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ABSTRACT

Theoretical modeling of solid-liquid phase change processes is of much interest in energy storage and
thermal management. While most theoretical phase change models assume that the phase change ma-
terial (PCM) is in direct contact with the thermal source/sink, in most practical scenarios, the two are
separated by a thick wall, which, in some cases, may comprise multiple heterogeneous layers. Account-
ing for thermal conduction through the multi-layer wall is important to ensure accuracy of the predicted
phase change characteristics. This paper presents theoretical analysis of phase change in a system com-
prising a PCM and a multi-layer Cartesian wall using the eigenfunction expansion method and analysis
of multi-layer thermal conduction. Thermal contact resistance between wall layers, and between the wall
and PCM are accounted for. The predicted phase change front propagation is shown to agree well with
past work for special case of a homogeneous wall, as well as with numerical simulations. Two distinct
timescales in the solution, related to diffusion through the wall and phase change propagation in the
PCM are identified. The impact of the imposed temperature, wall thermal diffusivity and thickness are
presented in non-dimensional forms. Practical problems related to design of a PCM wall for energy stor-
age are solved, showing two very different characteristics of stainless steel and polypropylene walls, as
well as the impact of wall thickness on phase change propagation. The results presented here improve
the fundamental understanding of phase change heat transfer processes, and are particularly relevant
for relatively thick, thermally insulating walls over relatively short time periods, for which a resistance

approximation for the wall is not accurate.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transfer during solid-liquid phase change has been used
extensively for thermal management and energy storage by taking
advantage of the large latent heat of phase change of materials.
Prominent engineering processes and systems where phase change
heat transfer plays a key role include thermal management of mi-
croelectronics [1], solar energy storage [2], additive manufacturing
[3], food preservation [4], and metal casting [5]. The location of
the solid-liquid interface in phase change heat transfer problems
changes with time, resulting in significant mathematical complex-
ity in solving such problems [6,7].

A considerable amount of research has been devoted for devel-
oping mathematical models for phase change heat transfer [8,9].
Determining the location of the phase change front as a function
of time is usually of primary interest. However, unlike problems
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without phase change, exact solutions of phase change problems
only exist for a limited number of simplified problems [6], such as
one-dimensional, semi-infinite phase change problems with con-
stant temperature boundary condition, commonly referred to as
the Stefan problem, for which, the phase change interface loca-
tion is proportional to +at [10,11]. A wide variety of approxi-
mate analytical and numerical techniques have been developed for
other, more complicated phase change problems. Quasi-stationary
technique [6], integral method [12], perturbation method [13] and
variable eigenvalue technique [14] are among the most commonly
used approximate analytical methods. Such methods have been
used to solve problems that present complications such as time-
dependent boundary conditions [13,15], variable thermal proper-
ties [16,17], advection [18], steady-periodic regime [19,20], multiple
phase change interfaces [21] and inverse heat transfer problems
[22]. Several numerical techniques such as the enthalpy method
[23], fixed and variable-grid methods [24], and the front-fixing
method [25] have been developed and are used routinely to solve
complicated phase change problems.
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Nomenclature

C heat capacity (Jkg~1K-1)

<z latent heat of phase change (Jkg~1)

k thermal conductivity (Wm~1K-1)

M total number of layers

R thermal contact resistance, (Km2W-1)

R ?on—dimensional thermal contact resistance, Ry =
<§AR,,m

Ste Stefan number, Ste = C; (T — Ty) /L

T temperature (K)

X spatial coordinate (m)

t time (s)

o thermal diffusivity (m2s—1)

Om ratio of thermal diffusivities, &, = ".ft—'f

km ratio of thermal conductivities, km = ’;TT
non-dimensional time, T = Z—ét

m
0 non-dimensional temperature, 0; = TT":TTT” ,
ref —im

(i=L12,3..M)

& non-dimensional spatial coordinate, § = -

A non-dimensional eigenvalue

y non-dimensional interface location, ym = )’:—A"/"

Subscripts

f phase change temperature

in initial temperature

L liquid phase

LS phase change front

m layer number

0 imposed temperature

In most of the literature on phase change heat transfer, the
phase change material (PCM) is assumed to be in direct contact
with the heat source/sink. However, in practical scenarios, the PCM
is usually enclosed in a thick-walled container (see, for example,
Fig. 1(a)). For example, it is common for the PCM to be embed-
ded within several cm thick concrete/brick wall [26] for building
thermal management problems, or within an annular tube in flow
problems [27]. Heat must first diffuse through the wall in order
to cause phase change in the PCM. The wall itself may be single-
or multi-layered. Depending on whether the goal is to maximize

(a)

Heat Reservoir
Ty

Multilayer
Wrilll
(_A_\

PCM

(semi-infinite)
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phase change of the PCM, or to insulate the PCM from the external
source/sink, the thermal resistance/capacitance offered by the wall
must be minimized or maximized, respectively. In some cases, the
wall itself may be made of the same material as the PCM. A com-
mon example is in the freezing of a lake in winter, wherein any ice
formed floats to the top and acts as an insulating wall to prevent
further melting. An equivalent mass transfer problem of relevance
is the growth of a passivation layer on a substrate that already has
a finite passivation layer due to an initial reaction, or the combus-
tion of a solid fuel particle that already has an ash layer surround-
ing the particle. In such cases, reactants must diffuse through a
passive layer in order to reach the chemical reaction front. In each
of these examples, it is important to develop analytical methods
that accurately account for the effect of the wall, which can poten-
tially be multi-layered, on the phase change process.

A number of papers have analyzed such phase change prob-
lems in the presence of a wall. The simplest approach is to rep-
resent each layer by a combination of resistance and capacitance
(RC), which essentially neglects the temperature field within each
layer [26]. In this work, the energy storage performance of a vari-
ety of PCM-embedded cementitious composites has been summa-
rized. A lumped RC model has been used to solve a phase change
problem in a multi-layer wall in a building [28]. Good agreement
between RC modeling and computational fluid dynamics simula-
tions was shown for specific cases. A similar model for concrete
brick walls with embedded PCMs has also been proposed, based on
which, the solar energy storage capability of a three-layered PCM
wall in realistic conditions was predicted [29]. Such lumped mod-
els rely heavily on parameter estimation, and may lose accuracy
when sensible energy storage within the non-PCM wall wall can-
not be neglected, for example, when the wall is relatively thick.
Numerical computational techniques have also been used to solve
multi-layer heat transfer problems involving phase change. For ex-
ample, an explicit finite difference method based on the enthalpy
formulation has been used to solve a multi-layer pipeline problem
with insulation and an intermediate PCM layer for long-distance
subsea pipeline systems [27]. Numerical simulation has been used
to investigate the performance of phase change materials in thick-
walled triplex-tube and shell-and-tube energy storage units [30].
An implicit finite difference scheme has been used to solve a tran-
sient heat transfer problem involving a PCM and a multilayer wall
[31]. Enthalpy-based numerical simulation has been used to solve
problems involving multi-layer roofs and walls containing PCM
[32,33]. In each of the papers cited above, the impact of mate-

Multilayer Wall o
'

PCM

PCM
A

Fig. 1. Schematic geometry of the problem considered here: An M-layer non-melting wall is located above a semi-infinite phase change material. The composite body is
heated up with a temperature boundary condition at the top. Heat diffusion through the M-layer wall and into the PCM results in melting and propagation of the phase
change front. Distinct thermal properties of the layers, as well as thermal contact resistance between layers are considered.
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rial properties and other problem parameters on phase change and
temperature rise has been predicted using numerical simulations.
While numerical models may be easy to implement, they are often
computationally expensive and do not offer insights into the fun-
damental nature of the problem, such as the role of various non-
dimensional numbers.

In contrast with the lumped models and numerical simulations
described above, there is a relative lack of work on analytical mod-
eling of phase change in a multi-layer body, such as PCM enclosed
in a multilayered thick-walled container. The limited work avail-
able in this direction focuses on a single-layered wall [34,35]. The
interaction of phase change process with diffusion in a multi-layer
body makes this problem quite formidable. Such analytical models
may be of much interest for developing a fundamental understand-
ing of the problem and for parametric analysis. With suitable com-
putational optimization, analytical solutions may compute faster
than numerical simulations and without the need for proprietary
software tools.

This paper derives an analytical solution for the problem of
phase change of a material driven by a temperature boundary con-
dition imposed across a multi-layer wall (Fig. 1). Heat transfer
through the wall is accounted for by solving a multi-layer ther-
mal conduction problem through the wall layers and the newly
formed phase in the PCM. The resulting temperature distribution
is used to determine the propagation of the phase change front
as a function of time. Good agreement with past work for spe-
cial cases and with numerical simulations is shown. The effect
of various non-dimensional parameters such as Stefan number, as
well as wall properties, such as thermal diffusivity and thickness
is demonstrated. The analysis of two practical problems involving
the melting of octadecane surrounded by a wall made of steel or
polypropylene is solved. The next section defines the problem con-
sidered here, followed by presentation of the solution technique.
Special cases are presented in Section 3. Key aspects of the results
are also discussed in Section 4.

2. Problem definition

Fig. 1(a) shows a schematic of the problem under consideration.
Fig. 1(b) presents further details of the geometry considered here,
which comprises a semi-infinite PCM separated from a thermal
source at constant temperature Ty by an M-layered heterogeneous
wall that does not undergo phase change. While the problem con-
sidered here involves melting of the PCM, solidification problems
can be solved similarly. Thermal conductivity and diffusivity of the
mth layer are represented by km, and o, respectively, for m=1,2..M.
Similar properties of the liquid phase of the PCM are denoted by
k; and «j, respectively. As shown in Fig. 1, the thickness of the
mth layer is given by (Xm-Xp.;). Total thickness of the wall is given
by xj. A thermal contact resistance Ry is assumed between the
mt and (m+1)™ layers of the wall, for m=1,2..M-1. In addition,
Ry refers to the thermal contact resistance between layer M of the
wall and the phase change material. These contact resistances can
be set to zero in order to model perfect thermal contact between
adjacent materials. Latent heat of phase change of the PCM is de-
noted by £. The initial temperature of the mt layer is taken to be
Tpin(x), (m=1,2...M), which is assumed to be larger than or equal
to the melting temperature Ty, whereas the phase change material
is assumed to be initially solid at the melting temperature Ty.

When measured from the wall-PCM interface, the initial thick-
ness of the phase change front, xs, is zero, since the PCM is ini-
tially all solid. As heat diffuses through the multilayer wall and
into the phase change material, the phase change front propagates
into the semi-infinite PCM. A primary interest in such problems is
to predict the phase change front, x;5 as a function of time, and to
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determine the impact of thermal properties and thicknesses of the
non-melting wall layers on propagation of the phase change front.

Several standard assumptions are made for analysis of this
problem. Heat transfer is assumed to be one-dimensional and
driven purely by thermal conduction. Natural convection in the
liquid PCM, as well as radiative heat transfer are neglected. All
thermal properties are assumed to be independent of temperature.
These assumptions are typically valid when the temperature dif-
ference is relatively small. Under these assumptions, the problem
considered here may be mathematically described by the follow-
ing governing energy equations:

92Ty 1 0Ty

9 ZEW (Xm—l <X <Xn (m:],ZM)) (1)
02T, 1 0T;
WZLZOTLTIL (X < X < X + Xgs(0)) (2)

where T,; and T; refer to the temperature fields in the mt layer
and in the liquid phase of phase change material, respectively.
Since the PCM is initially solid at the melting temperature, and
since the initial wall temperature is greater than Tj, therefore, no
heat transfer occurs to/from the solid PCM. Associated boundary
conditions for this problem are

=T (x=0) (3)

T, =Tr (x=xu+xis(t)) (4)

Eq. (3) arises from the constant temperature source imposed on
top of the wall, whereas Eq. (4) arises from the phase change front
always being at the melting temperature. In addition, the following
interfacial conditions based on heat flux conservation and interfa-
cial thermal resistance apply:

0Tn
T =Tt = kmRm % (X = Xm) (5)
8Tm 8Tm-%—l

CmW = K1 Ix (X =Xm) (6)

Egs. (5) and (6) apply for m=1,2...M-1, and model thermal con-
tact resistance and flux conservation at the interfaces within the
wall. Similarly, at the wall-PCM interface, one may write

0T,
Ty=T - kMRMTM (X =2xm) (7)
X
0T, 0T,
kMT;W = kLiaxL X = Xm) (8)

The initial condition for this problem is given by known tem-
perature distributions in each layer, i.e.,

Tn= Tm.in (X) (t = 0) (9)

for m=1,2..M. Finally, to complete the problem definition, energy
conservation at the solid-liquid interface in the PCM is considered,
as follows

BTL _ dXLg
_kL(E)x) = Pl (10)
X=Xp+X[s

Note that temperature distribution in the semi-infinite solid
does not appear in Eq. (10) since the solid is initially at the melt-
ing temperature and the wall initial temperature is greater than Ty,
and therefore, no heat transfer to/from the solid occurs.

Note that setting M=1 in the problem definition above results
in the problem of the PCM enclosed by a homogeneous, single-
layered wall. Further, specific problems such as insulation of a
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freezing lake by ice on the lake surface, or insulation of a PCM
by previously-melted PCM [36] can be represented by setting the
thermal properties of the wall and PCM to be the same.
Non-dimensionalization of the problem is carried out using
. . . ot Tm*T
the following variables: & = & T= "fo VYm = ;‘M, Om = T‘r'ff
L= et Gm = /@, ki =kn/ki, Rm=kiRn/xy (m=12.M),
where the imposed temperature difference Tp-T; and wall thick-
ness xy are used for non-dimensionalization. The following non-
dimensional partial differential equations are obtained

2
88%271 o (Ym1 <& <ym (M=1,2.M)) (11)
2
% _90 4 g 1k (12)

where &g = i—ﬁ; is the non-dimensional location of the phase
change front. Also, in Eq. (11), ¥ = 0 based on the coordinate sys-
tem shown in Fig. 1(b).

Associated boundary and interface conditions are

th=1(&=0) (13)
- 060n =  00n,

km@ = km1 JE L & =vm) (14)

— — 00

Om = Omi1 — km&n@ (5 = ¥Ym) (15)
- 89M 89L

k = =1 16
6o = 6.~ KR T2 (6= 1) (17)
O =0 (§ =1+&5(7)) (18)

The non-dimensional initial conditions are

Om = Opin(§) (T =0) (19)
6,=0(r=0) (20)

Ty in—T
where 6y, = ”;’” Tff

is the initial non-dimensional temperature

distribution within the mt" layer, and may be interpreted as the
initial temperature in that layer relative to the melting tempera-
ture, non-dimensionalized by the temperature boundary condition,
expressed similarly.

The non-dimensional equation for energy conservation at the
interface is given by

1d a0
=T E=1+69) 1)
where Ste = M is the Stefan number. C; refers to heat capac-

ity of the liquid PCM.

The non-dimensional parameters appearing in this problem in-
clude Ste, which represents the imposed boundary condition, prop-
erties @y and ki, layer thicknesses vy, interface resistances R
and initial temperatures 6, ;,. The total wall thickness does not
appear explicitly because it has been used as the lengthscale for
non-dimensionalization.

The classical, no-wall Stefan problem admits a self-similarity
based exact solution [6]. Due to the presence of a length scale
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in the present problem, however, it is unlikely that a self-similar
solution is also applicable here. Instead, the method of eigenfunc-
tion expansion is used to seek an approximate analytical solution
for this problem. Referring to Fig. 1, at any given time, the tran-
sient thermal conduction problem in the region above the phase
change front (i.e., the multilayer wall and liquid phase of PCM) is
solved. The resulting temperature distribution is differentiated at
the location of the phase change front and inserted in the interfa-
cial energy conservation, Eq. (21) to result in an ordinary differen-
tial equation that can be easily solved to determine the evolution
of the phase change front. While this is an approximate solution,
since the problem is reduced to one with constant &5 at each time,
nevertheless, solving the transient thermal conduction problem is
expected to be an improvement over the quasi-stationary method
[6], in which the transient term is completely ignored, and only
the steady-state component of the solution is used.

The (M-+1)-layer transient thermal conduction problem com-
prising the M-layer wall and liquid portion of the phase change
material is a diffusion-driven multilayer problem with constant
temperature boundary conditions at the two ends and interfacial
contact resistance between adjacent layers. This problem can be
solved using the theory of multilayer thermal conduction [37] that
uses separation of variables technique and boundary/interfacial
conditions to derive a single set of eigenvalues for all layers, fol-
lowed by application of the initial condition and the principle of
quasi-orthogonality to completely determine the temperature dis-
tribution in each layer. Since one of the boundary conditions is
non-homogeneous, however, a substitution is first made to transfer
the non-homogeneity from the boundary condition to the initial
condition, as follows:

Om(§.T) =5m(E) + wm(§.7) (m=1,2.M) (22)

GL(E’T):SL(E)J'_WL(é?T) (23)

Here, sm(§) and s; (&) are the steady-state components of
the solution, governed by s;, =0 and s =0, respectively, along
with the following boundary and mterface conditions: s1(0) =
15 s1(1+&5) = 0, Sm(¥im) = Smy1 (Ym) — kRS (¥im), l<msm(ym)
km+15m+1()/m) sy(1) =sp(1) - kMRMSM(l) kpsy, (1) = kLSL(l)
can be shown that s;;(£) and s;(§) are given by linear expre551ons
as follows:

Sm(§) = An& + By (m=1,2, M) (24)

si(§)=A§ +B; (25)

where the coefficients Ay, B, Ar, By are given by

-1
1 —
[/ ey (z«mkj)’”ﬂ 0

By =—-AL(1+&is) (27)
Ap = ;,il (m=1,2,.M) (28)
Km

1 M-1 1 1 _
Bn=Ai| —=— —Ru - SLS+Z[ (———)—Rj] (m=1,2,.M)
a j=m ki Kk

(29)

On the other hand, the wy, (&, 7) and w; (&€, T) problems repre-
sent diffusion in a (M+1)-layer body with homogeneous boundary
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conditions given by the following

wi =0 (& =0) (30)
— OWm  — O0Wpmi

km¥=km+1 a{ E=ym) (M=1,2.M-1) (31)
W = Wins 1 i,,jmaa% (E=ym) (M=1,2.M—1) (32)
- BWM 8WL

ku gt = g E=1 (33)
Wy = W — Emﬁmaa% E=1 (34)
wy =0 (§ =1+&45(7)) (35)
with non-homogeneous initial conditions given by

Wi = Onin(§) —sm(§) (r =0) (36)
wy = —s(§) (r =0) (37)

A solution for wyp and w; may be obtained by writing
a separable, eigenfunction-based series expansion of the type

Win(E.7) = 3 fun(E)gn() and wy(§.7) = i fin@®en(@) as

knpm—1.0(Ym-1) =
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i(m . an )\'nym
—A B
O'[m|: m,nSII'l( am)—l— mnCOS( O_lm>j|

’_<m+1 . An¥Ym AnYm
= — —Ami1,pSin = + Bini1,n COS =
vV (xm+1|: . (\/ Xmi1 e V @m+1

(42)

A A
A COS (") + By sin (") = AL cos (An) + Bppsin (Ay)
Vau Vau
- = A . An An
—kyRy——== | —Amnsin [ —== | + By, COS (43)

jﬁ% [_AM,nsin (\/XOTM) + B €os (x/)\@ﬂ

= —Apn Sin (An) + By cos (An) (44)

Apncos (An(1+&15)) + Brasin (An(1 +&15)) =0 (45)

Since Eqs. (40)-(45) are homogeneous, the determinant of these
equations must be zero in order to ensure a non-trivial solution.
This requirement results in an eigenequation for determining An.
As shown in Appendix A, the eigenequation is found to be

— cos (’\j/yM—’) — km—1Pm-1.0(Ym-1) sin <7'\\"}/£' ) — ky—1Ry-1Pv-1.0 (Ym-1)

kmpm—1.0(Yu— 1)f

AnYM_1 k cos <)»n}’M 1)
(f)—i_ M—1PM-1,n(YM-1) N>

tan( it )+ Ky tan (Anéps) — KuRutn
— Van) " Jan — NC ~0 (46)
_ Km n KRy An An
1= i tan i tan (o ) + B an (G2
follows: Where pmn, and Y¥mn, are given by Egs. (A.7)-(A.10) in
Appendix A.
= An . An Once the eigenvalues are determined, the unknowns A B
= A - B , m,n» bm,n,
Wn (5. D) ;CH[ mr COS( /@ 5) B sm( /dmé>:| Arn and By, may also be obtained. Due to the redundancy in

exp (—A;7) (38)

Wi(E. T) = 3 Calfn €05 () + BunSin Gunf)Jexp(—327) (39)

n=1

Here, the diffusivity term \/O_Tm is absorbed within the spatial
terms instead of the transient term, in order to facilitate satisfying
the interfacial conditions [37].

Egs. (38) and (39), when substituted in the boundary and inter-
face conditions given by Egs. (30)-(35) result in

Ain=0 (40)

Am.n COS AnYim + Byn sin )“”)_/"' = Amy1.0COS )L'Zym
vV Olm vV m vV Ami1

+Bmiin Sil’l( )szm ) _kmém An

U1

x |:—Am,n sin <f/”;’>:) + By COS <)\‘/“;L:)] (41)

Egs. (40)-(45), one may assume By, =1 and determine the re-
maining coefficients from Eqs. (40) to (44). Explicit recursive ex-
pressions for these coefficients are derived in Appendix B. Finally,
in order to determine cy, Egs. (38) and (39) are evaluated at T =0,
using the initial conditions given by Egs. (36) and (37), followed by
use of the principle of quasi-orthogonality of multilayer eigenfunc-
tions. One may obtain

- An .
Omin(§) —sm(§) = Cn| Amncos | ——& | +Bm.nsin &

(47)

—si(§) = Z Cn[ALn €OS (An§) + Bm,n Sin (Anf)] (48)
n=1

Finally, _Egs. (47) and (48) are multiplied

km )\n' i )Ln'
by Ay cos(ﬁg) +B, sm(ﬁé)] and
[AL cos(AyE) + By, o sin(A/§)], respectively, followed by in-
tegration within the respective layers. The resulting equations are
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added, which, based on quasi-orthogonality results in

1 K An
Ch = [0m.0(5) —sm(§)]| Am.n COS —
Nn |:m2=; |: }/[1 ’ |: ( Om

1+&5
4 [ — $,(8)[ALn COS (Ank ) + Brn Sin (An ) |dE
1

where the norm N, is given by

— VYm 2
i :ri:l %/ [Am,nc05<\/ko';~m£>+8mnsin< Aa"méﬂ d&

Vm-1

1+&is
[ [0S () + B sin ()P
1

(50)

This completes the formal solution for the general problem con-
sidered here, comprising an M-layer non-melting wall over a semi-
infinite phase change material. Once the temperature distribution
is determined, the derivative of the liquid temperature distribution
at the liquid-solid interface, & =1+ &;5(7) can be inserted into
Eq. (21) to result in the following ordinary differential equation for
the phase change front location, &5(t)

déis

n=1

with &5 =0 at T = 0. While an analytical solution for Eq. (51) is
unlikely to be obtainable, Eq. (51) provides an explicit expression
for the derivative of &5, and therefore, can be easily integrated nu-
merically to determine &;5(7).

3. Special cases

A special case of a single-layer wall shielding the phase change
material from the temperature boundary condition is of particular
interest for applications such as phase change material in a single-
layered container. Solutions for the temperature distribution and
phase change front propagation for this case may be derived by
simply putting M=1 in results from Section 2. This results in

9 =1-— n _)\4%
16.7) 1+k1§Ls+k1R1 +;C Slﬂ(r )exp( 1:)
(52)

ki(1+&5-8) ki sin(An (& — (1+ 1))

O 1)= —2->—>- n
L(S t l + k] ELS + ’(1R1 ; : El cos (}"HELS)
A
cos L )exp(—AZt (53)

1 1+&is
1 k1 |: s . )‘«n
Cn=— 610(6) -1+ ——2———|sin & d§+/f
Nn /o
aq o 1 +I(1§Ls+k1R1 aq g

and the norm Ny is given by

Np =
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) on()e]

(49)

and the eigenvalues are roots of Vi tan(-2L) + AqRq +
kq N

tan(An&rs) = 0. Note that this eigenequation can be obtained
by either directly solving a two-layer problem, or by simply
putting M=1 in the general eigenequation given by Eq. (46).

Subsequently, the differential equation for the phase change
propagation front is given by

6 (),
" Jar €08 (hafiss)

% _Ste| R + i)» exp(-A37)

1+ki&s+ kR 1
(56)

with SLS =0att=0.

25— ste {AL + 3 haCal—Aun sin (a(1 + &i5)) + B €05 (An(1 + Em)HeXp(—Aﬁf)] S

A further special case of interest arises for a single-layer wall
where the thermal properties of the wall and the PCM are the
same, so that the wall represents a thickness of phase change ma-
terial that is already in liquid form prior to t=0. This may repre-
sent scenarios where some phase change material has remained
melted from a prior cycle of heat transfer into the phase change
material. Another example for this scenario would be a finite thick-
ness of pre-existing ice on top of a lake that shields liquid water
in the lake from solidifying due to a cold ambient. In order to de-
rive the results for this special case, one may insert &; =k; =1
in Egs. (52)-(56). This can be shown to result in a much simpler
solution, in which, the temperature distribution in both pre-melted
and newly-melted layers may be written as a combined expression

£

9L(E~T):1 ]+§

+chsm(k £)exp(—A;7) (57)

where

2 1 , 3 &
1+&;s |:£ [Ql'm(S) T 1+&;s

1+&5 %‘ .
+ J (—l +7 +€Ls> sin ()\né)dgi|

} sin (An§)d§

(58)

sin (An(§ — (1 +8i5)))

E1(1+§Lsi§) ) ki
1 +k1§[_5 +k1R1

€os (Anéis)

" (2 Joe | o
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Fig. 2. Effect of number of eigenvalues considered in the solution: Phase change propagation front as a function of time for a single-layered wall on top of the PCM for (a)
zero initial wall temperature, 6; ;, = 0.0; (b) non-zero initial wall temperature, 6; ;, = 1.0. In both cases, curves are plotted for different number of eigenvalues considered.

Other parameters are I_<1 =0.5;@; =0.5;Ste =0.13; R, = 0.

and the differential equation for the phase change propagation
front is given by

d -1
where A, = 11’55

A final special case of interest is that of the wall being at zero
temperature initially. For many problems, this is usually a reason-
able approximation justified by the relatively large heat needed for
phase change compared to sensible heating. Results for such a case
may be derived by setting 8; o = 0 in expressions above, both for
the general M-layer wall (Section 2) and the two-layer wall dis-
cussed above, resulting in some simplification in expressions for
Cn.

4. Results and discussion
4.1. Verification

Since the analytical solutions presented in Sections 2 and 3 are
in the form of eigenvalue-based infinite series, it is important to
determine the minimum number of eigenvalues needed to be con-
sidered to ensure acceptable accuracy. Note that eigenvalues for
this problem must be re-computed at each time step as &5 in-
creases, which can be computationally expensive. Therefore, it is
critical to determine the minimum number of eigenvalues needed
for desired accuracy. This is particularly helpful for optimization of
run-time computation of this problem that often needs to be car-
ried out with limited computational resources.

For a representative problem with a single-layered wall on top
of the PCM, Fig. 2 plots the predicted propagation of phase change
front with time for different numbers of eigenvalues considered.
Two cases with zero and non-zero initial temperature of the wall
are presented in Fig. 2(a) and 2(b), respectively. These Figures also
plot the zero eigenvalue case, which corresponds to the quasista-
tionary solution that completely ignores transient conduction in
the wall and liquid PCM. Both plots show that the eigenvalue-
based series solution presented in this work differs significantly
from the quasi-stationary solution, which does not correctly ac-
count for the role of the thick wall in the phase change process.
These data also show that, in this case, around seven eigenvalues
are sufficient for convergence of the predicted phase change prop-
agation curve. Note that the shapes of converged plots for the zero

and non-zero wall initial temperature differ from each other. In the
zero initial temperature case, the phase change front propagates
very slowly at first, due to time taken for heat to diffuse through
the wall. On the other hand, when the wall itself is at a high initial
temperature (in the case of Fig. 2(b), equal to the temperature of
the imposed boundary condition), heat is readily transferred into
the PCM from the wall, which is why, the phase change front rises
rapidly at first, and then slows down.

Results from the present work are compared with a past pa-
per for a special case of a single-layered wall with zero initial
temperature. Hwang, et al. [34] presented analysis of this problem
with zero initial temperature using the perturbation method. This
method expresses the temperature distribution as a power series
in terms of the Stefan number, based on which, the temperature
distribution is determined through a term-by-term comparison. For
comparison with this paper, the present model is computed with
M=1 and 6;;, =0.0. A comparison of phase change propagation
as a function of time is presented in Fig. 3. Three cases of differ-
ent values of thermal contact resistance and three cases of differ-
ent values of Stefan number are presented in Fig. 3(a) and 3(b),
respectively. There is excellent agreement between the perturba-
tion method based results from Hwang, et al. [34] and the present
work. As expected, the rate of phase change propagation increases
with decreasing Ry, or increasing Ste. Note that the results from
Hwang, et al. are limited to a single-layered wall, with zero ini-
tial temperature, whereas the present work solves a much more
general problem with an M-layered wall and non-zero initial tem-
perature in each layer.

For additional verification of the present work, comparison of
results with numerical simulations is also carried out. A finite-
difference based numerical simulation technique is used for this
purpose. A single layer wall in contact with PCM is considered
here for validation purposes. The wall and PCM are discretized
into a total of 2000 nodes. One node is considered at the wall-
PCM interface to apply both heat flux and temperature continuity
conditions. Heat transfer within the wall is purely conductive and
is solved using the conventional implicit finite difference method.
The heat transfer problem within the PCM, on the other hand, in-
volves phase change and is solved using a variable timestep im-
plicit finite difference method. The timestep in this problem is de-
termined iteratively so that the phase change front moves only by
one length interval during that time. Comparison between the two
is presented in Fig. 4, where the phase change propagation front
is plotted as a function of time for the one-phase problem with
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Fig. 3. Comparison_with past work [34]: Phase change propagation fro_nt as a function of time for the special case of a single-layered wall on top of the PCM for (a) three
different values of R; at Ste = 0.02; (b) three different values of Ste at Ry = 1.0. In both cases, results from the present work (curves) are compared with past work based on
perturbation method [34] (symbols). Other parameters are k; = 0.833; @; = 0.833; 6;;, = 0.0.

0.3 . , '
(a) — = Present Work PR
025FY 7 [ Numerical Simulation Eal
P
A
0.2 4
. "//
” Ste=0.3 _»”
WP 0.15¢ 4 ]
7
v‘.')
01 “”9.'/ ‘“‘“‘.u"‘.-"‘“
".,/. - ;-‘-“""
0.05t o g Ste=0.1 1
"J"’/ .-n""‘"w
0 P i . L
0 0.5 1 15
T

4.5 : - - :
al (b) — = Present Work "
-------- Numerical Simulation| _..%"
3.5¢ P i
4"“’
3r ) P |
w251 Ste=0.3_,."‘" i
‘U\/T] /‘/
2t v e
o’/ - - .
1.5¢ /.o/ ’_’..—"' |
s e Ste=0.1 1
0.5¢ // e ]
./'/
O L L 1 1
0 10 20 30 40 50
T

Fig. 4. Comparison with numerical simulations: Phase change propagation front as a function of time for a single-layered wall on top of the PCM at two different values of
Ste over (a) short and (b) long time ranges. Other parameters are k; = 0.75; & = 0.75; 61 ;, = 0.0; Ry =0.

a homogeneous wall. Two sets of plots, for short and long time
ranges are presented in Fig. 4(a) and 4(b), respectively. In each
case, plots are presented for Ste = 0.1 and Ste = 0.3. These plots
show excellent agreement between the analytical model and nu-
merical simulations. As expected, &5 increases with time, slowly
at first due to diffusion through the non-melting layer (Fig. 4(a)),
then more rapidly, and finally somewhat slower due to increas-
ing thermal resistance of the melted layer (Fig. 4(b)). There is very
good agreement between the analytical model and numerical sim-
ulation throughout both time scales for both values of Ste. The two
distinct time scales involved in this process are investigated further
in Section 4.2.

Fig. 5 shows results from a representative three-layer wall
problem. Plots of the phase change front propagation as a function
of time and temperature distributions at four different times are
shown in Fig. 5(a) and 5(b), respectively. Problem parameters are
ky =0.833;@; = 0.833; ky = 0.4; Gy = 0.3;k3 = 0.6; &3 = 0.8; y; =
02:7,=08 O1jn=061in=031,=00; Ri=1;R=2; Rz3=1;
Ste = 0.1. The phase change front starts slowly initially while
heat diffuses through the multilayer wall, then rises rapidly.
The temperature distributions exhibit discontinuity at interfaces
between layers due to the non-zero thermal contact resistances.
Propagation of the phase change front with time can also be seen
in the temperature distribution plots.

4.2. Effect of Ste

The Stefan number is a key non-dimensional parameter for
this problem that represents the magnitude of the imposed tem-
perature boundary condition. In order to understand the ef-
fect of Ste on the temperature distribution and phase change
front propagation process, the temperature distribution at t =
20.52 is plotted for different values of Ste in Fig. 6. A three-
layered wall with zero initial temperature is considered. Problem
parameters are k; = 0.3; @1 = 0.4; ky = 0.5; &, = 0.5; k3 = 0.6; @3 =
06;y;=02;7,=08; 01j,=0y4=035,=00; R =0.5;R, =0;
R; = 0.5. Fig. 6 shows the temperature distribution decaying from
6 =1 at the hot boundary to 8 =0 at the location of the phase
change front. Discontinuities in the temperature distribution at the
interfaces between layer 1 and layer 2, and layer 3 and liquid
phase are seen, as a result of the non-zero thermal contact resis-
tance values. In contrast, there is no discontinuity between layers
2 and 3 because R, = 0. Fig. 6 also illustrates the impact of Ste -
as Ste increases, the temperature distribution in each layer goes up
due to greater flow of heat. In addition, the phase change front
also propagates deeper into the PCM due to the small value of la-
tent heat relative to sensible heat when Ste is large.

For further investigation of the impact of Ste, phase change
propagation is plotted as a function of time for different values of
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Fig. 5. Representative phase change front and temperature plots for a three-layered wall case: (a) phase change front as a function of time, and (b) temperature distributions
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Fig. 6. Temperature distribution at t =20.52 for a three-layered wall. Parame-
ter values are k; = 0.3;@; = 0.4: k; = 0.5; @ = 0.5; k3 = 0.6:G3 = 0.6;: 1 = 0.2; 5 =
0.8; Oyin =65 =034, =00; R =05;R, =00; Ry =0.5. Curves are plotted for
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Ste. The same problem parameters as Fig. 6 are considered. These
plots are presented in Fig. 7(a) and 7(b) for short and long time
ranges, respectively, in order to illustrate two key processes that
govern phase change front propagation at different time scales.
Fig. 7(a) shows the phase change front propagating very slowly
initially, followed by a rapid rise. This is because the wall is ini-
tially at zero temperature, and therefore, heat needed for phase
change must first diffuse from the imposed boundary through the
cold wall and into the phase change material. Due to the finite dif-
fusive time scale, phase change propagation is slow at first. Over
a larger time scale, as shown in Fig. 7(b), the phase change prop-
agation process proceeds rapidly at first, then slows down due to
the increasing thermal resistance offered by the growing thickness
of the melted layer. In both plots, the larger the value of Ste, the
faster is the phase change propagation, as expected, since Ste rep-
resents the relative magnitude of the imposed boundary condition.

It is instructive to analyze similar results with a non-zero ini-
tial wall temperature. For the same three-layered wall as Fig. 7,
except with 6; ;, = 1.0, Fig. 8(a) and (b) plot phase change propa-

gation over short and long time intervals, respectively. Unlike the
zero initial wall temperature case (Fig. 7(a)), in this case, phase
change propagation starts rapidly (Fig. 8(a)), because of thermal
energy in the wall that can readily transfer into the PCM. As a re-
sult, over a short time period, at any given time, there is greater
phase change propagation in this case compared to zero initial wall
temperature. Over a longer time period, however, as thermal diffu-
sion from the boundary condition begins to dominate, the differ-
ence between the two cases (Figs. 7(b) and 8(b)) diminishes, par-
ticularly for large Ste. This is because at large Ste, the impact of the
boundary condition dominates over that of the initial wall temper-
ature. When Ste is small, the effect of the initial wall temperature
persists over a longer time, resulting in greater melting.

4.3. Effect of initial temperature

In order to further understand the effect of the wall initial tem-
perature, phase change propagation curves are plotted for three
different values of 6 ;,. Results are presented for a single-layered
wall for both short and large time periods in Fig. 9(a) and 9(b),
respectively. Phase change propagation begins slowly for the zero
wall initial temperature case due to the time taken from heat from
the imposed boundary condition to diffuse through the wall. On
the other hand, when the wall itself has a non-zero initial tem-
perature, the heat from the wall diffuses readily into the PCM, re-
sulting in rapid initial phase change propagation. After some time,
each curve rises at roughly the same rate. As expected, the larger
the initial temperature, the higher is the corresponding phase
change propagation curve. However, as shown in Fig. 9(b), the im-
pact of the initial temperature diminishes over a longer time pe-
riod, and the three curves nearly coincide. This is because, unless
01.in is unrealistically large, the additional phase change due to ini-
tial thermal energy of the wall is quite small compared to phase
change driven by the external boundary condition. It can be shown
that the non-dimensional thickness of PCM that melts due to the
initial thermal energy in the wall is of the order of Ste - 0; ;,. Based
on the parameters used here, the offset between zero and non-zero
initial temperature curves in Fig. 9(a) is consistent with this esti-
mate. Note that over a longer time period, as the thickness of the
newly melted liquid grows, there is increased resistance to heat
flow into the phase change front, resulting in a slowdown of the
melting process. This is clearly seen in Fig. 9(b).
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Fig. 7. Effect of Stefan number for zero initial temperature of a three-layer wall: Phase change propagation front as a function of time for different values of Ste. (a) and (b)

present plots over short and long time ranges, respectively. Problem parameters are the same as Fig. 5.
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Fig. 10. Effect of thermal diffusivity of the wall: Phase change propagation front
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4.4. Effect of wall thermal properties

The key thermal property of the wall that governs the phase
change propagation is its thermal diffusivity, &;. Note that &y > 1
represents a wall that is more diffusive than the PCM, for example,
a metal wall enclosing a typical PCM. On the other hand, &; < 1
represents a case where the wall has lower diffusivity than the
PCM, which may be needed when the goal is to thermally insulate
the PCM and prevent it from melting/solidification. This may occur,
for example, in a solar thermal energy storage system, where the
PCM after melting must be stored in heavily insulated conditions
in order to preserve its thermal energy for later use.

Phase change front location is calculated as a function of time
for a number of values of &;. Results are plotted in Fig. 10. A small
value of &; results in slow start to the phase change propaga-
tion process, which is because heat takes longer to diffuse through
the wall when &; is small. Even with &; =1, there is an initial
time period during which, the rate of phase change propagation is
very small. Interestingly, Fig. 10 shows a saturation effect for very
large values of &;. For example, curves corresponding to &; =5
and & = 10 are nearly identical. This is primarily because once the
wall thermal diffusivity is large enough, it is no longer the rate-
limiting step, and, therefore, further improving the wall thermal
diffusivity has only a negligible effect on phase change propaga-
tion. In order to investigate this further, the location of the phase
change front at t = 2 is plotted as a function of ¢&; in Fig. 11. This
plot clearly shows the saturation effect, wherein there is negligi-
ble improvement in the phase change process beyond a value of
around & = 2.

4.5. An alternate non-dimensionalization of the spatial variable

Classical phase change problems, such as the one-dimensional,
no-wall Stefan problem do not have a length scale, due to which,
non-dimensionalization is usually carried out using an arbitrary
reference length. In the present problem, the wall thickness is
a naturally available length scale, and therefore, is used in non-
dimensionalization of the problem. As a result of this, however,
the wall thickness remains embedded within the non-dimensional
parameters, and it is difficult to examine the impact of the wall
thickness of the phase change process.

As an alternate approach to solving this problem, non-
dimensionalization is carried out using an arbitrary length Ly,

1
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Fig. 11. Effect of thermal diffusivity of the wall: Phase change propagation front at
T =2 for a single-layered wall as a function of &, ranging from a poorly diffu-
sive wall to a highly diffusive wall. Other parameters are k; = 0.5; Ste = 0.13; 6, j =
0; Ry =0.

which preserves the wall thickness as an explicit non-dimensional
parameter in the problem. This is illustrated below for a single-
layer wall problem with perfect thermal contact. The follow-

. . . o T, T,
ing non-dimensionalization is used: & = ﬁ T= ;—Lt W =1—F lfjf,
Te. ref re
T,-T; - = .
L= 1o @ =ay/ap, ki =ki/k, & =x/Ls. Here, & is the

non-dimensional wall thickness that did not appear in the treat-
ment in Sections 2 and 3. The resulting problem is quite similar
to the problem solved in Section 3. The temperature distribution
in the wall and in the melted PCM, 6; (£, 7) and 6, (&, 7) can be
shown to be

3 . An )
b€ Tyl o — 5 Lsin [ 2 2
1. %) 51[1—1—]{1&5/&] +§C i ,/6{1§ exp( T)
(60)
ki (51 + &5 - &)
O, 1)= —=>—2—"2=
LET) &1+ kis/&1]
. Sin(An(§1 +65s— ) . [ Ak 42
+§C" sin (Anéis) o Jai exp(-4y)
(61)

where

1 fus
"T Nalaro

ik 4 Eis = §) sin (a6 +6is — §))
& & [1 + fﬁ&s/é]] sin (Anis)

§ [ An
0 _ _ S d
|: 1ol (1 fl[1+’<1&5/§1])i|sm< 0715) :
sin <A"?1 )d§:|
(231

(62)
and the norm Nj is given by
No= klg]sinz( A s)derslfLSSif‘z()w(flwsinZ(A"&)dg
e e L sinutas) Jar
(63)

and the eigenvalues are roots of V& tan(@) +tan(Apérs) = 0.
kq Ne
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Fig. 12. Effect of wall thickness: Phase change propagation front as a function
of time for a single-layered wall for different values of the wall thickness. Other
parameters are ki =0.5;@ =0.5; Ste= 0.13;6;;, =0; R; =0. Note that non-
dimensionalization in this Figure follows the scheme discussed in Section 4.5, with
LrEf =1m.

Subsequently, the ODE for the phase change propagation front
is given by

7 Mk
[ e sin (f) i
dr - ‘ El[1+k1$[_5/.’;:1] Z] Sll'l()\, %‘ )exp( )\.nf)

(64)

Due to the explicit appearance of the non-dimensional wall
thickness, &; in the solution, it is easier to understand the impact
of wall thickness on phase change process through this alternate
non-dimensionalization.

Fig. 12 plots the phase change propagation as a function of
time for a number of different wall thicknesses, &;. Results in-
dicate that the thicker the wall, the slower is the phase change
propagation process. This is an expected result, because the time
taken for heat diffusion through the wall is longer for a thicker
wall. Fig. 12 shows extremely slow phase change for a very thick
wall, £ = 1. On the other hand, as the wall thickness becomes
smaller and smaller, Fig. 12 shows that the phase change propa-
gation curve is faster and faster, and approaches the solution for
the classical Stefan problem with no wall, for which, the solution
is &5 = 2A/T, where A is the root of xerf(x) exp(x2) = Ste/ /7. A
saturation effect similar to the one seen for wall thermal diffusivity
in Fig. 11 is also seen for wall thickness in Fig. 12. A plot of &5 at
T = 2.0 as a function of wall thickness &; in Fig. 13 clearly shows
that the solution approaches the result from the standard no-wall
Stefan solution when &; is around 0.002 or lower.

4.6. Solution of a practical problem

All of the plots presented so far are in non-dimensional form
in order to help understand the fundamentals of this problem. The
analytical model is next used to solve two representative practical
problems in dimensional form. First, the impact of the wall mate-
rial on phase change propagation in octadecane is analyzed. A 30°C
temperature boundary condition, relative to melting temperature is
assumed. The wall and PCM are both assumed to be initially at the
melting temperature. For a 1 cm thick wall, phase change propaga-
tion as a function of time is plotted for two different wall materials
- stainless steel 304 and polypropylene. Wall thermal properties
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Fig. 13. Effect of wall thickness: Phase change propagation front as a function
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parameters are ky =0.5;@; =0.5; Ste =0.13:6;4, =0; R; =0. Note that non-
dimensionalization in this Figure follows the scheme discussed in Section 4.5, with
Leg=1m.
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Fig. 14. Analysis of a practical problem: Phase change propagation front as a func-
tion of time for a single-layered 1 cm thick wall with octadecane phase change
material and 30 K temperature boundary condition relative to melting temperature.
Both wall and PCM are assumed to be at melting temperature initially. Plots are
presented in dimensional form for two different wall materials.

are taken from a past paper [38] and from manufacturer specifi-
cations [39], respectively. PCM thermal properties are also taken
from past work [40,41]. The resulting plot is presented in Fig. 14,
which shows, as expected, a greater rate of phase change propa-
gation for stainless steel due to greater thermal conductivity and
thermal diffusivity than polypropylene. A high diffusivity material
such as steel is preferable over polypropylene for the wall when
the goal is to facilitate phase change in the PCM.

For a similar problem with octadecane as the PCM and
polypropylene as the wall material, the impact of wall thickness
is analyzed in Fig. 15. Phase change propagation as a function of
time is plotted for a number of wall thicknesses. Similar to Fig. 14,
a 30°C temperature boundary condition, relative to melting tem-
perature is assumed, and both wall and PCM are assumed to be at
melting temperature initially. Fig. 15 shows, as expected, that the
phase change front propagates faster and faster as the wall thick-
ness reduces. In each curve, there is a short initial period, in which,
the melting process is very slow due to the time taken for ther-



M. Parhizi, L. Zhou and A. Jain

0.016  wall Thickness,
mm
0.014 ¢ 05 - i
e 2 -
0.012 1 -7 ]
........ 5 _ g - o
€ 0011 B— - g T e - ' ]
% 0.008 + P T
> 7 7 ,;." - ’_/"’
0.006 1 PLd _ i
s +* _/”,
L % P _
L:00e s " _-~""PCM: Octadecane
0.002 ,"““-:‘;_/’ Wall material: Polypropylene|
e T,-T=30°C
0 s L L L 1 L
0 1000 2000 3000 4000 5000
t,s

Fig. 15. Analysis of a practical problem: Phase change propagation front as a func-
tion of time for different thicknesses of a single-layered wall with octadecane phase
change material and 30 K temperature boundary condition relative to melting tem-
perature. Both wall and PCM are assumed to be at melting temperature initially.
Plot is presented in dimensional form.

mal diffusion through the wall. The thicker the wall, the longer
is this initial period, before the phase change process accelerates.
This initial period can be best seen for the 8 mm wall case shown
in Fig. 15.

Plots such as ones presented in Figs. 14 and 15 provide useful
design guidelines for practical latent heat energy storage systems
containing a wall between the phase change material and the heat
source/sink.

4.7. Comparison of the present work with a convective approximation

The present work accounts for the transient temperature distri-
bution in the multilayer wall. In contrast, the presence of a wall
may also be approximated by representing the wall as a ther-
mal resistance, and therefore, modeling its effect in the form of a
convective resistance at the boundary. While this represents some
simplification in the problem, it still does not result in an ana-
lytical solution, since the Stefan problem with a convective heat
transfer boundary does not have an analytical solution [42]. More-
over, the resistance approximation does not account for heat stor-
age within the wall, which may be important at small times, par-
ticularly for thick, thermally insulating walls. In order to investi-
gate this further, results from the present work are compared with
numerical calculations based on the convective resistance approxi-
mation. Fig. 16 plots the phase change propagation front as a func-
tion of time for the melting of octadecane with a 10 °C tempera-
ture rise across a polypropylene wall of three different thicknesses.
Results from the present work as well as the resistance approx-
imation are plotted. Results for the resistance approximation are
based on a variable timestep numerical calculation, since an ana-
lytical solution is not available. Fig. 16 shows that the resistance
approximation is quite close to the present work when the wall
is relatively thin. For thicker walls, however, the disagreement is
larger, particularly at small times. The present work correctly ac-
counts for heat storage in the wall, thereby predicting a flat phase
change propagation curve at small times, whereas the resistance
approximation incorrectly predicts very large rate of propagation
at small times. The two curves tend to get closer to each other
at large times when the effect of initial heat storage in the wall
diminishes in comparison with latent heat storage in the PCM. Re-
sults from Fig. 16 show that the present work is particularly ac-
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Fig. 16. Comparison of the present work with the convective resistance approxi-
mation: Phase change propagation as a function of time for a polypropylene wall
for three different thicknesses. In each case, results from the present work and the
convective resistance approximation are both plotted. The PCM is octadecane and a
10 K temperature rise in the wall is assumed.

curate for relatively thick, thermally insulating walls and for pro-
cesses over relatively short time periods. For thin, conducting walls
over long time periods, the resistance approximation is reasonably
accurate because in such a case, energy storage in the wall is rela-
tively less important.

5. Conclusions

The key results from this work include the derivation of a so-
lution for phase change in the presence of a multi-layer wall be-
tween the PCM and heat source. This solution has been used to
illustrate two key timescales present in the problem, as well as
the impact of various non-dimensional parameters on the phase
change process. Finally, this work also discusses practical problems
related to design of a PCM wall for energy storage.

The solution technique uses the -eigenfunction expansion
method, which reduces the problem to that of thermal conduction
through a multi-layer structure. Note that similar to most phase
change heat transfer problems, the derived solution is not exact
because at each time, it solves a transient problem that treats the
melting front to be fixed at that time. While the solution technique
used here is quite general, it is illustrated in this work for constant
temperature source and for semi-infinite PCM that is initially at
the melting temperature. The solution also applies to the case of
a finite thickness PCM as long as the PCM is initially at the melt-
ing temperature, so that there is no heat transfer into the origi-
nal phase. More complicated conditions, such as non-zero initial
temperature of the PCM (Neumann problem) or a time-dependent
temperature boundary condition can be easily modeled within the
framework presented here. In the former case, an M+2 layer ther-
mal conduction problem would need to be solved.

Finally, it is important to note other limitations of the present
analysis, such as ignoring natural convection in the liquid, which
may be reasonable for several scenarios, but may need to be ac-
counted for in phase change problems with very large temperature
difference, such as solidification of metals for casting and related
manufacturing processes.

While presented in the context of melting, the results in this
paper are equally applicable for solidification problems, as well as
for equivalent mass transfer problems involving diffusion of species
in conjunction with a chemical reaction front.
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Appendix A: Derivation of the eigenequation for general M-layered wall case

This Appendix derives the eigenequation for the general case of the M-layered wall. Section 2 shows that the general solution for
wn (€, 1) and wi (&, T) may be written as

Win(€.7) = cafmn(€) exp (-A37) (A1)
n=1

wi(€.T) =) cafin(€)exp(-23T) (A2)
n=1

where

A A
fmn(§) =Amncos | —==& | + B sin L (A3)

an(é)—Aan05<;07%'>+BLnsm< Ao S) (A4)
L

One may re-write fmn(§) as

fnn(€) =B1nPumpmn(§) (A5)

where ®; =1 and

@

Cbm _ pm—],n(ym—l) - Em—lRm—] f’m—],n(ym—l) . pm—Z,n(ym—Z) - Em—ZEm—Zf)m—Z,n(ym—Z) . P2.n (VZ) - EZRZI.)Z,n(VZ) . pl,n(yl) - Elkl Ijl,n(yl) (AG)
Pmn(Ym-1) Pm-1.n(VYm-2) p3n(¥2) P2 (V1)

for m=2,3..M, and with

Pmn(§) = wm,n()‘n)cos(\;;—‘;) +Sin<\;:;> ) (A.7)

Note that the over-dot denotes the derivative with respect to &.
Further, the functions v/, n(An) in Eq. (A.7) may be obtained from the boundary and interface conditions given by Eqs. (40)-(45) as
follows:

Vin(An) =0 (A.8)
km+lpm n(VYm) COS Anim um n(Ym)sin Py ) kmémﬁm,n(ym)
Ympin(An) = - (F) » 1 <V ) > m=1,2..M-1) (A.9)
m+lpmn(Vm)F5m<\/7> + <mpmn(ym)605<m)
tan (2 ) + B tan (A,&5) — ZekuRu
Ynn(An) = — <M) /o e (A10)

k A dnkyR A
1- \/7274 tan (Anérs) tan («/ET) + \/%MM tan (ﬂ)
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The function vy, (An) for the M™ layer can be obtained from either Eq. (A.9) by setting m=M-1, or directly from Eq. (A.10). Therefore,
the eigenvalues A, can be determined by comparing Eq. (A.10) with Eq. (A.9) for m=M-1. With some mathematical rearrangement, this
results in

knpm-1.0 (Y- 1)\}“»C05 ('\i’/y’v'—]) — km—1Pm-1.0(ym-1) sin (A\"}/Mfl) — kn—1Rv-1 Pv—1.0(VM-1)

Kt Put-1.n (Y- 1)\ﬁ (A\"/yﬂ) + k-1 Pm—1.n(Ym-1) COS (A%1)

An EM _ kMRM)\n
tan( o] )+ = tan (Anés) N

. : N7 N : - : _o (A11)
1- \/gfmtan()»nﬁg)tan<\/£fm)+ ’z/o“j—m" tan(m)

which is the eigenequation for the general, M-layer case. The eigenequations A, for this problem can be obtained by determining the roots
of Eq. (A.11).

Appendix B: Derivation of explicit recursive expressions for Am n, Bm,n, An and By ,

This Appendix derives explicit recursive expressions for the coefficients Am n, Bm.n, AL, and B, appearing in Eqgs. (38) and (39) for the
general, M-layered problem.

From Eq. (40), A; , = 0. Further, due to the homogeneity and subsequent redundancy in the boundary and interface conditions given
by Egs. (40)-(45), one may choose, without loss of generality, one of the coefficients, By , in this case, to be one, while determining all
other coefficients accordingly. Here, all remaining coefficients are determined in a recursive fashion, i.e., since Ay, and By, are known,
therefore, Ap, 1, and By 1, are determined in terms of Ap,n and By n for m=1,2,3..M-1, and finally, A; , and B; , are determined in terms
of Ay n and By, . The following procedure is used:

From Eqs. (17) to (18), one may write, for each m=1,2,...M-1,

mnAmi1.n + bmnBmi1n = Umn (B.1)
AmnAmi1n + €mnBmiin = Vmn (B.2)
Where

An¥Vm s An¥Ym ’_<m+1 . An¥Vm I_m+1 An¥Ym
Q. = COS = ; bmn = sin s dmpn = ———= sin = ; emn = (B.3)
(\/ Omi1 ) <\/ At ) Vv %m+1 V @m+1 YV amﬂ Vi1
AnVm - nym . )»nym
Um.n = Am.n| cOs — kmRm —2= sin ~— | | +Bm.n| sin ) 4 kR cos (B4)

Um,nzkilfl —Ama sin )L")_/m + Bi.n COS P (B.5)
vV Om vV %¥m \/am

Egs. (B.1) and (B.2) represent a set of two linear equations in Ay 1, and By, 1. A solution is given by

em,nltm,n — bmnVm, n. B —dmnlmn + GmanVmn
m+1,n =
Amn€mn — bmndm n Amn€m,n — bm,ndmn

(B.6)

Am+1,n =

Note that uy;, and vpn are known in terms of Ap, and Bm n. Therefore, Eq. (B.6) recursively expresses Ap 1., and By, 1, in terms of
Amn and By for m=1,2..M-1. Finally, A; ,, and B; ,, can be expressed in terms of Ay, and By, using a similar procedure. From Egs. (43) to
(44),

aM,nAL,n + bM,nBL,n = UpMn (B7)
dM,nAL,n + eM.nBL,n =UMn (B.S)
where

apn = COS (An); bmn = sin (Ay); dmn = —sin (An); €mn = €0S (An) (B.9)

A - - A A An A A
mn = Aun L kensRy —2= si L Bun 20 ) — kyRy—2 L B.10
Upn, M. |:cos< 561\/1> + kyiRy o sm( dM)]+ M |:51n( aM) vRm o cos( dM)] ( )

I_CM . Afn )"Tl
VUmn = —— | —Amn SN + By.n COS (B.11)

Therefore, A; , and B; , are given by

A e nlmn — anUMn _ —dM,nuM,n + AMnVUM.n B.12
Ln = d Ln = b d ( . )
aM neM n— an M, n aMneM,n — UMnUMn
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