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a b s t r a c t 

Theoretical modeling of solid-liquid phase change processes is of much interest in energy storage and 

thermal management. While most theoretical phase change models assume that the phase change ma- 

terial (PCM) is in direct contact with the thermal source/sink, in most practical scenarios, the two are 

separated by a thick wall, which, in some cases, may comprise multiple heterogeneous layers. Account- 

ing for thermal conduction through the multi-layer wall is important to ensure accuracy of the predicted 

phase change characteristics. This paper presents theoretical analysis of phase change in a system com- 

prising a PCM and a multi-layer Cartesian wall using the eigenfunction expansion method and analysis 

of multi-layer thermal conduction. Thermal contact resistance between wall layers, and between the wall 

and PCM are accounted for. The predicted phase change front propagation is shown to agree well with 

past work for special case of a homogeneous wall, as well as with numerical simulations. Two distinct 

timescales in the solution, related to diffusion through the wall and phase change propagation in the 

PCM are identified. The impact of the imposed temperature, wall thermal diffusivity and thickness are 

presented in non-dimensional forms. Practical problems related to design of a PCM wall for energy stor- 

age are solved, showing two very different characteristics of stainless steel and polypropylene walls, as 

well as the impact of wall thickness on phase change propagation. The results presented here improve 

the fundamental understanding of phase change heat transfer processes, and are particularly relevant 

for relatively thick, thermally insulating walls over relatively short time periods, for which a resistance 

approximation for the wall is not accurate. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat transfer during solid-liquid phase change has been used 

xtensively for thermal management and energy storage by taking 

dvantage of the large latent heat of phase change of materials. 

rominent engineering processes and systems where phase change 

eat transfer plays a key role include thermal management of mi- 

roelectronics [1] , solar energy storage [2] , additive manufacturing 

3] , food preservation [4] , and metal casting [5] . The location of

he solid-liquid interface in phase change heat transfer problems 

hanges with time, resulting in significant mathematical complex- 

ty in solving such problems [ 6 , 7 ]. 

A considerable amount of research has been devoted for devel- 

ping mathematical models for phase change heat transfer [ 8 , 9 ]. 

etermining the location of the phase change front as a function 

f time is usually of primary interest. However, unlike problems 
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ithout phase change, exact solutions of phase change problems 

nly exist for a limited number of simplified problems [6] , such as 

ne-dimensional, semi-infinite phase change problems with con- 

tant temperature boundary condition, commonly referred to as 

he Stefan problem, for which, the phase change interface loca- 

ion is proportional to 
√ 

αt [ 10 , 11 ]. A wide variety of approxi-

ate analytical and numerical techniques have been developed for 

ther, more complicated phase change problems. Quasi-stationary 

echnique [6] , integral method [12] , perturbation method [13] and 

ariable eigenvalue technique [14] are among the most commonly 

sed approximate analytical methods. Such methods have been 

sed to solve problems that present complications such as time- 

ependent boundary conditions [ 13 , 15 ], variable thermal proper- 

ies [ 16 , 17 ], advection [18] , steady-periodic regime [ 19 , 20 ], multiple

hase change interfaces [21] and inverse heat transfer problems 

22] . Several numerical techniques such as the enthalpy method 

23] , fixed and variable-grid methods [24] , and the front-fixing 

ethod [25] have been developed and are used routinely to solve 

omplicated phase change problems. 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123330
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2022.123330&domain=pdf
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Nomenclature 

C heat capacity (Jkg −1 K 

−1 ) 

L latent heat of phase change (Jkg −1 ) 

k thermal conductivity (Wm 

−1 K 

−1 ) 

M total number of layers 

R thermal contact resistance, (Km 

2 W 

−1 ) 

R̄ non-dimensional thermal contact resistance, R̄ m 

= 

k L R m 
x M 

Ste Stefan number, Ste = C L ( T 0 − T f ) / L 

T temperature (K) 

x spatial coordinate (m) 

t time (s) 

α thermal diffusivity (m 

2 s −1 ) 

ᾱm 

ratio of thermal diffusivities, ᾱm 

= 

αm 
αL 

k̄ m 

ratio of thermal conductivities, k̄ m 

= 

k m 
k L 

τ non-dimensional time, τ = 

αL t 

x 2 m 

θ non-dimensional temperature, θi = 

T i −T m 
T re f −T m 

, 

( i = L,1,2,3..M ) 

ξ non-dimensional spatial coordinate, ξ = 

x 
x m 

λ non-dimensional eigenvalue 

γ non-dimensional interface location, γm 

= 

x m 
x M 

Subscripts 

f phase change temperature 

in initial temperature 

L liquid phase 

LS phase change front 

m layer number 

0 imposed temperature 

In most of the literature on phase change heat transfer, the 

hase change material (PCM) is assumed to be in direct contact 

ith the heat source/sink. However, in practical scenarios, the PCM 

s usually enclosed in a thick-walled container (see, for example, 

ig. 1 (a)). For example, it is common for the PCM to be embed-

ed within several cm thick concrete/brick wall [26] for building 

hermal management problems, or within an annular tube in flow 

roblems [27] . Heat must first diffuse through the wall in order 

o cause phase change in the PCM. The wall itself may be single- 

r multi-layered. Depending on whether the goal is to maximize 
ig. 1. Schematic geometry of the problem considered here: An M -layer non-melting w

eated up with a temperature boundary condition at the top. Heat diffusion through th

hange front. Distinct thermal properties of the layers, as well as thermal contact resistan

2

hase change of the PCM, or to insulate the PCM from the external 

ource/sink, the thermal resistance/capacitance offered by the wall 

ust be minimized or maximized, respectively. In some cases, the 

all itself may be made of the same material as the PCM. A com- 

on example is in the freezing of a lake in winter, wherein any ice 

ormed floats to the top and acts as an insulating wall to prevent 

urther melting. An equivalent mass transfer problem of relevance 

s the growth of a passivation layer on a substrate that already has 

 finite passivation layer due to an initial reaction, or the combus- 

ion of a solid fuel particle that already has an ash layer surround- 

ng the particle. In such cases, reactants must diffuse through a 

assive layer in order to reach the chemical reaction front. In each 

f these examples, it is important to develop analytical methods 

hat accurately account for the effect of the wall, which can poten- 

ially be multi-layered, on the phase change process. 

A number of papers have analyzed such phase change prob- 

ems in the presence of a wall. The simplest approach is to rep- 

esent each layer by a combination of resistance and capacitance 

RC), which essentially neglects the temperature field within each 

ayer [26] . In this work, the energy storage performance of a vari- 

ty of PCM-embedded cementitious composites has been summa- 

ized. A lumped RC model has been used to solve a phase change 

roblem in a multi-layer wall in a building [28] . Good agreement 

etween RC modeling and computational fluid dynamics simula- 

ions was shown for specific cases. A similar model for concrete 

rick walls with embedded PCMs has also been proposed, based on 

hich, the solar energy storage capability of a three-layered PCM 

all in realistic conditions was predicted [29] . Such lumped mod- 

ls rely heavily on parameter estimation, and may lose accuracy 

hen sensible energy storage within the non-PCM wall wall can- 

ot be neglected, for example, when the wall is relatively thick. 

umerical computational techniques have also been used to solve 

ulti-layer heat transfer problems involving phase change. For ex- 

mple, an explicit finite difference method based on the enthalpy 

ormulation has been used to solve a multi-layer pipeline problem 

ith insulation and an intermediate PCM layer for long-distance 

ubsea pipeline systems [27] . Numerical simulation has been used 

o investigate the performance of phase change materials in thick- 

alled triplex-tube and shell-and-tube energy storage units [30] . 

n implicit finite difference scheme has been used to solve a tran- 

ient heat transfer problem involving a PCM and a multilayer wall 

31] . Enthalpy-based numerical simulation has been used to solve 

roblems involving multi-layer roofs and walls containing PCM 

 32 , 33 ]. In each of the papers cited above, the impact of mate-
all is located above a semi-infinite phase change material. The composite body is 

e M -layer wall and into the PCM results in melting and propagation of the phase 

ce between layers are considered. 
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ial properties and other problem parameters on phase change and 

emperature rise has been predicted using numerical simulations. 

hile numerical models may be easy to implement, they are often 

omputationally expensive and do not offer insights into the fun- 

amental nature of the problem, such as the role of various non- 

imensional numbers. 

In contrast with the lumped models and numerical simulations 

escribed above, there is a relative lack of work on analytical mod- 

ling of phase change in a multi-layer body, such as PCM enclosed 

n a multilayered thick-walled container. The limited work avail- 

ble in this direction focuses on a single-layered wall [ 34 , 35 ]. The

nteraction of phase change process with diffusion in a multi-layer 

ody makes this problem quite formidable. Such analytical models 

ay be of much interest for developing a fundamental understand- 

ng of the problem and for parametric analysis. With suitable com- 

utational optimization, analytical solutions may compute faster 

han numerical simulations and without the need for proprietary 

oftware tools. 

This paper derives an analytical solution for the problem of 

hase change of a material driven by a temperature boundary con- 

ition imposed across a multi-layer wall ( Fig. 1 ). Heat transfer 

hrough the wall is accounted for by solving a multi-layer ther- 

al conduction problem through the wall layers and the newly 

ormed phase in the PCM. The resulting temperature distribution 

s used to determine the propagation of the phase change front 

s a function of time. Good agreement with past work for spe- 

ial cases and with numerical simulations is shown. The effect 

f various non-dimensional parameters such as Stefan number, as 

ell as wall properties, such as thermal diffusivity and thickness 

s demonstrated. The analysis of two practical problems involving 

he melting of octadecane surrounded by a wall made of steel or 

olypropylene is solved. The next section defines the problem con- 

idered here, followed by presentation of the solution technique. 

pecial cases are presented in Section 3 . Key aspects of the results 

re also discussed in Section 4 . 

. Problem definition 

Fig. 1 (a) shows a schematic of the problem under consideration. 

ig. 1 (b) presents further details of the geometry considered here, 

hich comprises a semi-infinite PCM separated from a thermal 

ource at constant temperature T 0 by an M -layered heterogeneous 

all that does not undergo phase change. While the problem con- 

idered here involves melting of the PCM, solidification problems 

an be solved similarly. Thermal conductivity and diffusivity of the 

 

th layer are represented by k m 

and αm 

, respectively, for m = 1,2.. M .

imilar properties of the liquid phase of the PCM are denoted by 

 L and αL , respectively. As shown in Fig. 1 , the thickness of the

 

th layer is given by ( x m 

-x m-1 ). Total thickness of the wall is given

y x M 

. A thermal contact resistance R m 

is assumed between the 

 

th and ( m + 1) th layers of the wall, for m = 1,2.. M -1. In addition,

 M 

refers to the thermal contact resistance between layer M of the 

all and the phase change material. These contact resistances can 

e set to zero in order to model perfect thermal contact between 

djacent materials. Latent heat of phase change of the PCM is de- 

oted by L . The initial temperature of the m 

th layer is taken to be

 m,in ( x ), ( m = 1,2…M ), which is assumed to be larger than or equal

o the melting temperature T f , whereas the phase change material 

s assumed to be initially solid at the melting temperature T f . 

When measured from the wall-PCM interface, the initial thick- 

ess of the phase change front, x LS , is zero, since the PCM is ini-

ially all solid. As heat diffuses through the multilayer wall and 

nto the phase change material, the phase change front propagates 

nto the semi-infinite PCM. A primary interest in such problems is 

o predict the phase change front, x as a function of time, and to
LS 

3 
etermine the impact of thermal properties and thicknesses of the 

on-melting wall layers on propagation of the phase change front. 

Several standard assumptions are made for analysis of this 

roblem. Heat transfer is assumed to be one-dimensional and 

riven purely by thermal conduction. Natural convection in the 

iquid PCM, as well as radiative heat transfer are neglected. All 

hermal properties are assumed to be independent of temperature. 

hese assumptions are typically valid when the temperature dif- 

erence is relatively small. Under these assumptions, the problem 

onsidered here may be mathematically described by the follow- 

ng governing energy equations: 

∂ 2 T m 

∂x 2 
= 

1 

αm 

∂T m 

∂t 
( x m −1 < x < x m 

( m = 1 , 2 ..M ) ) (1) 

∂ 2 T L 
∂x 2 

= 

1 

αL 

∂T L 
∂t 

( x M 

< x < x M 

+ x LS ( t ) ) (2) 

here T m 

and T L refer to the temperature fields in the m 

th layer 

nd in the liquid phase of phase change material, respectively. 

ince the PCM is initially solid at the melting temperature, and 

ince the initial wall temperature is greater than T f , therefore, no 

eat transfer occurs to/from the solid PCM. Associated boundary 

onditions for this problem are 

 1 = T 0 ( x = 0 ) (3) 

 L = T f ( x = x M 

+ x LS ( t ) ) (4) 

Eq. (3) arises from the constant temperature source imposed on 

op of the wall, whereas Eq. (4) arises from the phase change front 

lways being at the melting temperature. In addition, the following 

nterfacial conditions based on heat flux conservation and interfa- 

ial thermal resistance apply: 

 m 

= T m +1 − k m 

R m 

∂T m 

∂x 
( x = x m 

) (5) 

 m 

∂T m 

∂x 
= k m +1 

∂T m +1 

∂x 
( x = x m 

) (6) 

Eqs. (5) and (6) apply for m = 1,2…M -1, and model thermal con- 

act resistance and flux conservation at the interfaces within the 

all. Similarly, at the wall-PCM interface, one may write 

 M 

= T L − k M 

R M 

∂T M 

∂x 
( x = x M 

) (7) 

 M 

∂T M 

∂x 
= k L 

∂T L 
∂x 

( x = x M 

) (8) 

The initial condition for this problem is given by known tem- 

erature distributions in each layer, i.e., 

 m 

= T m, in ( x ) ( t = 0 ) (9) 

or m = 1,2.. M . Finally, to complete the problem definition, energy 

onservation at the solid-liquid interface in the PCM is considered, 

s follows 

k L 

(
∂T L 
∂x 

)
x = x M + x LS 

= ρL L 

dx LS 

dt 
(10) 

Note that temperature distribution in the semi-infinite solid 

oes not appear in Eq. (10) since the solid is initially at the melt- 

ng temperature and the wall initial temperature is greater than T f , 

nd therefore, no heat transfer to/from the solid occurs. 

Note that setting M = 1 in the problem definition above results 

n the problem of the PCM enclosed by a homogeneous, single- 

ayered wall. Further, specific problems such as insulation of a 
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s

reezing lake by ice on the lake surface, or insulation of a PCM 

y previously-melted PCM [36] can be represented by setting the 

hermal properties of the wall and PCM to be the same. 

Non-dimensionalization of the problem is carried out using 

he following variables: ξ = 

x 
x M 

, τ = 

αL t 

x 2 
M 

, γm 

= 

x m 
x M 

, θm 

= 

T m −T f 
T 0 −T f 

, 

L = 

T L −T f 
T 0 −T f 

, ᾱm 

= αm 

/αL , k̄ m 

= k m 

/k L , R̄ m 

= k L R m 

/x M 

( m = 1,2.. M ),

here the imposed temperature difference T 0 - T f and wall thick- 

ess x M 

are used for non-dimensionalization. The following non- 

imensional partial differential equations are obtained 

∂ 2 θm 

∂ξ 2 
= 

1 

αm 

∂θm 

∂τ
( γm −1 < ξ < γm 

( m = 1 , 2 ..M ) ) (11) 

∂ 2 θL 

∂ξ 2 
= 

∂θL 

∂τ
( 1 < ξ < 1 + ξLS ( τ ) ) (12) 

here ξLS = 

x LS 
x M 

is the non-dimensional location of the phase 

hange front. Also, in Eq. (11) , γ0 = 0 based on the coordinate sys- 

em shown in Fig. 1 (b). 

Associated boundary and interface conditions are 

1 = 1 ( ξ = 0 ) (13) 

 m 

∂θm 

∂ξ
= k m +1 

∂θm +1 

∂ξ
( ξ = γm 

) (14) 

m 

= θm +1 − k m 

R m 

∂θm 

∂ξ
( ξ = γm 

) (15) 

 M 

∂θM 

∂ξ
= 

∂θL 

∂ξ
( ξ = 1 ) (16) 

M 

= θL − k M 

R M 

∂θM 

∂ξ
( ξ = 1 ) (17) 

L = 0 ( ξ = 1 + ξLS ( τ ) ) (18) 

The non-dimensional initial conditions are 

m 

= θm, in ( ξ ) ( τ = 0 ) (19) 

L = 0 ( τ = 0 ) (20) 

here θm,in = 

T m,in −T f 
T 0 −T f 

is the initial non-dimensional temperature 

istribution within the m 

th layer, and may be interpreted as the 

nitial temperature in that layer relative to the melting tempera- 

ure, non-dimensionalized by the temperature boundary condition, 

xpressed similarly. 

The non-dimensional equation for energy conservation at the 

nterface is given by 

1 

Ste 

dξLS 

dτ
= −∂θL 

∂ξ
( ξ = 1 + ξLS ) (21) 

here Ste = 

C L ( T 0 −T f ) 

L is the Stefan number. C L refers to heat capac- 

ty of the liquid PCM. 

The non-dimensional parameters appearing in this problem in- 

lude Ste , which represents the imposed boundary condition, prop- 

rties ᾱm 

and k̄ m 

, layer thicknesses γm 

, interface resistances R̄ m 

nd initial temperatures θm,in . The total wall thickness does not 

ppear explicitly because it has been used as the lengthscale for 

on-dimensionalization. 

The classical, no-wall Stefan problem admits a self-similarity 

ased exact solution [6] . Due to the presence of a length scale 
4 
n the present problem, however, it is unlikely that a self-similar 

olution is also applicable here. Instead, the method of eigenfunc- 

ion expansion is used to seek an approximate analytical solution 

or this problem. Referring to Fig. 1 , at any given time, the tran- 

ient thermal conduction problem in the region above the phase 

hange front (i.e., the multilayer wall and liquid phase of PCM) is 

olved. The resulting temperature distribution is differentiated at 

he location of the phase change front and inserted in the interfa- 

ial energy conservation, Eq. (21) to result in an ordinary differen- 

ial equation that can be easily solved to determine the evolution 

f the phase change front. While this is an approximate solution, 

ince the problem is reduced to one with constant ξLS at each time, 

evertheless, solving the transient thermal conduction problem is 

xpected to be an improvement over the quasi-stationary method 

6] , in which the transient term is completely ignored, and only 

he steady-state component of the solution is used. 

The ( M + 1)-layer transient thermal conduction problem com- 

rising the M -layer wall and liquid portion of the phase change 

aterial is a diffusion-driven multilayer problem with constant 

emperature boundary conditions at the two ends and interfacial 

ontact resistance between adjacent layers. This problem can be 

olved using the theory of multilayer thermal conduction [37] that 

ses separation of variables technique and boundary/interfacial 

onditions to derive a single set of eigenvalues for all layers, fol- 

owed by application of the initial condition and the principle of 

uasi-orthogonality to completely determine the temperature dis- 

ribution in each layer. Since one of the boundary conditions is 

on-homogeneous, however, a substitution is first made to transfer 

he non-homogeneity from the boundary condition to the initial 

ondition, as follows: 

m 

( ξ , τ ) = s m 

( ξ ) + w m 

( ξ , τ ) ( m = 1 , 2 ..M ) (22) 

L ( ξ , τ ) = s L ( ξ ) + w L ( ξ , τ ) (23) 

Here, s m 

(ξ ) and s L (ξ ) are the steady-state components of 

he solution, governed by s ′′ m 

= 0 and s ′′ L = 0 , respectively, along

ith the following boundary and interface conditions: s 1 (0) = 

 ; s L ( 1 + ξLS ) = 0 , s m 

( γm 

) = s m +1 ( γm 

) − k̄ m ̄

R m 

s ′ m 

( γm 

) , k̄ m 

s ′ m 

( γm 

) =
¯
 m +1 s 

′ 
m +1 ( γm 

) , s M 

(1) = s L (1) − k M 

R M 

s ’ M 

(1) , k̄ M 

s ′ M 

(1) = k̄ L s 
′ 
L (1) . It

an be shown that s m 

(ξ ) and s L (ξ ) are given by linear expressions

s follows: 

 m 

( ξ ) = A m 

ξ + B m 

( m = 1 , 2 , ..M ) (24) 

 L ( ξ ) = A L ξ + B L (25) 

here the coefficients A m 

, B m 

, A L , B L are given by 

 L = 

[ 

− 1 

k M 

− R M 

− ξLS + 

M−1 ∑ 

j=1 

[
γ j 

(
1 

k j+1 

− 1 

k j 

)
− R j 

]] −1 

(26) 

 L = −A L ( 1 + ξLS ) (27) 

 m 

= 

A L 

k m 

( m = 1 , 2 , ..M ) (28) 

 m 

=A L 

[ 

− 1 

k M 

−R M 

− ξLS + 

M−1 ∑ 

j= m 

[
γ j 

(
1 

k j+1 

− 1 

k j 

)
− R j 

]] 

( m = 1 , 2 , ..M )

(29)

On the other hand, the w m 

( ξ , τ ) and w L ( ξ , τ ) problems repre-

ent diffusion in a ( M + 1)-layer body with homogeneous boundary 
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t

onditions given by the following 

 1 = 0 ( ξ = 0 ) (30) 

 m 

∂w m 

∂ξ
= k m +1 

∂w m +1 

∂ξ
( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (31) 

 m 

= w m +1 − k m 

R m 

∂w m 

∂ξ
( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (32) 

 M 

∂w M 

∂ξ
= 

∂w L 

∂ξ
( ξ = 1 ) (33) 

 M 

= w L − k M 

R M 

∂w M 

∂ξ
( ξ = 1 ) (34) 

 L = 0 ( ξ = 1 + ξLS ( τ ) ) (35) 

ith non-homogeneous initial conditions given by 

 m 

= θm, in ( ξ ) − s m 

( ξ ) ( τ = 0 ) (36) 

 L = −s L ( ξ ) ( τ = 0 ) (37) 

A solution for w m 

and w L may be obtained by writing 

 separable, eigenfunction-based series expansion of the type 

 m 

( ξ , τ ) = 

∞ ∑ 

n =1 

f m,n (ξ ) g n (τ ) and w L ( ξ , τ ) = 

∞ ∑ 

n =1 

f L,n (ξ ) g n (τ ) as

ollows: 

 m 

( ξ , τ ) = 

∞ ∑ 

n =1 

c n 

[ 

A m,n cos 

( 

λn √ 

ᾱm 

ξ

) 

+ B m,n sin 

( 

λn √ 

ᾱm 

ξ

) ] 

exp 

(
−λ2 

n τ
)

(38) 

 L ( ξ , τ ) = 

∞ ∑ 

n =1 

c n [ A L,n cos ( λn ξ ) + B L,n sin ( λn ξ ) ] exp 

(
−λ2 

n τ
)

(39) 

Here, the diffusivity term 

√ 

ᾱm 

is absorbed within the spatial 

erms instead of the transient term, in order to facilitate satisfying 

he interfacial conditions [37] . 

Eqs. (38) and (39) , when substituted in the boundary and inter- 

ace conditions given by Eqs. (30) –(35) result in 

 1 ,n = 0 (40) 

A m,n cos 

( 

λn γm √ 

ᾱm 

) 

+ B m,n sin 

( 

λn γm √ 

ᾱm 

) 

= A m +1 ,n cos 

( 

λn γm √ 

ᾱm +1 

) 

+ B m +1 ,n sin 

( 

λn γm √ 

ᾱm +1 

) 

− k̄ m ̄

R m 

λn √ 

ᾱm 

×
[ 

−A m,n sin 

( 

λn γm √ 

ᾱm 

) 

+ B m,n cos 

( 

λn γm √ 

ᾱm 

) ] 

(41) 

k M 

p M−1 ,n ( γM−1 ) 
λn √ 

αM 

cos 

(
λn γM−√ 

αM

k M 

p M−1 ,n ( γM−1 ) 
λ√

+ 

tan 

(
λn √ 

αM 

)
+ 

k M √ 

αM 

ta

1 − k M √ 

αM 

tan ( λn ξLS ) tan 

(
√

5 
k̄ m √ 

ᾱm 

[ 

−A m,n sin 

( 

λn γm √ 

ᾱm 

) 

+ B m,n cos 

( 

λn γm √ 

ᾱm 

) ] 

= 

k̄ m +1 √ 

ᾱm +1 

[ 

−A m +1 ,n sin 

( 

λn γm √ 

ᾱm +1 

) 

+ B m +1 ,n cos 

( 

λn γm √ 

ᾱm +1 

) ] 

(42) 

A M,n cos 

( 

λn √ 

αM 

) 

+ B M,n sin 

( 

λn √ 

αM 

) 

= A L,n cos ( λn ) + B L,n sin ( λn ) 

−k M 

R M 

λn √ 

αM 

[ 

−A M,n sin 

( 

λn √ 

αM 

) 

+ B M,n cos 

( 

λn √ 

αM 

) ] 

(43) 

k̄ M √ 

ᾱM 

[ 

−A M,n sin 

( 

λn √ 

ᾱM 

) 

+ B M,n cos 

( 

λn √ 

ᾱM 

) ] 

= −A L,n sin ( λn ) + B L,n cos ( λn ) (44) 

 L,n cos ( λn ( 1 + ξLS ) ) + B L,n sin ( λn ( 1 + ξLS ) ) = 0 (45) 

Since Eqs. (40) –(45) are homogeneous, the determinant of these 

quations must be zero in order to ensure a non-trivial solution. 

his requirement results in an eigenequation for determining λn . 

s shown in Appendix A, the eigenequation is found to be 

k M−1 ˙ p M−1 ,n ( γM−1 ) sin 

(
λn γM−1 √ 

αM 

)
− k M−1 R M−1 ˙ p M−1 ,n ( γM−1 ) 

n 

(
λn γM−1 √ 

αM 

)
+ k M−1 ˙ p M−1 ,n ( γM−1 ) cos 

(
λn γM−1 √ 

αM 

)
n ξLS ) − k M R M λn √ 

αM 

+ 

k M R M λn √ 

αM 

tan 

(
λn √ 

αM 

) = 0 (46) 

Where p m,n and ψ m,n are given by Eqs. (A .7)–(A .10) in 

ppendix A. 

Once the eigenvalues are determined, the unknowns A m,n , B m,n , 

 L,n and B L,n may also be obtained. Due to the redundancy in 

qs. (40) –(45) , one may assume B 1 ,n = 1 and determine the re- 

aining coefficients from Eqs. (40) to (44) . Explicit recursive ex- 

ressions for these coefficients are derived in Appendix B. Finally, 

n order to determine c n , Eqs. (38) and (39) are evaluated at τ = 0 ,

sing the initial conditions given by Eqs. (36) and (37) , followed by 

se of the principle of quasi-orthogonality of multilayer eigenfunc- 

ions. One may obtain 

m,in ( ξ ) − s m 

( ξ ) = 

∞ ∑ 

n =1 

c n 

[ 

A m,n cos 

( 

λn √ 

ᾱm 

ξ

) 

+ B m,n sin 

( 

λn √ 

ᾱm 

ξ

) ]

(47) 

s L ( ξ ) = 

∞ ∑ 

n =1 

c n [ A L,n cos ( λn ξ ) + B m,n sin ( λn ξ ) ] (48) 

Finally, Eqs. (47) and (48) are multiplied 

y k m 
αm 

[ A m,n ’ cos ( 
λ

n ’ √ 

αm 
ξ ) + B m,n ’ sin ( 

λ
n ’ √ 

αm 
ξ )] and 

 A L,n ′ cos ( λn ′ ξ ) + B m,n ′ sin ( λn ′ ξ ) ] , respectively, followed by in- 

egration within the respective layers. The resulting equations are 
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dded, which, based on quasi-orthogonality results in 

 n = 

1 

N n 

[ 

M ∑ 

m =1 

[ 

k m 

αm 

γm ∫ 
γm −1 

[ θm, 0 ( ξ ) − s m 

( ξ ) ] 

[ 

A m,n cos 

( 

λn √ 

αm 

ξ

) 

+ B m

+ 

1+ ξLS ∫ 
1 

− s L ( ξ ) [ A L,n cos ( λn ξ ) + B m,n sin ( λn ξ ) ] dξ

⎤ 

⎦ 

here the norm N n is given by 

 n = 

M ∑ 

m =1 

⎡ 

⎣ 

k m 

αm 

γm ∫ 
γm −1 

[ 

A m,n cos 

( 

λn √ 

αm 

ξ

) 

+ B m,n sin 

( 

λn √ 

αm 

ξ

) ] 2 

dξ

⎤ 

⎦ 

+ 

1+ ξLS ∫ 
1 

[ A L,n cos ( λn ξ ) + B m,n sin ( λn ξ ) ] 
2 
dξ (50) 

This completes the formal solution for the general problem con- 

idered here, comprising an M -layer non-melting wall over a semi- 

nfinite phase change material. Once the temperature distribution 

s determined, the derivative of the liquid temperature distribution 

t the liquid-solid interface, ξ = 1 + ξLS (τ ) can be inserted into 

q. (21) to result in the following ordinary differential equation for 

he phase change front location, ξLS (τ ) 

dξLS 

dτ
= −Ste 

[ 

A L + 

∞ ∑ 

n =1 

λn c n [ −A L,n sin ( λn (1 + ξLS ) ) + B L,n cos ( λn (1

ith ξLS = 0 at τ = 0 . While an analytical solution for Eq. (51) is

nlikely to be obtainable, Eq. (51) provides an explicit expression 

or the derivative of ξLS , and therefore, can be easily integrated nu- 

erically to determine ξLS (τ ) . 

. Special cases 

A special case of a single-layer wall shielding the phase change 

aterial from the temperature boundary condition is of particular 

nterest for applications such as phase change material in a single- 

ayered container. Solutions for the temperature distribution and 

hase change front propagation for this case may be derived by 

imply putting M = 1 in results from Section 2 . This results in 

1 ( ξ , τ ) =1 − ξ

1 + k 1 ξLS + k 1 R 1 

+ 

∞ ∑ 

n =1 

c n sin 

( 

λn √ 

α1 

ξ

) 

exp 

(
−λ2 

n τ
)

(52

L ( ξ , τ ) = 

k 1 ( 1 + ξLS − ξ ) 

1 + k 1 ξLS + k 1 R 1 

+ 

∞ ∑ 

n =1 

c n 
k 1 √ 

α1 

sin ( λn ( ξ − ( 1 + ξLS ) ) ) 

cos ( λn ξLS ) 

cos 

( 

λn √ 

α1 

) 

exp 

(
−λ2 

n τ
)

(53) 

here 

 n = 

1 

N n 

⎡ 

⎣ 

k 1 
α1 

1 ∫ 
0 

[
θ1 , 0 ( ξ ) − 1 + 

ξ

1 + k 1 ξLS + k 1 R 1 

]
sin 

( 

λn √ 

α1 

ξ

) 

dξ + 

1+ ξLS ∫ 
1 

−

nd the norm N n is given by 

 n = 

⎡ 

⎣ 

k 1 
α1 

1 ∫ 
0 

sin 

2 

( 

λn √ 

α1 

ξ

) 

dξ + 

1+ ξLS ∫ 
1 

[ 

k 1 √ 

α1 

sin ( λn ( ξ − ( 1 + ξLS ) )

cos ( λn ξLS ) 
6 
 

( 

λn √ 

αm 

ξ

) ] 

dξ

] 

(49) 

S ) ) ] exp 

(
−λ2 

n τ
)] 

(51) 

 1 ( 1 + ξLS − ξ ) 

+ k 1 ξLS + k 1 R 1 

)
k 1 √ 

α1 

sin ( λn ( ξ − ( 1 + ξLS ) ) ) 

cos ( λn ξLS ) 
cos 

( 

λn √ 

α1 

) 

d ξ

⎤ 

⎦ (54) 

 

( 

λn √ 

α1 

) ] 2 

dξ

⎤ 

⎦ (55) 

nd the eigenvalues are roots of 

√ 

α1 

k 1 
tan ( λn √ 

α1 

) + λn R 1 + 

an (λn ξLS ) = 0 . Note that this eigenequation can be obtained 

y either directly solving a two-layer problem, or by simply 

utting M = 1 in the general eigenequation given by Eq. (46) . 

Subsequently, the differential equation for the phase change 

ropagation front is given by 

dξLS 

dτ
= −Ste 

⎡ 

⎣ 

−k 1 

1 + k 1 ξLS + k 1 R 1 
+ 

∞ ∑ 

n =1 

λn c n 
k 1 √ 

α1 

cos 

(
λn √ 

α1 

)
cos ( λn ξLS ) 

exp 
(
−λ2 

n τ
)⎤ 

⎦ 

(56)

ith ξLS = 0 at τ = 0 . 

A further special case of interest arises for a single-layer wall 

here the thermal properties of the wall and the PCM are the 

ame, so that the wall represents a thickness of phase change ma- 

erial that is already in liquid form prior to t = 0. This may repre-

ent scenarios where some phase change material has remained 

elted from a prior cycle of heat transfer into the phase change 

aterial. Another example for this scenario would be a finite thick- 

ess of pre-existing ice on top of a lake that shields liquid water 

n the lake from solidifying due to a cold ambient. In order to de- 

ive the results for this special case, one may insert ᾱ1 = k̄ 1 = 1 

n Eqs. (52) –(56) . This can be shown to result in a much simpler

olution, in which, the temperature distribution in both pre-melted 

nd newly-melted layers may be written as a combined expression 

L ( ξ , τ ) = 1 − ξ

1 + ξLS 

+ 

∞ ∑ 

n =1 

c n sin ( λn ξ ) exp 

(
−λ2 

n τ
)

(57) 

here 

 n = 

2 

1 + ξLS 

[
1 

∫ 
0 

[
θ1 ,in ( ξ ) − 1 + 

ξ

1 + ξLS 

]
sin ( λn ξ ) dξ

+ 

1+ ξLS ∫ 
1 

(
−1 + 

ξ

1 + ξLS 

)
sin ( λn ξ ) dξ

]
(58) 



M. Parhizi, L. Zhou and A. Jain International Journal of Heat and Mass Transfer 197 (2022) 123330 

Fig. 2. Effect of number of eigenvalues considered in the solution: Phase change propagation front as a function of time for a single-layered wall on top of the PCM for (a) 

zero initial wall temperature, θ1 ,in = 0 . 0 ; (b) non-zero initial wall temperature, θ1 ,in = 1 . 0 . In both cases, curves are plotted for different number of eigenvalues considered. 

Other parameters are k̄ 1 = 0 . 5 ; ᾱ1 = 0 . 5 ; Ste = 0 . 13 ; R̄ 1 = 0 . 
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nd the differential equation for the phase change propagation 

ront is given by 

dξLS 

dτ
= −Ste 

[ 

−1 

1 + ξLS 

+ 

∞ ∑ 

n =1 

λn c n cos ( nπ) exp 

(
−λ2 

n τ
)] 

(59) 

here λn = 

nπ
1+ ξLS 

. 

A final special case of interest is that of the wall being at zero 

emperature initially. For many problems, this is usually a reason- 

ble approximation justified by the relatively large heat needed for 

hase change compared to sensible heating. Results for such a case 

ay be derived by setting θ1 , 0 = 0 in expressions above, both for 

he general M -layer wall ( Section 2 ) and the two-layer wall dis-

ussed above, resulting in some simplification in expressions for 

 n . 

. Results and discussion 

.1. Verification 

Since the analytical solutions presented in Sections 2 and 3 are 

n the form of eigenvalue-based infinite series, it is important to 

etermine the minimum number of eigenvalues needed to be con- 

idered to ensure acceptable accuracy. Note that eigenvalues for 

his problem must be re-computed at each time step as ξLS in- 

reases, which can be computationally expensive. Therefore, it is 

ritical to determine the minimum number of eigenvalues needed 

or desired accuracy. This is particularly helpful for optimization of 

un-time computation of this problem that often needs to be car- 

ied out with limited computational resources. 

For a representative problem with a single-layered wall on top 

f the PCM, Fig. 2 plots the predicted propagation of phase change 

ront with time for different numbers of eigenvalues considered. 

wo cases with zero and non-zero initial temperature of the wall 

re presented in Fig. 2 (a) and 2 (b), respectively. These Figures also 

lot the zero eigenvalue case, which corresponds to the quasista- 

ionary solution that completely ignores transient conduction in 

he wall and liquid PCM. Both plots show that the eigenvalue- 

ased series solution presented in this work differs significantly 

rom the quasi-stationary solution, which does not correctly ac- 

ount for the role of the thick wall in the phase change process. 

hese data also show that, in this case, around seven eigenvalues 

re sufficient for convergence of the predicted phase change prop- 

gation curve. Note that the shapes of converged plots for the zero 
7 
nd non-zero wall initial temperature differ from each other. In the 

ero initial temperature case, the phase change front propagates 

ery slowly at first, due to time taken for heat to diffuse through 

he wall. On the other hand, when the wall itself is at a high initial

emperature (in the case of Fig. 2 (b), equal to the temperature of 

he imposed boundary condition), heat is readily transferred into 

he PCM from the wall, which is why, the phase change front rises 

apidly at first, and then slows down. 

Results from the present work are compared with a past pa- 

er for a special case of a single-layered wall with zero initial 

emperature. Hwang, et al. [34] presented analysis of this problem 

ith zero initial temperature using the perturbation method. This 

ethod expresses the temperature distribution as a power series 

n terms of the Stefan number, based on which, the temperature 

istribution is determined through a term-by-term comparison. For 

omparison with this paper, the present model is computed with 

 = 1 and θ1 ,in = 0 . 0 . A comparison of phase change propagation

s a function of time is presented in Fig. 3 . Three cases of differ-

nt values of thermal contact resistance and three cases of differ- 

nt values of Stefan number are presented in Fig. 3 (a) and 3 (b),

espectively. There is excellent agreement between the perturba- 

ion method based results from Hwang, et al. [34] and the present 

ork. As expected, the rate of phase change propagation increases 

ith decreasing R̄ M 

or increasing Ste . Note that the results from 

wang, et al. are limited to a single-layered wall, with zero ini- 

ial temperature, whereas the present work solves a much more 

eneral problem with an M -layered wall and non-zero initial tem- 

erature in each layer. 

For additional verification of the present work, comparison of 

esults with numerical simulations is also carried out. A finite- 

ifference based numerical simulation technique is used for this 

urpose. A single layer wall in contact with PCM is considered 

ere for validation purposes. The wall and PCM are discretized 

nto a total of 20 0 0 nodes. One node is considered at the wall-

CM interface to apply both heat flux and temperature continuity 

onditions. Heat transfer within the wall is purely conductive and 

s solved using the conventional implicit finite difference method. 

he heat transfer problem within the PCM, on the other hand, in- 

olves phase change and is solved using a variable timestep im- 

licit finite difference method. The timestep in this problem is de- 

ermined iteratively so that the phase change front moves only by 

ne length interval during that time. Comparison between the two 

s presented in Fig. 4 , where the phase change propagation front 

s plotted as a function of time for the one-phase problem with 
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Fig. 3. Comparison with past work [34] : Phase change propagation front as a function of time for the special case of a single-layered wall on top of the PCM for (a) three 

different values of R̄ 1 at Ste = 0 . 02 ; (b) three different values of Ste at R̄ 1 = 1 . 0 . In both cases, results from the present work (curves) are compared with past work based on 

perturbation method [34] (symbols). Other parameters are k̄ 1 = 0 . 833 ; ᾱ1 = 0 . 833 ; θ1 ,in = 0 . 0 . 

Fig. 4. Comparison with numerical simulations: Phase change propagation front as a function of time for a single-layered wall on top of the PCM at two different values of 

Ste over (a) short and (b) long time ranges. Other parameters are k̄ 1 = 0 . 75 ; ᾱ1 = 0 . 75 ; θ1 ,in = 0 . 0 ; R̄ 1 = 0 . 
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 homogeneous wall. Two sets of plots, for short and long time 

anges are presented in Fig. 4 (a) and 4 (b), respectively. In each 

ase, plots are presented for Ste = 0 . 1 and Ste = 0 . 3 . These plots

how excellent agreement between the analytical model and nu- 

erical simulations. As expected, ξLS increases with time, slowly 

t first due to diffusion through the non-melting layer ( Fig. 4 (a)), 

hen more rapidly, and finally somewhat slower due to increas- 

ng thermal resistance of the melted layer ( Fig. 4 (b)). There is very

ood agreement between the analytical model and numerical sim- 

lation throughout both time scales for both values of Ste . The two 

istinct time scales involved in this process are investigated further 

n Section 4.2 . 

Fig. 5 shows results from a representative three-layer wall 

roblem. Plots of the phase change front propagation as a function 

f time and temperature distributions at four different times are 

hown in Fig. 5 (a) and 5 (b), respectively. Problem parameters are 
¯
 1 = 0 . 833 ; ᾱ1 = 0 . 833 ; k̄ 2 = 0 . 4 ; ᾱ2 = 0 . 3 ; k̄ 3 = 0 . 6 ; ᾱ3 = 0 . 8 ;γ1 = 

 . 2 ;γ2 = 0 . 8 ; θ1 ,in = θ2 ,in = θ3 ,in = 0 . 0 ; R̄ 1 = 1 ; R̄ 2 = 2 ; R̄ 3 = 1 ;

te = 0 . 1 . The phase change front starts slowly initially while 

eat diffuses through the multilayer wall, then rises rapidly. 

he temperature distributions exhibit discontinuity at interfaces 

etween layers due to the non-zero thermal contact resistances. 

ropagation of the phase change front with time can also be seen 

n the temperature distribution plots. 
8 
.2. Effect of Ste 

The Stefan number is a key non-dimensional parameter for 

his problem that represents the magnitude of the imposed tem- 

erature boundary condition. In order to understand the ef- 

ect of Ste on the temperature distribution and phase change 

ront propagation process, the temperature distribution at τ = 

0 . 52 is plotted for different values of Ste in Fig. 6 . A three- 

ayered wall with zero initial temperature is considered. Problem 

arameters are k̄ 1 = 0 . 3 ; ᾱ1 = 0 . 4 ; k̄ 2 = 0 . 5 ; ᾱ2 = 0 . 5 ; k̄ 3 = 0 . 6 ; ᾱ3 =
 . 6 ;γ1 = 0 . 2 ;γ2 = 0 . 8 ; θ1 ,in = θ2 ,in = θ3 ,in = 0 . 0 ; R̄ 1 = 0 . 5 ; R̄ 2 = 0 ;

¯
 3 = 0 . 5 . Fig. 6 shows the temperature distribution decaying from 

= 1 at the hot boundary to θ = 0 at the location of the phase

hange front. Discontinuities in the temperature distribution at the 

nterfaces between layer 1 and layer 2, and layer 3 and liquid 

hase are seen, as a result of the non-zero thermal contact resis- 

ance values. In contrast, there is no discontinuity between layers 

 and 3 because R̄ 2 = 0 . Fig. 6 also illustrates the impact of Ste –

s Ste increases, the temperature distribution in each layer goes up 

ue to greater flow of heat. In addition, the phase change front 

lso propagates deeper into the PCM due to the small value of la- 

ent heat relative to sensible heat when Ste is large. 

For further investigation of the impact of Ste , phase change 

ropagation is plotted as a function of time for different values of 
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Fig. 5. Representative phase change front and temperature plots for a three-layered wall case: (a) phase change front as a function of time, and (b) temperature distributions 

at different times. Problem parameters are k̄ 1 = 0 . 833 ; ᾱ1 = 0 . 833 ; k̄ 2 = 0 . 4 ; ᾱ2 = 0 . 3 ; k̄ 3 = 0 . 6 ; ᾱ3 = 0 . 8 ;γ1 = 0 . 2 ;γ2 = 0 . 8 ; θ1 ,in = θ2 ,in = θ3 ,in = 0 . 0 ; R̄ 1 = 1 ; R̄ 2 = 2 ; R̄ 3 = 1 ; 

Ste = 0 . 1 . 

Fig. 6. Temperature distribution at τ = 20 . 52 for a three-layered wall. Parame- 

ter values are ̄k 1 = 0 . 3 ; ᾱ1 = 0 . 4 ; k̄ 2 = 0 . 5 ; ᾱ2 = 0 . 5 ; k̄ 3 = 0 . 6 ; ᾱ3 = 0 . 6 ;γ1 = 0 . 2 ;γ2 = 

0 . 8 ; θ1 ,in = θ2 ,in = θ3 ,in = 0 . 0 ; R̄ 1 = 0 . 5 ; R̄ 2 = 0 . 0 ; R̄ 3 = 0 . 5 . Curves are plotted for 

different values of Ste . 
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te . The same problem parameters as Fig. 6 are considered. These 

lots are presented in Fig. 7 (a) and 7 (b) for short and long time

anges, respectively, in order to illustrate two key processes that 

overn phase change front propagation at different time scales. 

ig. 7 (a) shows the phase change front propagating very slowly 

nitially, followed by a rapid rise. This is because the wall is ini- 

ially at zero temperature, and therefore, heat needed for phase 

hange must first diffuse from the imposed boundary through the 

old wall and into the phase change material. Due to the finite dif- 

usive time scale, phase change propagation is slow at first. Over 

 larger time scale, as shown in Fig. 7 (b), the phase change prop-

gation process proceeds rapidly at first, then slows down due to 

he increasing thermal resistance offered by the growing thickness 

f the melted layer. In both plots, the larger the value of Ste , the

aster is the phase change propagation, as expected, since Ste rep- 

esents the relative magnitude of the imposed boundary condition. 

It is instructive to analyze similar results with a non-zero ini- 

ial wall temperature. For the same three-layered wall as Fig. 7 , 

xcept with θ1 ,in = 1 . 0 , Fig. 8 (a) and (b) plot phase change propa-
9 
ation over short and long time intervals, respectively. Unlike the 

ero initial wall temperature case ( Fig. 7 (a)), in this case, phase 

hange propagation starts rapidly ( Fig. 8 (a)), because of thermal 

nergy in the wall that can readily transfer into the PCM. As a re- 

ult, over a short time period, at any given time, there is greater 

hase change propagation in this case compared to zero initial wall 

emperature. Over a longer time period, however, as thermal diffu- 

ion from the boundary condition begins to dominate, the differ- 

nce between the two cases ( Figs. 7 (b) and 8 (b)) diminishes, par-

icularly for large Ste . This is because at large Ste , the impact of the

oundary condition dominates over that of the initial wall temper- 

ture. When Ste is small, the effect of the initial wall temperature 

ersists over a longer time, resulting in greater melting. 

.3. Effect of initial temperature 

In order to further understand the effect of the wall initial tem- 

erature, phase change propagation curves are plotted for three 

ifferent values of θ1 ,in . Results are presented for a single-layered 

all for both short and large time periods in Fig. 9 (a) and 9 (b),

espectively. Phase change propagation begins slowly for the zero 

all initial temperature case due to the time taken from heat from 

he imposed boundary condition to diffuse through the wall. On 

he other hand, when the wall itself has a non-zero initial tem- 

erature, the heat from the wall diffuses readily into the PCM, re- 

ulting in rapid initial phase change propagation. After some time, 

ach curve rises at roughly the same rate. As expected, the larger 

he initial temperature, the higher is the corresponding phase 

hange propagation curve. However, as shown in Fig. 9 (b), the im- 

act of the initial temperature diminishes over a longer time pe- 

iod, and the three curves nearly coincide. This is because, unless 

1 ,in is unrealistically large, the additional phase change due to ini- 

ial thermal energy of the wall is quite small compared to phase 

hange driven by the external boundary condition. It can be shown 

hat the non-dimensional thickness of PCM that melts due to the 

nitial thermal energy in the wall is of the order of Ste · θ1 ,in . Based

n the parameters used here, the offset between zero and non-zero 

nitial temperature curves in Fig. 9 (a) is consistent with this esti- 

ate. Note that over a longer time period, as the thickness of the 

ewly melted liquid grows, there is increased resistance to heat 

ow into the phase change front, resulting in a slowdown of the 

elting process. This is clearly seen in Fig. 9 (b). 
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Fig. 7. Effect of Stefan number for zero initial temperature of a three-layer wall: Phase change propagation front as a function of time for different values of Ste . (a) and (b) 

present plots over short and long time ranges, respectively. Problem parameters are the same as Fig. 5 . 

Fig. 8. Effect of Stefan number for non-zero initial temperature of a three-layer wall: Phase change propagation front as a function of time for different values of Ste . (a) 

and (b) present plots over short and long time ranges, respectively. Problem parameters are k̄ 1 = 0 . 3 ; ᾱ1 = 0 . 4 ; k̄ 2 = 0 . 5 ; ᾱ2 = 0 . 5 ; k̄ 3 = 0 . 6 ; ᾱ3 = 0 . 6 ;γ1 = 0 . 2 ;γ2 = 0 . 8 ; θ1 ,in = 

θ2 ,in = θ3 ,in = 1 . 0 ; R̄ 1 = 0 . 5 ; R̄ 2 = 0 . 0 ; R̄ 3 = 0 . 5 . 

Fig. 9. Effect of the initial temperature distribution in the wall: Phase change propagation front as a function of time for a single-layered wall for different values of θ1 ,in . 

(a) and (b) present plots over short and long time ranges, respectively. Other parameters are k̄ 1 = 0 . 5 ; ᾱ1 = 0 . 5 ; Ste = 0 . 13 ; R̄ 1 = 0 . 

10 
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Fig. 10. Effect of thermal diffusivity of the wall: Phase change propagation front 

as a function of time for a single-layered wall for different values of ᾱ1 , ranging 

from a poorly diffusive wall to a highly diffusive wall. Other parameters are k̄ 1 = 

0 . 5 ; Ste = 0 . 13 ; θ1 ,in = 0 ; R̄ 1 = 0 . 
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Fig. 11. Effect of thermal diffusivity of the wall: Phase change propagation front at 

τ = 2 for a single-layered wall as a function of ᾱ1 , ranging from a poorly diffu- 

sive wall to a highly diffusive wall. Other parameters are k̄ 1 = 0 . 5 ; Ste = 0 . 13 ; θ1 ,in = 

0 ; R̄ 1 = 0 . 
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.4. Effect of wall thermal properties 

The key thermal property of the wall that governs the phase 

hange propagation is its thermal diffusivity, ᾱ1 . Note that ᾱ1 > 1 

epresents a wall that is more diffusive than the PCM, for example, 

 metal wall enclosing a typical PCM. On the other hand, ᾱ1 < 1 

epresents a case where the wall has lower diffusivity than the 

CM, which may be needed when the goal is to thermally insulate 

he PCM and prevent it from melting/solidification. This may occur, 

or example, in a solar thermal energy storage system, where the 

CM after melting must be stored in heavily insulated conditions 

n order to preserve its thermal energy for later use. 

Phase change front location is calculated as a function of time 

or a number of values of ᾱ1 . Results are plotted in Fig. 10 . A small

alue of ᾱ1 results in slow start to the phase change propaga- 

ion process, which is because heat takes longer to diffuse through 

he wall when ᾱ1 is small. Even with ᾱ1 = 1 , there is an initial

ime period during which, the rate of phase change propagation is 

ery small. Interestingly, Fig. 10 shows a saturation effect for very 

arge values of ᾱ1 . For example, curves corresponding to ᾱ1 = 5 

nd ᾱ1 = 10 are nearly identical. This is primarily because once the 

all thermal diffusivity is large enough, it is no longer the rate- 

imiting step, and, therefore, further improving the wall thermal 

iffusivity has only a negligible effect on phase change propaga- 

ion. In order to investigate this further, the location of the phase 

hange front at τ = 2 is plotted as a function of ᾱ1 in Fig. 11 . This

lot clearly shows the saturation effect, wherein there is negligi- 

le improvement in the phase change process beyond a value of 

round ᾱ1 = 2 . 

.5. An alternate non-dimensionalization of the spatial variable 

Classical phase change problems, such as the one-dimensional, 

o-wall Stefan problem do not have a length scale, due to which, 

on-dimensionalization is usually carried out using an arbitrary 

eference length. In the present problem, the wall thickness is 

 naturally available length scale, and therefore, is used in non- 

imensionalization of the problem. As a result of this, however, 

he wall thickness remains embedded within the non-dimensional 

arameters, and it is difficult to examine the impact of the wall 

hickness of the phase change process. 

As an alternate approach to solving this problem, non- 

imensionalization is carried out using an arbitrary length L ref , 
11 
hich preserves the wall thickness as an explicit non-dimensional 

arameter in the problem. This is illustrated below for a single- 

ayer wall problem with perfect thermal contact. The follow- 

ng non-dimensionalization is used: ξ = 

x 
L re f 

, τ = 

αL t 

L 2 
re f 

, θ1 = 

T 1 −T f 
T re f −T f 

, 

L = 

T L −T f 
T re f −T f 

, ᾱ1 = α1 /αL , k̄ 1 = k 1 /k L , ξ1 = x 1 /L re f . Here, ξ1 is the

on-dimensional wall thickness that did not appear in the treat- 

ent in Sections 2 and 3 . The resulting problem is quite similar 

o the problem solved in Section 3 . The temperature distribution 

n the wall and in the melted PCM, θ1 ( ξ , τ ) and θL ( ξ , τ ) can be

hown to be 

1 ( ξ , τ ) =1 − ξ

ξ1 

[
1 + ̄k 1 ξLS /ξ1 

] + 

∞ ∑ 

n =1 

c n sin 

( 

λn √ 

ᾱ1 

ξ

) 

exp 

(
−λ2 

n τ
)

(60) 

L ( ξ , τ ) = 

k̄ 1 ( ξ1 + ξLS − ξ ) 

ξ1 

[
1 + ̄k 1 ξLS /ξ1 

]
+ 

∞ ∑ 

n =1 

c n 
sin ( λn ( ξ1 + ξLS − ξ ) ) 

sin ( λn ξLS ) 
sin 

( 

λn ξ1 √ 

ᾱ1 

) 

exp 

(
−λ2 

n τ
)

(61)

here 

 n = 

1 

N n 

[ 

k̄ 1 
ᾱ1 

ξ1 ∫ 
0 

[ 

θ1 , 0 ( ξ ) −
( 

1 − ξ

ξ1 

[
1 + ̄k 1 ξLS /ξ1 

]
) ] 

sin 

( 

λn √ 

ᾱ1 

ξ

) 

dξ

+ 

ξ1 + ξLS ∫ 
ξ1 

− k̄ 1 ( ξ1 + ξLS − ξ ) 

ξ1 

[
1 + ̄k 1 ξLS /ξ1 

] sin ( λn ( ξ1 + ξLS − ξ ) ) 

sin ( λn ξLS ) 
sin 

( 

λn ξ1 √ 

ᾱ1 

) 

dξ

] 

(62) 

nd the norm N n is given by 

 n = 

⎡ 

⎣ 

k 1 
α1 

ξ1 ∫ 
0 

sin 2 

( 

λn √ 

α1 

ξ

) 

d ξ + 

ξ1 + ξLS ∫ 
ξ1 

sin 2 ( λn ( ξ1 +ξLS − ξ ) ) 

sin 2 ( λn ξLS ) 
sin 2 

( 

λn ξ1 √ 

α1 

) 

d ξ

⎤ 

⎦ 

(63) 

nd the eigenvalues are roots of 

√ 

ᾱ1 

k̄ 1 
tan ( 

λn ξ1 √ 

ᾱ1 

) + tan ( λn ξLS ) = 0 . 
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Fig. 12. Effect of wall thickness: Phase change propagation front as a function 

of time for a single-layered wall for different values of the wall thickness. Other 

parameters are k̄ 1 = 0 . 5 ; ᾱ1 = 0 . 5 ; Ste = 0 . 13 ; θ1 ,in = 0 ; R̄ 1 = 0 . Note that non- 

dimensionalization in this Figure follows the scheme discussed in Section 4.5 , with 

L re f = 1 m . 
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Fig. 13. Effect of wall thickness: Phase change propagation front as a function 

of time for a single-layered wall for different values of the wall thickness. Other 

parameters are k̄ 1 = 0 . 5 ; ᾱ1 = 0 . 5 ; Ste = 0 . 13 ; θ1 ,in = 0 ; R̄ 1 = 0 . Note that non- 

dimensionalization in this Figure follows the scheme discussed in Section 4.5 , with 

L re f = 1 m . 

Fig. 14. Analysis of a practical problem: Phase change propagation front as a func- 

tion of time for a single-layered 1 cm thick wall with octadecane phase change 

material and 30 K temperature boundary condition relative to melting temperature. 

Both wall and PCM are assumed to be at melting temperature initially. Plots are 

presented in dimensional form for two different wall materials. 
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Subsequently, the ODE for the phase change propagation front 

s given by 

dξLS 

dτ
= −Ste 

⎡ 

⎣ 

−k̄ 1 

ξ1 

[
1 + ̄k 1 ξLS /ξ1 

] −
∞ ∑ 

n =1 

λn c n 

sin 

(
λn ξ1 √ 

ᾱ1 

)
sin ( λn ξLS ) 

exp 

(
−λ2 

n τ
)⎤⎦

(64) 

Due to the explicit appearance of the non-dimensional wall 

hickness, ξ1 in the solution, it is easier to understand the impact 

f wall thickness on phase change process through this alternate 

on-dimensionalization. 

Fig. 12 plots the phase change propagation as a function of 

ime for a number of different wall thicknesses, ξ1 . Results in- 

icate that the thicker the wall, the slower is the phase change 

ropagation process. This is an expected result, because the time 

aken for heat diffusion through the wall is longer for a thicker 

all. Fig. 12 shows extremely slow phase change for a very thick 

all, ξ1 = 1 . On the other hand, as the wall thickness becomes 

maller and smaller, Fig. 12 shows that the phase change propa- 

ation curve is faster and faster, and approaches the solution for 

he classical Stefan problem with no wall, for which, the solution 

s ξLS = 2 λ
√ 

τ , where λ is the root of x erf (x ) exp ( x 2 ) = Ste/ 
√ 

π . A

aturation effect similar to the one seen for wall thermal diffusivity 

n Fig. 11 is also seen for wall thickness in Fig. 12 . A plot of ξLS at

= 2 . 0 as a function of wall thickness ξ1 in Fig. 13 clearly shows

hat the solution approaches the result from the standard no-wall 

tefan solution when ξ1 is around 0.002 or lower. 

.6. Solution of a practical problem 

All of the plots presented so far are in non-dimensional form 

n order to help understand the fundamentals of this problem. The 

nalytical model is next used to solve two representative practical 

roblems in dimensional form. First, the impact of the wall mate- 

ial on phase change propagation in octadecane is analyzed. A 30 °C 

emperature boundary condition, relative to melting temperature is 

ssumed. The wall and PCM are both assumed to be initially at the 

elting temperature. For a 1 cm thick wall, phase change propaga- 

ion as a function of time is plotted for two different wall materials 

stainless steel 304 and polypropylene. Wall thermal properties 
12 
re taken from a past paper [38] and from manufacturer specifi- 

ations [39] , respectively. PCM thermal properties are also taken 

rom past work [ 40 , 41 ]. The resulting plot is presented in Fig. 14 ,

hich shows, as expected, a greater rate of phase change propa- 

ation for stainless steel due to greater thermal conductivity and 

hermal diffusivity than polypropylene. A high diffusivity material 

uch as steel is preferable over polypropylene for the wall when 

he goal is to facilitate phase change in the PCM. 

For a similar problem with octadecane as the PCM and 

olypropylene as the wall material, the impact of wall thickness 

s analyzed in Fig. 15 . Phase change propagation as a function of 

ime is plotted for a number of wall thicknesses. Similar to Fig. 14 ,

 30 °C temperature boundary condition, relative to melting tem- 

erature is assumed, and both wall and PCM are assumed to be at 

elting temperature initially. Fig. 15 shows, as expected, that the 

hase change front propagates faster and faster as the wall thick- 

ess reduces. In each curve, there is a short initial period, in which, 

he melting process is very slow due to the time taken for ther- 
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Fig. 15. Analysis of a practical problem: Phase change propagation front as a func- 

tion of time for different thicknesses of a single-layered wall with octadecane phase 

change material and 30 K temperature boundary condition relative to melting tem- 

perature. Both wall and PCM are assumed to be at melting temperature initially. 

Plot is presented in dimensional form. 
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Fig. 16. Comparison of the present work with the convective resistance approxi- 

mation: Phase change propagation as a function of time for a polypropylene wall 

for three different thicknesses. In each case, results from the present work and the 

convective resistance approximation are both plotted. The PCM is octadecane and a 

10 K temperature rise in the wall is assumed. 
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al diffusion through the wall. The thicker the wall, the longer 

s this initial period, before the phase change process accelerates. 

his initial period can be best seen for the 8 mm wall case shown

n Fig. 15 . 

Plots such as ones presented in Figs. 14 and 15 provide useful 

esign guidelines for practical latent heat energy storage systems 

ontaining a wall between the phase change material and the heat 

ource/sink. 

.7. Comparison of the present work with a convective approximation 

The present work accounts for the transient temperature distri- 

ution in the multilayer wall. In contrast, the presence of a wall 

ay also be approximated by representing the wall as a ther- 

al resistance, and therefore, modeling its effect in the form of a 

onvective resistance at the boundary. While this represents some 

implification in the problem, it still does not result in an ana- 

ytical solution, since the Stefan problem with a convective heat 

ransfer boundary does not have an analytical solution [42] . More- 

ver, the resistance approximation does not account for heat stor- 

ge within the wall, which may be important at small times, par- 

icularly for thick, thermally insulating walls. In order to investi- 

ate this further, results from the present work are compared with 

umerical calculations based on the convective resistance approxi- 

ation. Fig. 16 plots the phase change propagation front as a func- 

ion of time for the melting of octadecane with a 10 °C tempera- 

ure rise across a polypropylene wall of three different thicknesses. 

esults from the present work as well as the resistance approx- 

mation are plotted. Results for the resistance approximation are 

ased on a variable timestep numerical calculation, since an ana- 

ytical solution is not available. Fig. 16 shows that the resistance 

pproximation is quite close to the present work when the wall 

s relatively thin. For thicker walls, however, the disagreement is 

arger, particularly at small times. The present work correctly ac- 

ounts for heat storage in the wall, thereby predicting a flat phase 

hange propagation curve at small times, whereas the resistance 

pproximation incorrectly predicts very large rate of propagation 

t small times. The two curves tend to get closer to each other 

t large times when the effect of initial heat storage in the wall 

iminishes in comparison with latent heat storage in the PCM. Re- 

ults from Fig. 16 show that the present work is particularly ac- 
13 
urate for relatively thick, thermally insulating walls and for pro- 

esses over relatively short time periods. For thin, conducting walls 

ver long time periods, the resistance approximation is reasonably 

ccurate because in such a case, energy storage in the wall is rela- 

ively less important. 

. Conclusions 

The key results from this work include the derivation of a so- 

ution for phase change in the presence of a multi-layer wall be- 

ween the PCM and heat source. This solution has been used to 

llustrate two key timescales present in the problem, as well as 

he impact of various non-dimensional parameters on the phase 

hange process. Finally, this work also discusses practical problems 

elated to design of a PCM wall for energy storage. 

The solution technique uses the eigenfunction expansion 

ethod, which reduces the problem to that of thermal conduction 

hrough a multi-layer structure. Note that similar to most phase 

hange heat transfer problems, the derived solution is not exact 

ecause at each time, it solves a transient problem that treats the 

elting front to be fixed at that time. While the solution technique 

sed here is quite general, it is illustrated in this work for constant 

emperature source and for semi-infinite PCM that is initially at 

he melting temperature. The solution also applies to the case of 

 finite thickness PCM as long as the PCM is initially at the melt- 

ng temperature, so that there is no heat transfer into the origi- 

al phase. More complicated conditions, such as non-zero initial 

emperature of the PCM (Neumann problem) or a time-dependent 

emperature boundary condition can be easily modeled within the 

ramework presented here. In the former case, an M + 2 layer ther- 

al conduction problem would need to be solved. 

Finally, it is important to note other limitations of the present 

nalysis, such as ignoring natural convection in the liquid, which 

ay be reasonable for several scenarios, but may need to be ac- 

ounted for in phase change problems with very large temperature 

ifference, such as solidification of metals for casting and related 

anufacturing processes. 

While presented in the context of melting, the results in this 

aper are equally applicable for solidification problems, as well as 

or equivalent mass transfer problems involving diffusion of species 

n conjunction with a chemical reaction front. 
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A ed wall case 

of the M-layered wall. Section 2 shows that the general solution for 

w

w (A.1) 

w (A.2) 

w

(A.3) 

(A.4) 

(A.5) 

w

�
 −2 ˙ p m −2 ,n ( γm −2 ) 

2 ) 
· p 2 ,n ( γ2 ) − k 2 R 2 ˙ p 2 ,n ( γ2 ) 

p 3 ,n ( γ2 ) 
· p 1 ,n ( γ1 ) − k 1 R 1 ˙ p 1 ,n ( γ1 ) 

p 2 ,n ( γ1 ) 
(A.6) 

f

(A.7) 

 

rom the boundary and interface conditions given by Eqs. (40) –(45) as 

f

ψ (A.8) 

ψ

λn γm 
 

ᾱm +1 

)
− k̄ m ̄

R m 

˙ p m,n ( γm 

) 

m 

) cos 

(
λn γm √ 

ᾱm +1 

) ( m = 1 , 2 . . . M − 1 ) (A.9) 

ψ (A.10) 
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ppendix A: Derivation of the eigenequation for general M-layer

This Appendix derives the eigenequation for the general case 

 m 

( ξ , τ ) and w L ( ξ , τ ) may be written as 

 m 

( ξ , τ ) = 

∞ ∑ 

n =1 

c n f m,n ( ξ ) exp 

(
−λ2 

n τ
)

 L ( ξ , τ ) = 

∞ ∑ 

n =1 

c n f L,n ( ξ ) exp 

(
−λ2 

n τ
)

here 

f m,n ( ξ ) = A m,n cos 

( 

λn √ 

ᾱm 

ξ

) 

+ B m,n sin 

( 

λn √ 

ᾱm 

ξ

) 

f L,n ( ξ ) = A L,n cos 

( 

λn √ 

ᾱL 

ξ

) 

+ B L,n sin 

( 

λn √ 

ᾱL 

ξ

) 

One may re-write f m,n (ξ ) as 

f m,n ( ξ ) = B 1 ,n �m 

p m,n ( ξ ) 

here �1 = 1 and 

m 

= 

p m −1 ,n ( γm −1 ) − k m −1 R m −1 ˙ p m −1 ,n ( γm −1 ) 

p m,n ( γm −1 ) 
· p m −2 ,n ( γm −2 ) − k m −2 R m

p m −1 ,n ( γm −

or m = 2,3.. M , and with 

p m,n ( ξ ) = ψ m,n ( λn ) cos 

( 

λn √ 

ᾱm 

ξ

) 

+ sin 

( 

λn √ 

ᾱm 

ξ

) 

Note that the over-dot denotes the derivative with respect to ξ .

Further, the functions ψ m,n ( λn ) in Eq. (A.7) may be obtained f

ollows: 

 1 ,n ( λn ) = 0 

 m +1 ,n ( λn ) = 

k̄ m +1 p m,n ( γm 

) λn √ 

ᾱm +1 

cos 

(
λn γm √ 

ᾱm +1 

)
− k̄ m 

˙ p m,n ( γm 

) sin 

(
√

k̄ m +1 p m,n ( γm 

) λn √ 

ᾱm +1 

sin 

(
λn γm √ 

ᾱm +1 

)
+ ̄k m 

˙ p m,n ( γ

 M,n ( λn ) = −
tan 

(
λn √ 

αM 

)
+ 

k M √ 

αM 

tan ( λn ξLS ) − λn k M R M √ 

αM 

1 − k M √ 

αM 

tan ( λn ξLS ) tan 

(
λn √ 

αM 

)
+ 

λn k M R M √ 

αM 

tan 

(
λn √ 

αM 

)
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ither Eq. (A.9) by setting m = M -1, or directly from Eq. (A.10). Therefore, 

t th Eq. (A.9) for m = M -1. With some mathematical rearrangement, this 

r

−1 

M 

)
− k M−1 R M−1 ˙ p M−1 ,n ( γM−1 ) 

−1 ) cos 

(
λn γM−1 √ 

αM 

)

(A.11) 

w quations λn for this problem can be obtained by determining the roots 

o

A
 

, B m , n , A L , n and B L , n 

fficients A m,n , B m,n , A L,n and B L,n appearing in Eqs. (38) and (39) for the 

g

ubsequent redundancy in the boundary and interface conditions given 

b  of the coefficients, B 1 ,n in this case, to be one, while determining all 

o determined in a recursive fashion, i.e., since A 1 ,n and B 1 ,n are known, 

t  m,n for m = 1,2,3.. M -1, and finally, A L,n and B L,n are determined in terms 

o

a (B.1) 

d (B.2) 

W

a in 

( 

λn γm √ 

ᾱm +1 

) 

; e m,n = 

k̄ m +1 √ 

ᾱm +1 

cos 

( 

λn γm √ 

ᾱm +1 

) 

(B.3) 

u  

( 

λn γm √ 

ᾱm 

) 

+ ̄k m ̄

R m 

λn √ 

ᾱm 

cos 

( 

λn γm √ 

ᾱm 

) ] 

(B.4) 

v (B.5) 

 +1 ,n and B m +1 ,n . A solution is given by 

A (B.6) 

herefore, Eq. (B.6) recursively expresses A m +1 ,n and B m +1 ,n in terms of 

A in terms of A M,n and B M,n using a similar procedure. From Eqs. (43) to 

(

a (B.7) 

d (B.8) 

w

a (B.9) 

u  

( 

λn √ 

ᾱM 

) 

− k̄ M ̄

R M 

λn √ 

ᾱM 

cos 

( 

λn √ 

ᾱM 

) ] 

(B.10) 

v (B.11) 

A (B.12) 
The function ψ M,n ( λn ) for the M 

th layer can be obtained from e

he eigenvalues λn can be determined by comparing Eq. (A.10) wi

esults in 

k M 

p M−1 ,n ( γM−1 ) 
λn √ 

αM 

cos 

(
λn γM−1 √ 

αM 

)
− k M−1 ˙ p M−1 ,n ( γM−1 ) sin 

(
λn γM√ 

α

k M 

p M−1 ,n ( γM−1 ) 
λn √ 

αM 

sin 

(
λn γM−1 √ 

αM 

)
+ k M−1 ˙ p M−1 ,n ( γM

+ 

tan 

(
λn √ 

αM 

)
+ 

k M √ 

αM 

tan ( λn ξLS ) − k M R M λn √ 

αM 

1 − k M √ 

αM 

tan ( λn ξLS ) tan 

(
λn √ 

αM 

)
+ 

k M R M λn √ 

αM 

tan 

(
λn √ 

αM 

) = 0 

hich is the eigenequation for the general, M -layer case. The eigene

f Eq. (A.11). 

ppendix B: Derivation of explicit recursive expressions for A m , n

This Appendix derives explicit recursive expressions for the coe

eneral, M -layered problem. 

From Eq. (40) , A 1 ,n = 0 . Further, due to the homogeneity and s

y Eqs. (40) –(45) , one may choose, without loss of generality, one

ther coefficients accordingly. Here, all remaining coefficients are 

herefore, A m +1 ,n and B m +1 ,n are determined in terms of A m,n and B

f A M,n and B M,n . The following procedure is used: 

From Eqs. (17) to (18) , one may write, for each m = 1,2,…M -1, 

 m,n A m +1 ,n + b m,n B m +1 ,n = u m,n 

 m,n A m +1 ,n + e m,n B m +1 ,n = v m,n 

here 

 m,n = cos 

( 

λn γm √ 

ᾱm +1 

) 

; b m,n = sin 

( 

λn γm √ 

ᾱm +1 

) 

; d m,n = − k̄ m +1 √ 

ᾱm +1 

s

 m,n = A m,n 

[ 

cos 

( 

λn γm √ 

ᾱm 

) 

− k̄ m ̄

R m 

λn √ 

ᾱm 

sin 

( 

λn γm √ 

ᾱm 

) ] 

+ B m,n 

[ 

sin

 m,n = 

k̄ m √ 

ᾱm 

[ 

−A m,n sin 

( 

λn γm √ 

ᾱm 

) 

+ B m,n cos 

( 

λn γm √ 

ᾱm 

) ] 

Eqs. (B.1) and (B.2) represent a set of two linear equations in A m

 m +1 ,n = 

e m,n u m,n − b m,n v m,n 

a m,n e m,n − b m,n d m,n 
; B m +1 ,n = 

−d m,n u m,n + a m,n v m,n 

a m,n e m,n − b m,n d m,n 

Note that u m,n and v m,n are known in terms of A m,n and B m,n . T

 m,n and B m,n for m = 1,2.. M -1. Finally, A L,n and B L,n can be expressed

44) , 

 M,n A L,n + b M,n B L,n = u M,n 

 M,n A L,n + e M,n B L,n = v M,n 

here 

 M,n = cos ( λn ) ; b m,n = sin ( λn ) ; d m,n = − sin ( λn ) ; e m,n = cos ( λn ) 

 m,n = A M,n 

[ 

cos 

( 

λn √ 

ᾱM 

) 

+ ̄k M ̄

R M 

λn √ 

ᾱM 

sin 

( 

λn √ 

ᾱM 

) ] 

+ B M,n 

[ 

sin

 m,n = 

k̄ M √ 

ᾱM 

[ 

−A M,n sin 

( 

λn √ 

ᾱM 

) 

+ B M,n cos 

( 

λn √ 

ᾱM 

) ] 

Therefore, A L,n and B L,n are given by 

 L,n = 

e M,n u M,n − b M,n v M,n 

a M,n e M,n − b M,n d M,n 

; B L,n = 

−d M,n u M,n + a M,n v M,n 

a M,n e M,n − b M,n d M,n 
15 
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