z) is governed by the following energy 
conservation equation: 

∂2Tm

∂y2 +
∂2Tm

∂z2 = 0 (zm− 1 < z < zm; 0 < y < w) (1)  

for m = 1,2..M. 
Associated boundary conditions in the z direction are 

− k1
∂T1

∂z
= q''(y) (z = 0) (2)  

and 

− kM
∂TM

∂z
+ h(TM − Tamb) = 0 (z = zM) (3) 

In addition, heat flux must be conserved at each interface, i.e., 

− km
∂Tm

∂z
= − km+1

∂Tm+1

∂z
(z = zm) (4)  

for m = 1,2..M-1. 
The following equation may be written to model the spatially- 

varying thermal contact resistance at each interface. 

Tm = Tm+1 − km
∂Tm

∂z
Rm(y) (z = zm) (5)  

for m = 1,2..M-1. 
Here, Rm(y) is the spatially varying thermal contact resistance at the 

mth interface. Note that the thermal contact resistance is defined as the 
ratio of temperature difference and heat flux across the interface 
[25,26]. Eq. (5) expresses this in a spatially varying form. The larger the 
thermal contact resistance, for example, due to imperfect contact, the 

larger is the temperature difference. In the ideal scenario of perfect 
contact, the thermal contact resistance is zero, and, therefore, there is no 
temperature jump across the interface. 

In the y direction, adiabatic conditions are assumed along the side 
walls, as is commonly assumed for semiconductor chips [12,17,18]. 

∂Tm

∂y
= 0 (y = 0,w) (6)  

for m=1,2,..M. 
Eqs. (1)–(6)define the problem of interest here. In order to generalize 

the results from this work, non-dimensionalization is first carried out 
based on the following variables: 

θm =
Tm − Tamb

Tref − Tamb
; ξ =

z
zM

, η =
y

zM
, γm =

zm

zM
; w̄ =

w
zM

; k̄m =
km

kM
;Bi =

hzM

kM
(7)  

where Tref (∕=Tamb) is a reference temperature. 
Inserting the non-dimensional variables in eqs. (1)–(6) results in the 

following set of non-dimensional equations, boundary conditions and 
interface conditions. 

∂2θm

∂η2 +
∂2θm

∂ξ2 = 0 (γm− 1 < ξ < γm; 0 < η < w̄) (8)  

− k̄1
∂θ1

∂ξ
= q̄(η) (ξ = 0) (9)  

k̄M
∂θM

∂ξ
+ Bi⋅θM = 0 (ξ = 1) (10)  

k̄m
∂θm

∂ξ
= k̄m+1

∂θm+1

∂ξ
(ξ = γm) (11)  

θm = θm+1 − k̄m
∂θm

∂ξ
ḡm(η) (ξ = γm) (12)  

∂θm

∂η = 0 (η = 0, w̄) (13)  

where q̄(η) = q′ ′(y)zM/
(
kM
(
Tref − Tamb

) )
and ḡm(η) = Rm(y)kM/zM are 

the non-dimensional heat flux at the bottom face and non-dimensional 
thermal contact resistance at the mth interface, respectively. Both are, 
in general, functions of η. While the spatial dependence of the heat flux 
can be easily accounted for using the principle of orthogonality of 
eigenfunctions, modeling the spatial dependence of the thermal contact 
resistance is not straightforward, especially due to the large number of 
interfaces. An analytical solution for this problem is presented in the 
next section. 

2.3. Analytical solution of the M-layer problem 

If the contact resistances ḡm were constants, this problem could be 
easily solved using the separation of variables method, including the 

Fig. 1. Schematic of the (a) M-layer and (b) two-layer geometry representative of a multilayer semiconductor chip with y-dependent thermal contact resistance at 
each interface. 
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determination of the coefficients in the series solution using the prin-
ciple of orthogonality. In the present case, however, this simple tech-
nique is not applicable due to the spatial dependence of ḡm. Here, the 
temperature distributions in the layers are written in an infinite series 
form, which is truncated for computation up to a finite number of terms. 
Then, instead of explicit expressions for the unknown coefficients, as is 
the case in standard separation of variables method, a sufficient number 
of linear algebraic equations based on the boundary and interface con-
ditions are derived, using which, the coefficients can be determined. To 
begin with, a general solution for temperature distribution in the mth 

layer may be written as 

θm(ξ, η) = cm,0(ξ)+
∑∞

n=1
cm,n(ξ)cos(λnη) (14)  

where λn = nπ
w̄ are the eigenvalues. Only cosine terms are considered in 

eq. (14) in order to satisfy the adiabatic boundary conditions at η =
0 and η = w̄. Note that n = 0 is included in eq. (14) because both 
boundary conditions in η direction are adiabatic [27]. 

Now, in order for eq. (14) to satisfy the governing equation given by 
eq. (1), cm,0 and cm,n must satisfy c′′m,0 = 0 and c′′m,n = − λ2

ncm,n(n = 1,… 
,∞). Therefore, one may write 

cm,0 = Am,0 +Bm,0ξ (15)  

cm,n = Am,ncosh(λnξ)+Bm,nsinh(λnξ) (16)  

where, for each layer, Am,0, Bm,0, Am,n and Bm,n are all unknown co-
efficients to be determined in order to complete the solution. In addition, 
while in principle, the solution is an infinite series, in practice, a suffi-
ciently large but finite number of terms must be considered for 
computation. Denoting the number of terms considered by N, the total 
number of unknown coefficients to be determined in order to complete 
the solution is given by 2(N + 1)M (Am,0, Am,1, Am,2, Am,3,.. Am,N and 
Bm,0, Bm,1, Bm,2, Bm,3,.. Bm,N for each layer 1,2.3…M). These coefficients 
are determined through derivation of 2(N + 1)M linear algebraic 
equations in these unknowns using the boundary and interface 
conditions. 

To begin with, the use of the heat flux boundary condition at ξ = 0, 

eq. (9) results in 

k1

(

B1,0 +
∑N

n=1
λnB1,ncos(λnη)

)

= − q̄(η) (17)  

from where, based on Fourier series expansion of q̄(η), one may write 

B1,0 = −
1

k̄1w̄

∫w̄

0

q̄(η*)dη* (18)  

B1,n = −
2

k̄1w̄λn

∫w̄

0

q̄(η*)cos(λnη*)dη* (19)  

which are a total of (N + 1) equations. Further, from the convective 
boundary condition at ξ = 1 given by eq. (10), one may write 

BM,0 +
∑N

n=1
λn
(
AM,nsinh(λn) + BM,ncosh(λn)

)
cos(λnη) + Bi

[

AM,0 + BM,0

+
∑N

n=1

(
AM,ncosh(λn) + BM,nsinh(λn)

)
cos(λnη)

]

= 0
(20) 

A term-by-term comparison results in the following (N + 1) 
equations 

(1+Bi)BM,0 +BiAM,0 = 0 (21)  

AM,n(λnsinh(λn) + Bicosh(λn) ) + BM,n(λncosh(λn) + Bisinh(λn) ) = 0 (22) 

In addition to the 2(N + 1) equations derived above, the interface 
conditions may be used to derive the additional equations needed to 
complete the set of 2(N + 1)M equations. Consider the mth interface 
between mth and (m + 1)th layers (m = 1,2..M-1). Based on heat flux 
conservation at this interface, given by eq. (11), one may write 

k̄m

[

Bm,0 +
∑N

n=1
λn
(
Am,nsinh(λnγm)+Bm,ncosh(λnγm)

)
cos(λnη)

]

= k̄m+1

[

Bm+1,0 +
∑N

n=1
λn
(
Am+1,nsinh(λnγm)+Bm+1,ncosh(λnγm)

)
cos(λnη)

]

(23) 

A term-by-term comparison results in 

k̄mBm,0 = k̄m+1Bm+1,0 (24)  

k̄m
(
Am,nsinh(λnγm) + Bm,ncosh(λnγm)

)
= k̄m+1

(
Am+1,nsinh(λnγm)

+ Bm+1,ncosh(λnγm)
)

(25) 

Note that eqs. (24) and (25) apply at each interface, i.e., m = 1,2..M- 
1, and therefore constitute a total of (N + 1)(M-1) equations. 

Finally, the interface conditions involving the spatially varying 
thermal contact resistances are utilized to derive the remaining equa-
tions. Based on eq. (12) at the mth interface, one may write   

Eq. (26) is multiplied by cos(λn′η) for n′ = 0, 1, 2.. N and integrated 
from η = 0 to η = w̄. For n′ = 0, i.e., λ0=0, this results in 

(
Am,0 + Bm,0γm

)
w̄ =

(
Am+1,0 + Bm+1,0γm

)
w̄ − k̄mBm,0

∫w̄

0

ḡm(η*)dη*

−
∑N

n=1
k̄mλn

(
Am,nsinh(λnγm)

+ Bm,ncosh(λnγm)
)
∫w̄

0

ḡm(η*)cos(λnη*)dη* (27)  

and for n′ = 1, 2.. N, one may obtain, based on the principle of 
orthogonality  

Am,0 +Bm,0γm +
∑N

n=1

(
Am,ncosh(λnγm)+Bm,nsinh(λnγm)

)
cos(λnη) = Am+1,0 +Bm+1,0γm +

∑N

n=1

(
Am+1,ncosh(λnγm)+Bm+1,nsinh(λnγm)

)
cos(λnη)

− k̄mḡm(η)
[

Bm,0 +
∑N

n=1
λn
(
Am,nsinh(λnγm)+Bm,ncosh(λnγm)

)
cos(λnη)

] (26)   
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where Nn′ = w̄
2 is the eigenfunction norm. Eqs. (27)–(28) constitute (N +

1) equations per interface, and thus, a total of (M-1)(N + 1) equations. 
Therefore, the set of eqs. (18), (19), (21), (22), (24), (25), (27) and (28) 
together constitute 2(N + 1)M equations, which is the precise number of 
unknown coefficients needed to be determined. Therefore, the set of 
linear algebraic equations represented by these equations can be solved 
to determine a solution for the temperature distributions in each layer 
for a general M-layer problem. While an exact solution for these linear 
equations is unlikely, nevertheless, these equations can be easily solved 
through matrix inversion. 

3. Special case: two-layer body with single interface 

The case of a two-layer body with a single interface is of particular 
interest, since such a geometry appears commonly in semiconductor 
thermal management as well as in other engineering problems. While, in 
principle, the results for this case can be obtained by using M = 2 in 
section 2.3, it is instructive to solve this problem explicitly. 

The two-layer geometry is shown in Fig. 1(b). In this case, there 
exists a single interface at ξ = γ1, along which, the thermal contact 
resistance is denoted by ḡ1(η). The temperature distributions in the two 
layers is given by 

θm(ξη) = Am,0 + Bm,0ξ +
∑∞

n=1

[
Am,ncosh(λnξ) + Bm,nsinh(λnξ)

]
cos(λnη) (29)  

for m=1, 2. Similar to section 2.3, up to n =N eigenvalues are considered 
for this problem. Therefore, a total of 4(N + 1) unknown coefficients 
need to be determined – A1,0, B1,0, A2,0, B2,0 and A1,n, B1,n, A2,n, B2,n for n 
= 1,2..N. These may be determined using boundary and interface con-
ditions associated with this problem. From the boundary condition at ξ 
= 0, one may obtain B1,0 and B1,n, as given by eqs. (18) and (19). 
Further, using the boundary condition at ξ = 1, one may write B2,0 =

p0A2,0 and B2,n = pnA2,n, where 

p0 = −
Bi

1 + Bi
(30)  

pn = −
Bi + λntanh(λn)

λn + Bitanh(λn)
(31) 

Using the heat flux conservation interface condition, one may derive 

A2,0 =
k̄1

p0
B1,0 = −

k̄1

p0w̄

∫w̄

0

q̄(η*)dη* (32)  

A2,n = k̄1
A1,nsinh(λnγ1) + B1,ncosh(λnγ1)

sinh(λnγ1) + pncosh(λnγ1)
(33) 

In eq. (33), B1,n is known already, but A1,n is not known yet. In order 
to determine A1,n as well as A1,0, the interface thermal contact resistance 
equation is used:   

Simply integrating eq. (34) results in 

A1,0w̄+
∑N

n=1
A1,nk̄1λnsinh(λnγ1)

∫w̄

0

ḡ1(η*)cos(λnη*)dη*

=

⎡

⎣

(
k̄1

p0
+(k̄1 − 1)γ1

)

w̄ −

∫w̄

0

k̄1ḡ1(η*)dη*

⎤

⎦B1,0

−
∑N

n=1
B1,nk̄1λncosh(λnγ1)

∫W̄

0

ḡ1(η*)cos(λnη*)dη*

(35) 

In eq. (33), B1,0 and B1,n are already known from eqs. (18) and (19), 
respectively, and, therefore, the right-hand side comprises all known 
quantities, whereas A1,0 and A1,n appearing on the left-hand side are 
unknowns. 

Additionally, eq. (34) is multiplied by cos(λn′η) (n′ = 1, 2.. N) and 
then integrated, resulting in  

(
Am,n′ cosh(λn′ γm)+Bm,n′ sinh(λn′ γm)

)
Nn′ =

(
Am+1,n′ cosh(λn′ γm)+Bm+1,n′ sinh(λn′ γm)

)
Nn′ − k̄mBm,0

∫w̄

0

ḡm(η*)cos(λn′ η*)dη* −
∑N

n=1
k̄mλn

(
Am,nsinh(λnγm)

+Bm,ncosh(λnγm)
)
∫w̄

0

ḡm(η*)cos(λn′ η*)cos(λnη*)dη*

(28)   

A1,0 +B1,0γ1 +
∑N

n=1

(
A1,ncosh(λnγ1)+B1,nsinh(λnγ1)

)
cos(λnη) = A2,0 +B2,0γ1 +

∑N

n=1

(
A2,ncosh(λnγ1)+B2,nsinh(λnγ1)

)
cos(λnη)

− k̄1ḡm(η)
[

B1,0 +
∑N

n=1
λn
(
A1,nsinh(λnγ1)+B1,ncosh(λnγ1)

)
cos(λnη)

] (34)   
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Eq. (36) may be written for each n′ = 1, 2, .. N. Therefore, eqs. (35) 
and (36) constitute (N + 1) equations in (N + 1) unknowns, A1,0 and A1, 

n′. These equations are a set of linear, algebraic equations, which can be 
easily solved using methods such as matrix inversion. In the present 
work, matrix inversion is carried out using LU decomposition. Once A1,0 
and A1,n′ are determined, the values of these and other coefficients fully 
determine the temperature distribution, as given by eq. (29). 

4. Results and discussion 

Given the non-dimensionalization carried out in this work, it is 
important to first estimate the typical values of key parameters per-
taining to this problem. In the context of a multilayer semiconductor 
chip, the magnitudes of non-dimensional thermal contact resistance 
ḡm(η) and non-dimensional heat flux q̄(η) may be estimated as follows: 
Firstly, ḡm(η) =

Rm(y)kM
zM

. Typical thickness of a multilayer chip stack is 
around 1–2 mm, and thermal conductivity is of the order of 100 W/mK. 

Past work has also reported thermal contact resistance in a multilayer 
chip stack to be of the order of 10− 5 Km2/W [10,16]. Based on these 
numbers, the magnitude of ḡm is estimated to be 0.5–1, with greater 
values expected in case of larger thermal contact resistance or a thinner 
stack. Further, in the context of q̄(η), while heat fluxes in a semi-
conductor chip vary widely, a representative estimate of 10 W/cm2 may 
be used. Based on other parameter values described above, and 
assuming Tref -Tamb= 10 K, one may obtain an order of magnitude esti-
mate of q̄ to be around 2. Other parameters of this problem, such as k̄m 
and γm depend on thermal conductivities and thicknesses, respectively, 
of the layers relative to each other. The aspect ratio w̄ depends on the 
specific chip type, but is usually quite large (a typical semiconductor 
chip may be only a few mm thick at most several mm wide). Finally, Bi 
depends on the nature of cooling at the end of the stack, and may vary 
from a very small value representing poor cooling to a very large value 
representing excellent cooling, in which case, the boundary approaches 
isothermal conditions. Parameter values in the typical range based on 
this discussion are used in all subsequent analysis and plots. 

Fig. 2. Effect of number of eigenvalues on temperature distributions: (a) θ as a function of ξ at η = w̄/2 for multiple number of eigenvalues; (b) θ as a function of η at ξ 
=0 for multiple number of eigenvalues. Problem parameters are w̄ = 5, k̄1 = 4, γ1 = 0.5, Bi = 1. The heat flux q̄(η) has a value of 0.2 between η=0.2w̄ and η=0.4w̄, 
and zero elsewhere. Thermal contact resistance ḡ1(η) has a value of 0.5 between η=0.2w̄ and η=0.4w̄, and 0.1 elsewhere. 

Fig. 3. Comparison of present work with numerical simulations: (a) θ as a function of ξ at η = w̄/2, (b) θ as a function of η at ξ = 0. Curves corresponding to the 
present analytical model and a finite-element numerical simulation are presented. Problem parameters are identical to Fig. 2. 

A1,n′

[

− k̄1sinh(λn′ γ1)
cosh(λn′ γ1)+pn′ sinh(λn′ γ1)

pn′ cosh(λn′ γ1)+ sinh(λn′ γ1)
+cosh(λn′ γ1)

]

Nn′ +
∑N

n=1
A1,nk̄1λnsinh(λnγ1)

∫w̄

0

ḡ1(η*)cos(λn′ η*)cos(λnη*)dη*

= − B1,0k̄1

∫w̄

0

ḡ1(η*)cos(λn′ η*)dη* −
∑N

n=1
B1,nk̄1λncosh(λnγ1)

∫w̄

0

ḡ1(η*)cos(λn′ η*)cos(λnη*)dη*+B1,n′

[

cosh(λn′ γ1)
cosh(λn′ γ1)+pn′ sinh(λn′ γ1)

pn′ cosh(λn′ γ1)+ sinh(λn′ γ1)
− sinh(λn′ γ1)

]

Nn′

(36)   
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4.1. Effect of number of eigenvalues 

A key premise behind the method used in this work is to consider 
only the first N terms of the infinite series that represents the tempera-
ture distribution. This enables calculation of the coefficients appearing 
in the first N terms of the series by writing sufficient number of linear 
algebraic equations. It is, therefore, important to examine the impact of 
the number of terms considered on the accuracy of the solution. In 
general, the greater the number of terms considered, the more accurate 
is the solution expected to be, at the cost of increased computational 
time. Some infinite series converge very slowly [28], and, therefore, it is 
important to determine the minimum value of N that offers a desirable 
trade-off between accuracy and computational cost for the present 
problem. 

Towards this goal, Fig. 2 presents the computed temperature distri-
bution as a function of the number of eigenvalues for a representative 
two-layer problem. Problem parameters used in this plot are w̄ = 5, ̄k1 =

4 , γ1 = 0.5 and Bi = 1. In addition, the thermal contact resistance ̄g1 and 
heat flux q̄ have values of 0.5 and 0.2, respectively between η = 0.2w̄ 
and η = 0.4w̄, as shown in the insets of Fig. 2. Outside this range, ḡ1 =

0.1 and q̄ = 0. Fig. 2(a) plots the temperature field across both layers at 
η = w̄/2, while Fig. 2(b) plots the temperature at the top face (ξ = 0) as a 
function of η. In both cases, temperature curves are plotted for several 
values of N. Note the discontinuity in the curves shown in Fig. 2(a), 
which is consistent with the non-zero thermal contact resistance 
assumed here. These results indicate that for this set of parameter 
values, the series solution derived in this work converges quite rapidly. 
There is negligible change in the temperature curve beyond the N=15 

case. Even with only four eigenvalues, the temperature distribution in-
curs only an error of around 4%, which may be acceptable for many 
engineering problems. Note that there is only minor increase in 
computational cost in going from 4 to 15 eigenvalues, since solving a set 
of 15 linear algebraic equations in 15 unknowns is computationally 
quite straightforward. As a result, all subsequent results presented in this 
work utilize 15 eigenvalues. 

4.2. Model verification using numerical simulation 

For increased confidence in the accuracy of the technique used in this 
work, the analytical model is compared with numerical simulations 
carried out in a commercial finite-element analysis software. Mesh in-
dependence of the numerical simulations is verified in advance. The 
values of all problem parameters, including heat flux and thermal con-
tact resistance functions are the same as Fig. 2. For this case, Fig. 3(a) 
and 3(b) plot temperature as a function of ξ at η = w̄/2, and as a function 
of η at ξ = 0, respectively. In both cases, curves corresponding to the 
analytical model and the numerical simulation are both plotted. This 
comparison shows very good agreement between the two, with a worst- 
case deviation of only 3.5% between the two. Both predict, as expected, 
a peak in temperature at the center of the heat flux function (Fig. 3(b)), 
as well as a temperature discontinuity between the two layers due to the 
thermal contact resistance (Fig. 3(a)). 

Note that the analytical technique developed in this work offers 
several key advantages compared to numerical simulations. Firstly, the 
analytical solution offers a much better understanding of the funda-
mental nature of the problem, including identification of key non- 

Fig. 4. Illustrative temperature colorplots for two representative cases: (a) q̄(η) and ḡ1(η) step functions are aligned (q̄(η) = 0.2 between η=0.4w̄ and η=0.6w̄, and 
zero elsewhere, ḡ1(η) = 0.1 between η=0.4w̄ and η=0.6w̄, and 2.0 elsewhere); and (b) q̄(η) and ḡ1(η) step functions are not aligned (q̄(η) is the same as Case A, and 
ḡ1(η) = 0.1 between η=0.2w̄ and η=0.4w̄, and 2.0 elsewhere.) Problem parameters are w̄ = 5, k̄1 = 1.5, Bi = 1, γ1 = 0.5. 

Fig. 5. Effect of contact resistance magni-
tude when q̄(η) and ḡ1(η) step functions are 
aligned (ḡ1(η) has a maximum value of ḡ1,max 

between η=0.4w̄ and η=0.6w̄ and is 0.1 
everywhere else. The heat flux, q̄(η) has a 
value of 0.2 between η=0.4w̄ and η=0.6w̄, 
and zero everywhere else): (a) θ as a function 
of ξ at η = w̄/2 for multiple values of ḡ1,max 

between η=0.4w̄ and η=0.6w̄, (b) θ as a 
function of η at ξ =0 for multiple values of 
ḡ1,max between η=0.4w̄ and η=0.6w̄. Other 
problem parameters are identical to Fig. 2.   

G. Krishnan and A. Jain                                                                                                                                                                                                                      



International Communications in Heat and Mass Transfer 140 (2023) 106482

8

dimensional parameters and their dependence on each other. From a 
practical perspective, computation of the analytical solution is much 
simpler than numerical simulations, since only a few terms in the series 
have been shown in the previous sub-section to result in good accuracy. 
Using the analytical solution, temperature can be computed only at 
desired locations instead of having to solve the entire temperature field 
in a numerical simulation. Further, numerical simulations often require 
proprietary software, and mesh generation can be time consuming. As a 
comparison, the typical time taken for temperature computation using 
the analytical method is found to be less than 2.6 s, compared to over a 
minute for the numerical simulation to converge, without even ac-
counting for the time taken for setting up the geometry and mesh 
generation. 

4.3. Illustrative temperature maps 

Fig. 4 presents temperature maps computed using the analytical 
model for a typical two-layer geometry. Two cases of practical impor-
tance are considered. In both cases, ḡ1 and q̄ are considered to be step 
functions, as is likely to be the case in practical devices. However, (a) 
and (b) consider cases in which the two step functions are either aligned 
with each other or not. In case (a), the ̄q step function is 0.2 between η =

0.4w̄ and η = 0.6w̄, and zero elsewhere, whereas ḡ1 has a low value of 
0.1 between η = 0.4w̄ and η = 0.6w̄ and a high value of 2.0 outside this 
range. In case (b), the low region for ḡ1 lies between η = 0.2w̄ and η =

0.4w̄, resulting in misalignment between ḡ1 and q̄. Such scenarios may 
occur in practical semiconductor devices where the heat-generating 
circuit block is misaligned or aligned with the low thermal resistance 
region at the interface (which could be due to a large number of 
through‑silicon vias in that region). Except k̄1 = 1.5, all other problem 
parameter values considered here are the same as Fig. 2. The tempera-
ture colormap for case (a) presented in Fig. 4(a) clearly shows, as 

anticipated, greater penetration into layer 2 due to alignment of the 
imposed heat flux region with the lower thermal contact resistance re-
gion. In Fig. 4(b), on the other hand, the penetration is less significant 
and shifts to the new position of lower thermal resistance region. In 
other words, the alignment in Fig. 4(a) increases the maximum tem-
perature of layer 2, and reduces the maximum temperature observed in 
layer 1. On the other hand, misalignment of ḡ1 and q̄ increases the 
maximum temperature of layer 1. In practical semiconductor chips, the 
peak temperature is of most interest, as it determines device reliability. 
Therefore, it is desirable to align the high heat-generating regions with 
low thermal contact resistance regions at the interface. 

Note that the temperature colormap for case (a) presented in Fig. 4 
(a) clearly shows a symmetric temperature distribution about η = 0.5w̄, 
which is expected due to symmetry in the problem. On the other hand, 
the temperature distribution in case (b) is no longer symmetric, as 
expected. 

4.4. Effect of contact resistance magnitude 

The impact of magnitude of the thermal contact resistance on tem-
perature distribution is investigated next. With the problem parameters 
as Fig. 2, temperature distribution is plotted for a number of cases with 
different magnitudes of ḡ1, modeled to be a top hat function that is 
aligned to the peak heat flux region. Resulting temperature curves are 
shown in Fig. 5, in which, ḡ1 and q̄ functions are shown as insets. While 
temperature distribution across both layers at the center of the geometry 
(η = 0.5w̄) is presented in Fig. 5(a), temperature distribution on the heat 
flux face (ξ = 0) is shown in Fig. 5(b). Cases corresponding to ḡ1,max =

0.5, 1.0,2.0, 4.0 are presented. Fig. 5(a) shows, as expected, that the 
temperature jump at the interface grows as the value of ̄g1,max increases, 
along with an increase in temperature distribution in the first layer. The 
temperature distribution on the heat flux face, presented in Fig. 5(b), 

Fig. 6. Effect of contact resistance magni-
tude when q̄(η) and ḡ1(η) step functions are 
not aligned (ḡ1(η) has a value of ḡ1,max be-
tween η=0.4w̄ and η=0.6w̄ and is 0.1 
everywhere else. q̄(η) has a value of 0.2 be-
tween η=0.2w̄ and η=0.4w̄, and zero every-
where else): (a) θ as a function of ξ at 
η = w̄/2 for multiple values of ̄g1,max between 
η=0.4w̄ and η=0.6w̄, (b) θ as a function of η 
at ξ = 0 for multiple values of ḡ1,max between 
η=0.4w̄ and η=0.6w̄. Other problem param-
eters are identical to Fig. 2.   

Fig. 7. Effect of gradually reducing ̄g1,max to zero: (a) θ as a function of ξ at η = w̄/2, (b) θ as a function of ̄g1,max at ξ=γ1and η = w̄/2 for layers 1 and 2. The heat flux, 
q̄(η) has a value of 0.2 between η=0.4w̄ and η=0.6w̄, and zero everywhere else. q̄(η) and ḡ1(η) step functions are aligned. Other problem parameters are identical to 
Fig. 2. 
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shows in each case, as expected, that the highest temperature occurs at 
the center of the region of the applied heat flux. Further, the shapes of 
the temperature curves for each case are similar, and there is an increase 
in the peak temperature rise. This is along expected lines, because the 
greater the thermal contact resistance, the large would the temperature 
rise be due to increase in total thermal resistance. 

Fig. 6 presents similar plots, with the key difference that, in this case, 
the heat flux and thermal interface resistance distributions are not 
aligned with each other, similar to Fig. 4(b). Fig. 6(a) shows similar 
increase in temperature discontinuity with increasing ̄g1,max as Fig. 5(a). 
Temperature drop at the interface is lower for Fig. 6(a) compared to 
Fig. 5(a), which is because in Fig. 5(a), the positions of the heat flux and 
maximum thermal contact resistance are aligned with each other, 
resulting in symmetric flow of heat through regions containing lower 
thermal contact resistance, and thereby causing higher temperature 
drop. However, Fig. 6(b) shows that the peak temperature rise in this 

case is no longer much sensitive to ḡ1,max. This demonstrates that 
alignment or misalignment of heat flux distribution and the distribution 
of thermal contact resistance may play a key role in determining the 
peak temperature distribution in the semiconductor chip. A shift in the 
location of the peak temperature rise in Fig. 6(b) compared to Fig. 5(b) 
may also be noted, which is because of the shift in the q̄ distribution. In 
both Figs. 5(b) and 6(b), it can be noticed that the slope of the tem-
perature distribution is zero at η=0 and η=w̄, which is in line with the 
corresponding boundary conditions at those boundaries. 

The impact of ḡ1,max on the resulting temperature distribution is 
further investigated in Fig. 7. Temperature curves are plotted for four 
cases of gradually decreasing ḡ1,max, including the limiting case of 
ḡ1,max = 0, corresponding to zero thermal contact resistance. Fig. 7(a) 
plots temperature as a function of ξ at η=w̄/2, whereas Fig. 7(b) plots the 
temperatures of layers 1 and 2 at the middle of the interface 
(ξ = γ1, η = w̄/2) as a function of ̄g1,max. ̄g1 and q̄ functions are indicated 

Fig. 8. Effect of alignment between q̄(η) and ̄g1(η) step functions: (a) θ as a function of ξ at η = w̄/2 for multiple positions of ̄g1,min, (b) θ as a function of η at ξ = 0 for 
multiple positions of ḡ1,min. Contact resistance has a value of 0.5 everywhere else. q̄(η) = 0.2 between η=0.4w̄ and η=0.6w̄, and zero elsewhere. Other problem 
parameters are identical to Fig. 2. 

Fig. 9. Effect of Bi for two distinct cases: θ as a function of ξ at η = w̄/2 for multiple values of Bi when q̄(η) and ̄g1(η) step functions are (a) aligned; (b) not aligned. In 
case (a), ḡ1(η) = 0.5 between η=0.4w̄ and η=0.6w̄, and 0.1 elsewhere, and in case (b), ḡ1(η) = 0.5 between η=0.2w̄ and η=0.4w̄, and 0.1 elsewhere. In both cases, 
q̄(η) = 0.2 between η=0.4w̄ and η=0.6w̄, and zero elsewhere. Other problem parameters are identical to Fig. 2. 

Fig. 10. Illustrative 2D colorplot of temperature distribution for a three-layer case. q̄(η), ḡ1(η) and ḡ2(η) are step functions as described in the text. Other problem 
parameters are w̄=5, k̄1=4, k̄2=2, γ1=0.25, γ2=0.75, Bi=1. 
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in inset of Fig. 7(a). Fig. 7(a) shows that as ḡ1,max reduces, both tem-
perature magnitudes as well as the temperature discontinuity at the 
interface reduce. This is expected, because the lower the value of ̄g1,max, 
the lower is the interface resistance (responsible for the magnitude of 
interfacial temperature discontinuity) as well as the total thermal 
resistance (responsible to total temperature rise). The limiting case of 
ḡ1,max = 0 corresponds to zero interface resistance, leading to a contin-
uous temperature curve across the interface, as shown in Fig. 7(a). 
Temperatures in the two layers at the middle of the interface, plotted in 
Fig. 7(b) as functions of ḡ1,max show that as the maximum contact 
resistance increases, the temperatures diverge away from each other. 
For the limiting case of ḡ1,max = 0, the two are equal to each other, as 
expected. 

4.5. Effect of location of thermal resistance 

The effect of alignment between step functions of ḡ1 and q̄ is spe-
cifically analyzed through Fig. 8 with all the other problem parameters 
remaining unchanged. To present this Figure in terms of temperature 
distribution along the layered direction at η=w̄/2 and along the η-di-
rection at ξ=0, the imposed heat flux is fixed between 0.4w̄ and 0.6w̄ and 
the position of ̄g1,min is varied. The different positions considered for this 
analysis are 0–0.2w̄, 0.2w̄-0.4w̄, 0.4w̄-0.6w̄ and 0.6w̄-0.8w̄. In Fig. 8(a), 
temperature drop at the interface is the highest for ̄g1,min between 0 and 
0.2w̄, which is along expected lines since the path of least resistance is 
located far away from the imposed heat flux region. As the position of 
ḡ1,min is brought closer to the imposed heat flux region, the temperature 
distribution in layer 1 drops, whereas the temperature distribution in 
layer 2 rises. Evidently, the temperature drop at the interface is the 
lowest when ḡ1,min and the imposed heat flux region are aligned, as ex-
pected. Finally, symmetry can be observed for the cases of 0.2w̄-0.4w̄ 
and 0.6w̄-0.8w̄ ḡ1,min positions. In Fig. 8(b), it can be observed that 
maximum temperature is encountered when ḡ1,min is located far away 
from the imposed heat flux region, as expected. As the position of ̄g1,min is 
moved closer to the imposed heat flux region, the magnitude of 
maximum temperature drops which is a consequence of aligning the 
lower thermal resistance region with the imposed heat flux region. The 
curve corresponding to 0.6w̄-0.8w̄ ̄g1,min position is a mirror image of the 
0.2w̄-0.4w̄ ḡ1,min position curve, as expected from symmetry arguments. 

4.6. Impact of biot number 

The Biot number is another important non-dimensional parameter in 
this problem. The magnitude of Bi governs the extent of cooling at the ξ 
= 1 face. Fig. 9 plots temperature curves along the layered direction at 
η = w̄/2 for two cases – in the first case, plotted in Fig. 9(a), the step 
functions associated with the heat flux and thermal contact resistance 

are centrally aligned (between η = 0.4w̄ and η = 0.6w̄), and in the sec-
ond case (Fig. 9(b)), there is an offset, such that ̄g1,max exists between η =

0.2w̄ and η = 0.4w̄. Other problem parameters are the same as previous 
problems. In both cases, temperature curves are plotted for different 
values of Bi. As expected, both Figures show that an increase in Bi results 
in a reduction in temperature rise, due to more effective convective 
cooling. In both cases, a saturation effect is also seen, wherein, there is 
significant reduction in temperature when Bi increases from a value of 1 
to 2, but the impact is relatively smaller at greater values of Bi, for 
example, between the Bi = 4 and Bi = 8 curves. As expected, the 
magnitude of temperature discontinuity does not change with Bi, which 
is because of its dependence on the nature of the thermal contact 
resistance rather than Bi. Temperature drop at the interface for each case 
in Fig. 9(a) is higher as a result of alignment between the imposed heat 
flux and thermal contact resistance step functions. Movement of ḡ1,max 

away from the imposed heat flux region results in a lower resistance 
path, causing the temperature drop to be lower at the interface in Fig. 9 
(b), similar to the observation made in the previous Figure. 

4.7. Results for three-layer case 

Finally, results for a more complicated, three-layer case are pre-
sented. This case comprises two distinct thermal contact resistance 
functions – ̄g1(η) between layers 1 and 2, and ̄g2(η) between layers 2 and 
3. For w̄=5, ̄k1=4, ̄k2=2, γ1=0.25, γ2=0.75 and Bi = 1, Fig. 10 presents a 
colorplot of the computed temperature distribution, whereas Figs. 11(a) 
and 11(b) plot temperature as a function of η along the two interfaces. 
ḡ1, ̄g2 and ̄q are step functions that are aligned with each other. Similar to 
preceding Figures, q̄ = 0.2 between η = 0.4w̄ and η = 0.6w̄, and zero 
elsewhere. The first thermal interface resistance ̄g1 has a low value of 0.1 
between η = 0.4w̄ and η = 0.6w̄ and a high value of 2.0 elsewhere. ̄g2 has 
a high value of 4.0 between η = 0.4w̄ and η = 0.6w̄. Elsewhere, ̄g2 has a 
value of 0.01 and 0.1 for Figs. 10 and 11, respectively. Fig. 10 clearly 
shows thermal penetration into layer 2 from layer 1 in the region be-
tween η = 0.4w̄ and η = 0.6w̄, which is the region corresponding to 
lower thermal resistance. On the other hand, at the second interface, the 
penetration shifts to other regions of the body. This is attributed to the 
presence of a very high thermal resistance in the same region. Fig. 11(a) 
shows the interfacial temperature distributions for layers 1 and 2 
approach each other between η = 0.4w̄ and η = 0.6w̄, and deviate from 
each other elsewhere, which is consistent with the nature of ḡ1(η). The 
opposite effect can be noticed in Fig. 11(b), in which, there is a relatively 
large interfacial temperature drop between η = 0.4w̄ and η = 0.6w̄ due 
to higher thermal resistance in that region. Elsewhere, the temperature 
curves are quite close to each other, due to lower interface resistance in 
those regions. Curves such as those presented in Figs. 11(a) and 11(b) 
may be useful for understanding the connection between interfacial 
thermal contact resistance distribution due to the design of chip features 

Fig. 11. θ vs η for a three-layer case: (a) at ξ = γ1, (b) at ξ = γ2. q̄(η), ḡ1(η) and ḡ2(η) are step functions as described in the text. Other problem parameters are w̄=5, 
k̄1=4, k̄2=2, γ1=0.25, γ2=0.75, Bi=1. 
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such as TSVs and bond pads with the resulting temperature distribution. 

5. Conclusions 

The key contribution of the analytical model presented in this work is 
the capability to account for spatially-varying thermal contact resistance 
distributions at multiple interfaces in a multi-layer semiconductor chip. 
This problem can not be solved with standard analytical tools, and the 
technique utilized here generalizes much of past work, which only 
modeled a constant thermal contact resistance. The analytical model can 
be computed much faster than numerical simulations, and also offers a 
better fundamental understanding of the heat transfer problem. Spatial 
variation in thermal contact resistance may arise due to practical fea-
tures in the chip architecture, as discussed in prior sections, and, 
therefore, the present work may be of much practical relevance. 

While presented as a two-dimensional problem, extension to a three- 
dimensional problem is quite straightforward. In such a case, both di-
rections normal to the thickness direction will contribute one set of ei-
genvalues each, and the temperature distribution will be given by a 
double summation. The problem will involve a greater number of un-
known coefficients, but these can continue to be determined using the 
technique described here. 

This work derives an analytical solution for the steady state problem, 
which can not be directly used for analyzing transient problems. Spe-
cifically, transient thermal response to changes in the heat load can not 
be modeled using this technique. While steady state analysis is often 
sufficient for thermal design of semiconductor chips, this is identified as 
a key limitation of the present work. Note that transient problems can be 
solved by Laplace transformation followed by solution of the problem in 
Laplace domain similar to the technique described here. Further, the 
solution derived here may incur error when considering problems with 
very large temperature rise due to assumption of constant thermal 
properties. This is usually not the case for semiconductor thermal 
management. 

While discussed in the context of semiconductor thermal manage-
ment, multilayer heat transfer is relevant to several other engineering 
applications as well. It is expected that the theoretical technique pre-
sented here may be of relevance in such applications involving spatially 
varying thermal contact resistances. 
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