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Abstract
Objective  Customization of the rate of drug delivered based on individual patient requirements is of paramount importance 
in the design of drug delivery devices. Advances in manufacturing may enable multilayer drug delivery devices with different 
initial drug distributions in each layer. However, a robust mathematical understanding of how to optimize such capabilities is 
critically needed. The objective of this work is to determine the initial drug distribution needed in a spherical drug delivery 
device such as a capsule in order to obtain a desired drug release profile.
Methods  This optimization problem is posed as an inverse mass transfer problem, and optimization is carried out using the 
solution of the forward problem. Both non-erodible and erodible multilayer spheres are analyzed. Cases with polynomial 
forms of initial drug distribution are also analyzed. Optimization is also carried out for a case where an initial burst in drug 
release rate is desired, followed by a constant drug release rate.
Results  More than 60% reduction in root-mean-square deviation of the actual drug release rate from the ideal constant drug 
release rate is reported. Typically, the optimized initial drug distribution in these cases prevents or minimizes large drug 
release rate at early times, leading to a much more uniform drug release overall.
Conclusions  Results demonstrate potential for obtaining a desired drug delivery profile over time by carefully engineering 
the drug distribution in the drug delivery device. These results may help engineer devices that offer customized drug delivery 
by combining advanced manufacturing with mathematical optimization.

Keywords  controlled release · drug delivery · inverse problems · optimization

Nomenclature
A	� Initial (erodible case) or fixed (non-erodible case) 

radius (m).
B	� Rate of erosion of the erodible sphere (m s−1).
c	� Concentration (mol m−3).
D	� Diffusion coefficient (m2 s−1).
J	� Order of the polynomial function.
M	� Number of layers.

Mtotal	� Total drug amount (mol).
qa	� Actual drug release rate (mol s−1).
qd	� Desired drug release rate (mol s−1).
R	� Radius of erodible sphere as a function of time 

(m).
r	� Radial coordinate (m).
t	� Time (s).
λ	� Non-dimensional eigenvalue.
θ	� Non-dimensional concentration, θ = c/cref.
τ	� Non-dimensional time, τ = Dt/A2

ξ	� Non-dimensional radial coordinate, ξ = r/A

Subscripts
in	� Initial
ref	� Reference
m	� Layer number
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Introduction

Drug delivery devices such as tablets/capsules [1], stents [2] 
and transdermal patches [3] are commonplace in the clinic 
[4, 5]. In designing such devices, the drug release profile 
(i.e., the rate at which the initial drug loaded is released as 
a function of time) is usually of primary consideration [1, 
6]. In most applications, it is desirable to maintain local 
drug concentrations within some therapeutic range for a 
defined period of time. However, depending on the local 
physiological environment, spells of under- or -overex-
posure may occur if the drug release rate is not tailored 
appropriately. It is noteworthy that most drugs are presented 
as immediate release formulations, which result in a rapid 
initial increase in systemic drug concentrations, which can 
lead to several undesirable effects [7]. One example is drug-
filled PLGA particles which usually involve an initial burst 
of drug, resulting from fabrication where the drug primar-
ily resides on the particle surface [7]. As discussed in [7], 
this can lead to toxicity, rapid depletion of the drug within 
the particle and complications in redosing. A constant drug 
release rate (so-called zero-order release) can help to alle-
viate this concern by minimizing variation in local drug 
concentrations [8]. However, zero-order release is difficult 
to achieve in practice, particularly when the drug is pre-
sented in a form that permits rapid dissolution [9]. In such 
cases, diffusion typically governs the rate of drug release, 
and first-order release kinetics are usually observed, giving 
rise to a variable drug-release rate. Despite the aforemen-
tioned advantages of zero-order release, in some situations, 
an initial burst of drug may be desirable. For example, in 
the case of drug-eluting stents, it has been reported that the 
drug release should be programmed to quickly bind to and 
saturate specific receptors on target cells, before providing 
sustained release to match declining levels of bound drug 
at later times [10].

Drug delivery tablets are traditionally manufactured by 
mixing the Active Pharmaceutical Ingredient (API) in an 
inactive chemical, known as the excipient, such as Poly-
vinyl Alcohol (PVA), along with other minor ingredients 
for binding, strength and stability [11]. While most tablets 
are designed to contain uniform concentration of a sin-
gle drug, some work also exists on bilayer or multilayer 
tablets, wherein each layer contains uniform concentration 
of a different drug [12, 13]. More recently, 3D printing 
of tablets, often referred to as printlets, has been heav-
ily investigated [14–17]. 3D printing is much slower than 
traditional manufacturing, but may offer the capability of 
customization according to individual patient needs. 3D 
printing of tablets has been reported using techniques such 
as Fused Filament Fabrication (FFF) [14], selective laser 
sintering [15], stereolithography [16] and binder jetting 

[17]. Using these techniques, it may be possible to print 
tablets in which the drug concentration varies between and/
or within the layers. Advanced manufacturing methods may 
also help print other multilayer drug delivery devices, such 
as stents, transdermal patches, etc.

Experimental investigation of drug release characteris-
tics from drug delivery devices, especially in vivo, is often 
time-consuming and expensive. The number of design fea-
tures that can be explored experimentally is often limited, 
and therefore, an accurate design of experiments is criti-
cal. In light of this, theoretical modeling of drug release 
plays an important role in developing a fundamental 
understanding of the factors that influence drug delivery, 
which in turn may help maximize the benefits of meas-
urements [1, 18]. Theoretical modeling of drug release is 
based on solving the underlying conservation equations, 
often written in the form of transient partial differential 
equations, subject to appropriate boundary and initial con-
ditions [1, 19, 20]. While most of the literature accounts 
only for diffusion as the dominant transport mechanism, 
advective transport due to fluid flow, such as radial pres-
sure gradient driven plasma flow in an artery [21, 22], as 
well as drug absorption within the capsule prior to release 
[6] have also been accounted for. Other factors, such as 
surface or bulk erosion of the capsule [23, 24], dissolu-
tion [25], multi-drug diffusion [26] and drug binding after 
release [27] have also been modeled.

Most of the theoretical work outlined above focuses on 
determining the drug release profile for a given set of input 
parameters such as geometry and diffusion coefficients. In 
contrast, the inverse problem, i.e., to determine the optimal 
design of the drug delivery device that produces a desirable 
drug release profile, has received relatively less attention. 
For example, while the nature of diffusion makes it inher-
ently impossible to obtain a constant drug release rate from 
a uniformly loaded drug delivery device, in the case of a 
multilayer drug delivery device, it may be possible to con-
figure the drug concentration in each layer in such a way as 
to obtain a drug release rate that is as close to a constant, or 
indeed any desired function of time, as possible. In practice, 
the underlying physics likely makes it impossible to achieve 
precisely the desired drug delivery rate, however, it is, in 
principle, possible to seek an initial drug distribution that 
minimizes the deviation from the desirable drug release rate 
over the delivery period. Mathematical modeling and opti-
mization provide the required tools in pursuit of this goal. 
Such design optimization, coupled with advances in mul-
tilayer manufacturing methods, may result in customized 
drug delivery devices, in which, the drug release profile is 
tailored to the local environment and needs of the individual 
patient.
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In general, optimization methods have not been 
applied sufficiently for drug delivery problems, espe-
cially when compared to other engineering problems 
[28]. The impact of the initial drug distribution on drug 
delivery characteristics in a flat, slab-shaped device has 
been recognized [29, 30], and optimization of the initial 
drug distribution towards a desirable delivery profile has 
been carried out [31, 32]. However, these papers do not 
sufficiently account for the important and practical phe-
nomenon of erosion, except as a limiting case with zero 
diffusion [29]. In practice, erosion and diffusion occur 
simultaneously to determine drug delivery characteris-
tics of an erodible drug delivery device [23]. Moreover, 
these papers are not directly applicable to spherical drug 
delivery devices, such as capsules.

This paper presents inverse analysis and optimization of 
diffusion-based drug delivery from a spherical drug deliv-
ery device, such as a capsule or a tablet. Both non-erodible 
and surface-erodible drug delivery devices are considered. 
The problem is cast in the form of an inverse mass transfer 
optimization problem, with the goal of determining an initial 
drug distribution that results in a drug delivery profile that 
is as close as possible to a desired profile. Polynomial or 
discrete multilayer functions for the initial drug distribution 
are considered, and surface erosion is accounted for. Opti-
mization is carried out for cases where zero-order release 
is desired, as well as ones with a desired initial burst. It is 
shown that optimization of initial drug distribution in each 
layer of a multilayer spherical drug delivery device results 
in a drug delivery profile that is much closer to a desired 
profile than the baseline case of uniform drug distribution.

Problem Definition and Derivation 
of Solution

Spherical Layered Non‑Eroding Capsule

Consider the problem of drug delivery from a spherical cap-
sule of fixed radius A containing drug of total mass Mtotal. 
A multilayer capsule, as shown schematically in Fig. 1(a), 
is considered first, which can be manufactured through 
layer-by-layer deposition around a solid core. The initial 
drug distribution of each layer may be designed to be dif-
ferent, resulting in a discrete initial drug distribution. For 
an M layer capsule, this may be mathematically expressed 
as c = cin,m at t = 0 for Rm-1 < r < Rm (m = 1,...M) where Rm-1 
and Rm are the inner and outer radii of the mth layer. Note 
that R0 = 0 and RM = A. The radii may be equally spaced, 
but not necessarily so. The case of continuous initial drug 
distribution, say, c = c0(r) at t = 0 for 0 < r < A (Fig. 1(b)) is 
considered in a subsequent sub-section.

Diffusion of the initial drug distribution to the outer surface 
of the sphere, followed by convective transport at the surface, 
results in release of the drug to the surrounding medium. Drug 
absorption within the sphere is neglected, and, thus, in prin-
ciple, all of the drug is released over time. The timescale for 
dissolution of drug is assumed to be much shorter than for dif-
fusion, so that the entire drug distribution in the sphere begins 
to diffuse immediately at the initial time. It is assumed that 
each layer consists of the same excipient such that each layer 
has the same diffusion coefficient that remains invariant with 
time. Erosion of the sphere over time is neglected here, so that 
the outer radius remains fixed. The bioerodible case is con-
sidered in the next sub-section. Assuming a circumferentially 
symmetric sphere with drug loading varying only in the radial 
direction, drug diffusion occurs only in the radial direction. 

Fig. 1   Schematic of a spheri-
cal capsule of radius R with 
(a) discrete (multilayer), or (b) 
continuous initial drug concen-
tration.
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The release medium surrounding the capsule is assumed to 
be an infinite sink, which is appropriate when the capsule is 
immersed in a relatively large volume of fluid.

Under these assumptions, for a desired rate of drug release 
as a function of time, qd(t), the interest is in determining 
the initial drug distribution which results in an actual drug 
release rate qa(t) that is identical, or as close as possible to 
the desired rate qd(t). In many cases, a uniform rate of drug 
delivery is desired, i.e., a flat qd curve over the period of drug 
delivery. In some cases, an initial burst in drug delivery may 
also be desirable. From a theoretical mass transfer perspec-
tive, this is an inverse mass transfer optimization problem. 
In principle, there may not exist any initial drug distribu-
tion, for which, qa(t) exactly matches qd(t). Instead, one must 
seek to optimize the initial drug distribution, for example, 
by minimizing the root-mean-square deviation between the 
actual qa(t) and the desired qd(t). The forward problem is 
first defined and solved, i.e., an expression for qa(t), given an 
initial drug distribution, is derived. Based on this solution, 
the optimization problem is then defined and solved.

Based on the assumptions described above, the mass con-
servation equation governing the present problem within the 
sphere and up to a total release time ttotal may be written as

along with boundary and initial conditions given by

Once this problem is solved, the actual drug release pro-
file is given by

This problem is first non-dimensionalized as follows:

where the reference concentration cref is chosen to be 
cref =

Mtotal
4

3
�A3

 , which is the concentration if the entire drug 

amount Mtotal was distributed uniformly within the capsule. 
Accordingly, the non-dimensional governing equations are

(1)
𝜕c
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where �in,m =

cin,m

cref
 are the non-dimensional initial drug concen-

trations in each layer, �m =

Rm

A
 are the radii of the layers, and 

�total =
Dttotal

A2

 is the total non-dimensional drug release time. In 
this framework of non-dimensionalization, the non-dimen-
sional drug delivery profile may be defined as 
qa(�) =

qa(t)A
2
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= −

(
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)
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.

Equations (7)–(10) represent a forward mass transfer 
problem, in which an initial drug distribution θin, m is given 
and the resulting non-dimensional drug delivery profile, 

qa(�) = −

(
��

��

)

�=1

 is to be determined. This problem is 

solved first, because the solution of this direct problem 
provides the theoretical basis for solving the inverse prob-
lem. A straightforward solution for eqs. (7)–(10) may be 
obtained using the method of separation of variables as 
[20]

where λn = nπ (n = 1, 2, 3…) are the eigenvalues and, based 
on the principle of orthogonality, coefficients An are given by

Subsequently, the rate of drug delivery into the release 
medium as a function of time is given by

For a sphere in which each layer is loaded with the same 
concentration, qa(�) will be largest at small times, when drug 
concentration gradient at the surface is the highest. As drug is 
released  and drug amount within the capsule reduces, qa(�) 
decreases at large times. The precise nature of qa(�) depends 
on the initial drug distribution in each layer, which appears 
in eq. (13) within the An terms.
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Now, the problem of determining the initial drug distri-
bution that results in a qa(�) that is as close as possible to 
a desired qd(�) may be posed as an optimization problem. 
The goal is to determine the initial drug concentrations in 
each layer, θin, m, so as to minimize the root-mean-square 
deviation between qa(�) and qd(�) over a time period, i.e.,

where τi are discrete times in a certain time duration 
0 < τ < τtotal that are used to determine S, the root-mean-square 
(RMS) error, itotal is the total number of times considered and 
qd(�) is the non-dimensional desired drug delivery rate in this 
time period. The constraint given in eq. (15) represents the 
requirement to load a fixed total mass Mtotal of the drug in the 
sphere. The constraint given in eq. (16) represents the require-
ment for the initial drug concentration in each layer to be 
positive, since negative drug concentration is not meaningful. 
Finally, the total time in which to consider this problem may 
be taken to be the diffusive timescale corresponding to the 
sphere radius, given by ttotal =

A2

4D
 , and therefore, in the non-

dimensional problem, �total = 0.25 . This problem has been 
formulated in a general manner, and can be solved for any 
desired drug delivery rate qd(�) . For example, a constant drug 
delivery rate is often desirable, in which case, it can be shown 
that qd =

4

3
 . Further, the general nature of this problem state-

ment facilitates analysis of any value of M, depending on the 
maximum number of layers that can be reliably manufactured.

A similar problem for a surface-erodible sphere is defined 
next.

(14)minimize S =

√√√√ 1
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)]2
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3

(16)subject to �in,m ≥ 0 m = 1, 2...,M

Spherical Layered Surface‑Erodible Capsule

This section considers the optimization of initial drug dis-
tribution in a multilayer spherical capsule assumed to be 
undergoing linear surface erosion, so that the sphere radius 
reduces as R(t) = A − Bt, where A is the initial radius and 
B is the rate of erosion. The assumption of linear surface 
erosion is supported by theoretical modeling [33] as well 
as experimental observations [34]. It is assumed that D 
remains unaffected by the erosion process. In the context of 
this problem, the interest is to understand how the optimal 
drug distribution may deviate from the results for the non-
erodible sphere.

The direct problem of predicting the rate of drug delivery 
from a linear single-layer surface-erodible sphere has been 
recently solved [23]. Using a coordinate transformation, the 
non-dimensional transient concentration distribution for a 
given initial drug distribution has been shown to be [23]
where

Here, B = AB∕D is the non-dimensional rate of erosion. 
Eigenvalues λn are the same as the previous sub-section. 
Note that while the previous work [23] considered the 
case of the initial distribution given by a continuous func-
tion, eq. (18) represents an adaptation for the present 
case, in which the initial distribution is discrete.

As a result, the non-dimensional rate of drug delivered 
is given by
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As expected, for B = 0 , eqs. (17)–(19) reduce to cor-
responding results for the non-erodible sphere discussed 
in section 2.1. Moreover, the constraints related to fixed 
total drug mass, given by eq. (15) and positive initial drug 
distribution in each layer, given by eq. (16) continue to 
apply for the surface-erodible case. Therefore, optimiza-
tion for this case of discrete initial drug distribution in a 
surface-erodible sphere may be carried out based on eqs. 
(14), (15) and (16), where qa is given by eq. (19).

Note that since the sphere erodes at a uniform rate, the 
entire sphere vanishes when R(t) = 0, i.e., t = A/B, and therefore, 
the time period in which drug must be delivered is given by 
�total = 1∕B . Therefore, the ideal, constant rate of drug delivery 
in this time period is given by qd = 1∕

(
3�total

)
= B∕3.

Spherical Capsule with Continuous Initial Drug 
Distribution (Both Non‑erodible and Erodible Cases)

The prior two sub-sections considered problems in which the 
sphere, whether erodible or not, has a discrete, layered initial 
drug distribution. In contrast, the problem of a continuous 
initial drug distribution, where θin(ξ) is a known continuous 
function of space may also be of interest. Advances in 3D 
printing may make it possible to print a layered capsule with 
an initial drug distribution that approximates the desired func-
tional distribution θin(ξ). Practical considerations may limit 
the implementation of spatial variation of θin to relatively 
simple functions, since complicated concentration distribu-
tion within the capsule may possibly not be accurately repro-
ducible in experiments. Polynomial functions are considered 
in this section due to their versatility and common usage in 
fitting experimental data over a finite domain. The solutions of 
the non-erodible and erodible drug delivery problems remain 
the same, as given by eq. (11) and (17), respectively, with the 
expression for the coefficients An recast in a more general form 
as follows for the surface-erodible case

Note that setting B = 0 in eq. (20) above results in the 
expression for the non-erodible case.

Moreover, the constraint of maintaining the same total 
drug mass during optimization, given by eq. (15) for the dis-
crete drug distribution is also written down more generally 
for both erodible and non-erodible cases as follows

The constraint of non-negative concentration may be 
written as

(20)An = 2
∫

1

0

�∗�in(�
∗) sin

(
�n�

∗
)
exp

(
−
�∗2B

4

)
d�∗

(21)
∫

1

0

�∗
2
�in(�

∗)d�∗ =
1

3

Optimization results for the simplest two polynomial 
functions – linear and quadratic – are discussed, followed 
by a more general analysis for a polynomial of order J.

Optimization Procedure

An interior-point algorithm [35] solution is utilized to solve 
the constrained optimization problem summarized in eqs. 
(14)–(16). To relax the inequality constraints, a vector of 
slack variables is introduced, and an approximated problem 
is posed. With this, the optimization problem is then modi-
fied using a logarithmic barrier function and the inequalities 
are removed. For the augmented problem, the optimization 
iterates are generated using Newton’s method, in which, the 
Jacobian is synthesized using a finite difference routine. The 
iterations are continued until an appropriate stopping crite-
rion is met. This process is implemented using the ‘fmin-
con’ function in the MATLAB Optimization Toolbox. The 
tolerances used for the function as well as the constraint 
satisfaction are set to be 10−12. The minimum allowable step 
size is also set at 10−12. A local minimum is always found 
for the range of parameters used. Additionally, the optimi-
zation algorithm is initialized with multiple starting values 
(guesses for the initial concentration), and in all those cases, 
the results are found to converge to the same values. A more 
detailed discussion on interior-point optimization methods 
can be found in [35, 36].

(22)�(�) ≥ 0 0 ≤ � ≤ 1

Fig. 2   Drug release rate curves for a non-eroding sphere with two-
layered initial drug distribution for three cases – baseline uniform dis-
tribution (Case A), drug loaded only in outer layer (Case B) and only 
in outer layer (Case C). The black dashed line represents the desired 
constant drug delivery release rate curve. Initial drug concentration 
distributions for each case are shown as insets.
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Results and Discussion

Results for various cases presented in the previous section 
are now discussed in the same order.

Discrete, Multilayer Drug Cases θin, m

Non‑erodible Sphere

The fundamental motivation for optimizing the initial drug 
distribution in a non-erodible multilayer sphere to obtain a 
desirable drug release curve is first illustrated. A non-erodi-
ble two-layer sphere with radially equidistributed layers (i.e., 
γ1 = 0.5) is considered. Based on a desired constant drug 
release rate, Fig. 2 plots three candidate designs, includ-
ing a baseline Case A, in which, both layers have the same 
initial drug concentration. The other two curves pertain to 
Cases B and C, in which the entire drug is loaded either 
in the outer or in the inner layer, respectively, leaving the 
other layer completely drug-free. The color plots in Fig. 2 
represent the initial drug concentration distributions in the 
layers for each Case. Since drug delivery from the outer 
surface of the sphere occurs due to a concentration gradient 
at the surface, for Cases A and B, the rate of drug delivery 
is very high initially, which then rapidly decays as much of 
the drug is lost, and the concentration gradient weakens. 
However, in Case C, since the outer layer does not contain 
any drug, the initial drug release rate is close to zero, and it 
grows only slowly before reaching a peak and subsequently 
decaying. Compared to Cases A and B, the drug release rate 
curve for Case C, when considered across the time of inter-
est, is relatively flatter, and, in particular, it avoids the large 
initial drug release. This illustrates the strong dependence 

of the drug release rate on initial distribution of drug in a 
multilayer capsule. Even though Case C is an extreme case 
and not necessarily optimal, its much better performance 
compared to Cases A and B justifies a systematic optimiza-
tion in search of the optimal initial drug distribution that 
produces close to a desired drug release rate.

Several optimization cases are computed for different 
number of layers in a non-eroding sphere. In each case, the 
goal is to obtain a constant drug release rate, i.e., based on 
the non-dimensionalization scheme, qd(�) = 4∕3 , while 
maintaining the total amount of drug loaded to a constant 
value, per eq. (15). Figure 3(a) presents the optimal drug 
delivery curves obtained for cases with different number of 
layers. In each case in Fig. 3, as well as in subsequent Fig-
ures, layers are assumed to be radially equidistributed. For 
comparison, the baseline drug delivery curve for the case 
with uniform drug distribution throughout the sphere is also 
shown. The desired drug rate is also shown as a broken line. 
Figure 3(a) shows that an optimized two-layer sphere already 
performs much better than the baseline uniformly distrib-
uted case in terms of flatness. There is further improvement 
upon the use of more than two layers, but the incremental 
improvement is much lower beyond three layers or so. In 
general, it is not possible to obtain a completely flat curve, 
even with a large number of layers, due to the constraints 
imposed by the fundamental nature of diffusion. However, 
as shown here, optimization can be used to avoid the large 
initial drug release rate and get as close as possible to a flat 
curve. Figure 3(b) presents the RMS deviation in the opti-
mized drug distribution as a function of the number of lay-
ers. The RMS deviation for the baseline, unoptimized case is 
also shown as a broken line for comparison. This plot shows 
a reduction of around 64% in the RMS error in the two-layer 

Fig. 3   Optimization results for a non-erodible sphere with initial drug distribution in different number of layers: (a) Optimal drug release rate 
curves for up to ten-layered sphere, including the curve for the baseline, unoptimized case. The black dashed line represents the desired, constant 
release rate curve, qd =

4

3

 ; (b) Minimized RMS deviation (compared to a flat drug release rate curve) as a function of number of layers. RMS 
error for the baseline, unoptimized case is also shown as a dashed line for comparison.
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case compared to baseline, and further improvement when 
going to the three-layer case. Beyond that, however, there 
ceases to be much further improvement. This shows that 
optimization beyond a few layers may not be worthwhile, 
especially considering the increased manufacturing cost and 
complexity due to the additional layers.

It is instructive to examine the optimal drug distributions 
predicted by the optimization algorithm for different number 
of layers. These distributions are presented as color plots in 
Fig. 4, where, in each case, the total mass of drug loaded 
in the sphere is the same. It is found that in each case, the 
optimization algorithm focuses on loading most of the drug 
in the inner layers, while loading no or very little drug in 
the outer layers. This is consistent with the physical under-
standing of this problem, wherein, it is critical to reduce the 
surface concentration gradient at early times to avoid very 
large rate of drug delivery, for which, it is reasonable that 
most of the drug be loaded in the inner layers.

For a simple, non-eroding drug delivery device, these 
results demonstrate the capability of substantial improve-
ment in the nature of drug delivery by optimization of the 
initial drug distribution in multiple layers. Such information 
can be valuable for fully maximizing the benefit of manufac-
turing multilayer drug delivery devices with different drug 
concentrations in each layer.

Optimization results for a more realistic case of a linearly 
erodible multilayer sphere is discussed next.

Erodible Sphere

In contrast with the previous sub-section, the results pre-
sented here pertain to a sphere that undergoes a linear 

reduction in its radius. The non-dimensional rate of ero-
sion, defined as B = AB∕D is an important parameter here. 
A value of B = 1 , which is representative of several drug 
delivery scenarios [23] is used. In order to illustrate the 
importance of optimizing the initial drug distribution for 
the eroding sphere, results for three Cases of a two-layer 
erodible sphere are shown in Supplementary Fig. 1. The 
three cases include baseline case (uniform drug distribution 
in both layers – Case A), and ones in which all the drug is 
distributed in the outer layer alone (Case B) or in the inner 
layer alone (Case C). Similar to Fig. 2 for a non-erodible 

Fig. 4   Color plots of optimized initial drug concentration distributions for the multilayer non-erodible sphere case, for which optimal drug 
release rate curves are presented in Fig. 3.

Fig. 5   Optimal drug delivery curves for an eroding sphere ( B = 1 ) 
with different number of layers. For reference, the baseline curve for a 
sphere with uniform drug distribution, as well as the desired constant 
release rate curve are also shown.
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sphere, this plot shows that loading all the drug in the inner 
layer (Case C) results in much more uniform drug release 
rate than the baseline case. Therefore, the motivation to opti-
mize the initial drug delivery distribution is as valid for the 
erodible case, as it was for the non-erodible case discussed 
in the previous sub-section.

For a fixed value of the rate of erosion, B = 1 , Fig. 5 plots 
the optimized initial drug distributions for erodible spheres 
with four, six and eight layers. A curve corresponding to the 
baseline case is also plotted. It is seen that as the number of 
layers increases, the drug release rate gets closer and closer 
to the ideal flat curve, although, similar to the non-erodible 
case, the incremental benefit beyond a few layers is rela-
tively minor. The color plots in Fig. 5 illustrate the nature 
of the optimized drug distributions in each case. In general, 
the optimization calls for more drug to be distributed in the 
inner layers, and less in the outer layers. This is similar to 
the non-erodible case and consistent with the need to reduce 
surface concentration gradient at small times in order to flat-
ten the drug release rate curve.

Since the non-dimensional rate of erosion is an important 
problem parameter here, the impact of B on the optimization 
is examined next. Drug delivery optimization is carried out 
for two different rates of erosion, B = 1 and B = 4 for a four-
layer device. Keeping the same total amount of drug in each 
case, Fig. 6 plots the optimized drug delivery curves, as well 
as the underlying initial drug distributions as color plots. For 
a surface-erodible sphere, the release time is inversely propor-
tional to the rate of erosion, and therefore, for the B = 4 case, 
the drug release process terminates earlier, and therefore, the 
rate of release is larger. It can be seen from the color plots 

in Fig. 6 that, in order to meet this elevated drug delivery 
requirement at early times, the optimization algorithm assigns 
somewhat greater drug concentration in the outer layers than 
in the B = 1 case. As a result, the optimized drug release rate 
for the B = 4 case is also elevated, in order to better match 
the required faster rate of drug delivery over a shorter time. 
Figure 6 demonstrates the capability of the optimization algo-
rithm to adjust itself to the rate of erosion by assigning an 
appropriately greater drug concentration in the outer layers.

Erodible Sphere with Initial Burst Release

While all plots presented so far have been based on the goal 
of obtaining a constant drug release rate, the optimization 
methodology developed here is quite general, and is appli-
cable to any desired drug release profile. In order to dem-
onstrate this, a case in considered, in which, it is desired to 
produce an initial burst for a small time, followed by sus-
tained drug release at a constant rate for the remainder time. 
In order to examine the impact of this desired initial burst 
on optimal drug distribution, optimization calculations are 
carried out for a case where a five-fold burst in drug release 
rate is desired during the first 10% of the time period. For 
consistency, the same total drug mass is assumed within 
the sphere as all previous problems. Figure 7 presents the 
optimized results for this case for a three-layered spherical 
surface-erodible capsule. The rate of erosion is B = 1 . The 
drug release rate based on optimized initial drug distribu-
tion is plotted in Fig. 7, along with the curve for the baseline 
case, in which drug is loaded uniformly in all layers. The 
desired drug release profile, showing a five-fold burst ini-
tially, followed by a lower, constant drug release rate is also 

Fig. 6   Comparison of optimal drug delivery curves for two speeds 
of erosion for an eroding sphere with four layers. For reference, the 
desirable constant release rate curves for both cases are also shown. 
The B = 4 curves end earlier than the B = 1 curves due to faster ero-
sion of the sphere.

Fig. 7   Demonstration of drug optimization for a case requiring five-
fold drug dosage boost in the first 10% of the time period. A three-
layer erodible sphere with B = 1 is considered here.
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shown. Figure 7 shows that with the implementation of the 
optimized drug distribution in the three layers, shown as a 
color plot in the inset, the drug release rate curve is much 
flatter compared to the baseline case. The optimization algo-
rithm assigns most of the drug to the inner-most layer, and 
relatively lesser drug in the outer layers, resulting in a rate of 
drug delivery initially that better matches the desired burst. 
In comparison, the baseline drug release rate is extremely 
large at the initial time.

The inverse problem defined in this work and the subse-
quent optimization can be used for any desired drug release 
rate, and Fig. 7 demonstrates this capability for the specific 
case of a drug release profile with an initial burst. The initial 
drug distribution can be similarly optimized for any other 
desired drug delivery profile that may be highly customized 
for the needs of a specific patient.

Polynomial Multilayer Drug Distribution θin(ξ) 
(Non‑erodible Sphere)

Linear Drug Distribution

A linear initial drug distribution �in(�) = p1 + �p2 is considered 
first. Based on the constraint given by eq. (21), it can be shown 
that p2 =

4

3

(
1 − p1

)
 , and therefore, �in(�) =

(
1 −

4

3
�

)
p1 +

4

3
� . 

Therefore, when the initial drug distribution is to be linear, the 
optimization problem is a one-variable problem. This problem 
can be analyzed by simply plotting S as a function of p1 in the 
range that satisfies the constraint given by eq. (22), i.e., 
0 ≤ p1 ≤ 4 . The two extremes within this range, p1 = 0 and 
p1 = 4 represent initial drug distribution of �in(�) =

4

3
� and 

θin(ξ) = 4(1 − ξ), respectively. These functions represent a 

capsule that is heavily loaded towards the outer surface or the 
center, respectively. Between these two extremes, p1 = 1 rep-
resents the baseline, uniform drug distribution (θin(ξ) = 1). Intui-
tively, in order to make the drug release rate curve as flat as 
possible, the drug delivery profile must be reduced at early 
times, and at later times, the curve must be prolonged as much 
as possible. In order to do so, it is important to reduce drug 
distribution towards the surface and instead load greater drug 
concentration near the center.

Figure 8(a) plots RMS deviation of the drug release rate as 
a function of p1 in the feasible range 0 ≤ p1 ≤ 4 . Initial drug 
distributions for three cases – baseline (θin(ξ) = 1) and two 
extreme cases, �in(�) =

4

3
� and θin(ξ) = 4(1 − ξ) correspond-

ing to p1 = 0 and p1 = 4 , respectively – are also shown in 
the inset as color plots. Consistent with physical arguments 
discussed above, S reduces monotonically with increasing 
p1 . This shows that, within the given constraints, it is desir-
able to have as large a value of p1 as possible, and therefore 
θin(ξ) = 4(1 − ξ) corresponding to p1 = 4 is the optimal lin-
ear initial drug distribution. The physical interpretation of 
this result is that an initial drug concentration distribution 
biased towards the center of the sphere helps reduce the ini-
tial peak and prolongs the drug distribution curve. This can 
be clearly seen in Fig. 8(b), which plots the drug release rate 
for these three specific cases. For comparison, the desired 
flat drug release rate curve is also shown as a dotted line. 
Figure 8(b) shows high mass flux of the drug at early times 
for each case. However, compared to the baseline, the optimal 
θin(ξ) = 4(1 − ξ) case shows a much lower initial peak and a 
more prolonged flat period before drug delivery goes to zero. 
This results in a much flatter drug release rate curve than 
the baseline. The RMS deviation for this case, 0.87, is 58% 

Fig. 8   Optimization results for linear initial drug distribution in a non-erodible sphere: (a) RMS deviation from ideal, flat delivery curve as a 
function of p

1

, where �in(�) =
(
1 −

4

3

�

)
p
1

+
4

3

� . Initial drug distribution curves for three cases – uniform, optimal and non-optimal drug distri-
bution are shown in inset colorplots. (b) Drug delivery curves for the three cases, with the desired constant release rate curve shown for refer-
ence.
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lower than the baseline value of 2.07, representing a sub-
stantial improvement in the uniformity of drug delivery. In 
contrast, the peak at early times is worse for the non-optimal 
�in(�) =

4

3
� case because it loads more drug towards the outer 

surface, resulting in even greater drug release at early times.
This analysis shows that θin(ξ) = 4(1 − ξ) is the ideal initial 

linear drug distribution in the spherical capsule. Due to the non-
dimensionalization carried out here, this is a universal result 
that applies to all non-erodible spherical capsules with a linear 
initial drug distribution.

In search of an even closer drug release rate to that 
desired, the case of a quadratic initial drug distribution is 
considered next.

Quadratic Initial Drug Distribution θin(ξ)

A quadratic initial drug distribution, �in(�) = p1 + �p2 + �2p3 
facilitates a much larger design space compared to the linear 
case analyzed in the previous sub-section. In the quadratic case, 
in order to ensure the same total mass of drug loaded into the 
capsule, the coefficients in θin(ξ) must satisfy p1

3
+

p2

4
+

p3

5
=

1

3
 , 

so that �in(�) = p1 + �p2 + 5�2
(

1

3
−

p1

3
−

p2

4

)
 involves two 

coefficients p1 and p2 that may be assigned independently. This 
two-variable optimization problem can be analyzed by plotting 
the objective function S in the p1-p2 space and determining the 
( p1 , p2 ) design point that results in the lowest value of S. Fig. 9 
presents a color plot of the objective function S in the p1-p2 
space, shown only in the feasible region that satisfies eq. (16). 
Fig. 9 shows that, firstly, only a limited region within the two-
dimensional p1-p2 design space is feasible, because for p1 and 
p2 values outside this region, the drug distribution becomes 
negative at one or more points inside the sphere, which is not 
meaningful in the present work. Within the feasible region, 
Fig. 9 shows a non-intuitive variation in the RMS deviation as a 
function of p1 and p2 . In general, there is lower deviation for 
large positive values of p1 and large negative values of p2 . The 
optimal point in the p1-p2 space, in which the RMS deviation is 
lowest is found to be at p1 = 13.14 and p2 = −29.10 , i.e., a 
q u a d r a t i c  d r u g  d i s t r i b u t i o n  o f 
�in(�) = 13.14 − 29.10� + 16.14�2 . Figure 10(a) presents drug 
release rate curves for the baseline and optimal cases. Two addi-
tional cases – a near-optimal quadratic case, 
�in(�) = 10 − 20� + 10�2 and the optimal linear case 
θin(ξ) = 4(1 − ξ) – are also shown for comparison. Figure 10(a) 
shows a much flatter drug release rate curve for the optimal 
quadratic case. The RMS deviation is 0.58 compared to 2.07 for 
the baseline case, representing a reduction of around 72%. In 
comparison, the corresponding RMS deviation for the optimal 

Fig. 9   Colormap showing the RMS deviation from ideal, flat deliv-
ery curve in the p

1

− p
2

parameter space for quadratic drug distribu-
tion in a non-erodible spherical capsule. White space represents the 
infeasible region where the drug distribution becomes negative at a 
point within the capsule. While the optimal point is indicated, the 
dark region shown is also close to optimal.

Fig. 10   Optimized results for non-erodible spherical capsule with quadratic drug distribution: (a) Drug delivery curve for a number of quadratic 
drug distributions. The desired constant release rate curve and optimized linear curve are also shown for comparison‘(b) Initial drug distribution 
curves for the cases plotted in part (a).
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linear case is 0.87. Compared to the baseline case, the rate of 
drug delivered at initial times is much lower for the optimal case. 
Additionally, while the mass flux goes down monotonically for 
the baseline case, it reduces, then increases and finally reduces 
in the optimal case, all the while staying much closer to the 
desired flat curve.

An interesting aspect of the variation of RMS devia-
tion in the p1-p2 space is that the RMS surface around the 
minima, found at p1 = 13.14 and p2 = −29.10 , is rather 
flat. Therefore, there is a reasonably large region in the p1
-p2 plane, where the RMS deviation is quite close to the 
minimum value. For example, for �in(�) = 10 − 20� + 10�2 
plotted in Fig. 10(a), the RMS deviation is 0.61, which is 
within 5% of the optimal case. Therefore, it may be possible 
for a drug designer to choose within a greater design space 
without sacrificing much in terms of the drug release rate.

Figure 10(b) illustrates the nature of drug distribution curves 
within the sphere for the cases considered here. While the base-
line curve is flat, corresponding to uniform drug distribution, 
the optimal drug distribution curve starts very high at the center 
and has a minima of zero concentration just before the outer 
surface of the capsule. For comparison, drug distributions for 
the optimal linear and nearly-optimal quadratic cases shown 
in Fig. 10(a) are also plotted here. Both of these curves are 
monotonic and reduce to zero concentration at the surface. In 
case implementing the optimal drug distribution, with a mini-
mum, zero concentration close to the surface is experimen-
tally challenging, one may adopt a monotonic curve, such as 
�in(�) = 10 − 20� + 10�2 , without much loss of performance.

General Polynomial Initial Drug Distribution θin(ξ)

A general polynomial initial drug distribution is now con-
sidered, i.e., �in(�) =

∑J

j=0
pj+1�

j , where J is the degree 

of the polynomial. In this case, the design space is much 
larger, and a brute force search for the optimal, similar 
to linear and quadratic distributions in the previous sub-
section is no longer possible. Inserting the general J-order 
polynomial form into the mass conservation requirement 
eliminates one of the coefficients, and therefore, this is 
a problem of J-parameter optimization, defined by eqs. 
(14), (16) and the following form of eq. (15) written for 
the assumed polynomial form

Similar to the multilayer sphere cases, optimization for 
this case is carried out using the procedure outlined previ-
ously. Representative optimization results for this case are 
presented in Fig. 11. The optimized drug release rates are 
plotted for polynomials of degrees 1 (linear) through 6 in 
Fig. 11(a). The RMS deviation S is also plotted as a function 
of the degree of polynomial in Fig. 11(b). These plots show 
substantial improvement in the drug delivery for the J = 1 
(linear) and J = 2 (quadratic) cases compared to baseline. 
Beyond these cases, the drug release rate curves in Fig. 11(a) 
are nearly identical, and correspondingly, the values of RMS 
deviation plateau out, as shown in Fig. 11(b). This shows, 
similar to the plots for the discrete multilayer case, that the 
benefit of optimizing the initial dug distribution reaches a 
plateau, and there is not much additional benefit in con-
sidering increasingly complex initial drug distributions. 
Such insights must be carefully considered along with cost 
and complexity in order to determine the best initial drug 
distribution.

Note that while results in this section are presented in the 
context of a polynomial form of the initial drug distribution, 

(23)subject to

J∑
j=0

pj+1

j + 3
=

1

3

Fig. 11   Optimized drug delivery curves for a non-erodible spherical capsule with polynomial drug distributions of different degrees; (b) Mini-
mized RMS error as a function of degree of polynomial.
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the optimization framework utilized here is a general one, 
and it is possible to optimize based on initial drug distribu-
tions of other forms, such as power functions or exponential 
functions instead of polynomials.

Conclusions

The key contribution of the present work is in optimizing 
the initial drug distribution in a multilayer surface-erodible 
spherical capsule for attaining a desired drug release rate 
over time. A key conclusion of the results discussed here is 
that while there is substantial early stage improvement, for 
example, for a two- or three-layered capsule, the incremental 
benefit in considering more complicated systems, such as a 
capsule with more than three layers, is rather limited.

By solving the forward problem and carrying out opti-
mization in non-dimensional form, this work ensures uni-
versal applicability of the results. For example, the results 
for the non-erodible sphere are applicable for a sphere of 
any dimension, as long as the underlying assumptions are 
satisfied. Similarly, results for the erodible sphere case are 
also universally applicable, with the non-dimensional rate 
of erosion as the key parameter.

It is important to recognize the key limitations of the 
present work. Dissolution is assumed to occur rapidly. 
If dissolution was to be the rate-limiting factor, then the 
qualitative trends reported here would still be valid. How-
ever, the overall timescale for drug to be released would 
increase, in a manner dependent on the specific dissolu-
tion properties of the drug within the delivery system. The 
diffusion coefficient is assumed to be invariant during the 
drug delivery process and the outer boundary is modeled 
in terms of a zero concentration boundary, although this 
can be easily extended to account for non-sink conditions. 
These assumptions are reasonable for a broad range of drug 
delivery problems. The theoretical model presented here 
does not consider the possibility of API-excipient interac-
tions, which may alter the drug release rate, and may also 
not be appropriate when considering complex systems such 
as Amorphous Solid Dispersions (ASDs). In general, how-
ever, the optimization algorithm can be easily extended 
to account for additional effects, as long as the forward 
problem can be readily solved.

While presented in the context of uniform drug delivery 
curves and those with an initial burst, the methodology pre-
sented here can be easily extended to other drug delivery 
requirements as well. It is expected that the methodology 
and results presented in this work may be helpful in maxi-
mizing the benefit of advanced manufacturing technologies 
capable of producing multilayer drug delivery devices that 
address the individualized drug delivery needs of patients. 
To help facilitate this, it is hoped that this work will inspire 

future experiments to fully validate the model and test 
model predictions of optimal drug distribution for different 
applications.
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