
Journal of Power Sources 538 (2022) 231531

0378-7753/© 2022 Elsevier B.V. All rights reserved.

Accelerating the numerical solution of thermal runaway in Li-ion batteries

Mohammad Parhizi a, Ankur Jain b, Gozdem Kilaz a,*, Jason K. Ostanek a,**

a School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
b Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W. First St, Rm 211, Arlington, TX, USA

H I G H L I G H T S

• A lumped capacitance model was used to simulate an oven test of an 18650 Li-ion cell.
• Various time integration schemes were considered.
• Explicit Runge-Kutta methods outperformed implicit methods and reduced computation time.

A R T I C L E I N F O

Keywords:
Li-ion cells
Numerical simulation
Thermal runaway
Runge-Kutta techniques

A B S T R A C T

Computational modeling and simulation of thermal runaway in Li-ion batteries is an effective tool to understand
safety concerns associated with Li-ion batteries. However, thermal runaway models are often computationally
expensive due to the highly non-linear and coupled nature of the equations involved. Therefore, accelerating the
numerical computation of thermal runaway in Li-ion batteries while maintaining computational accuracy and
stability is of utmost practical importance. This paper compares several time integration schemes to solve the
highly non-linear and stiff differential equations that govern thermal runaway in Li-ion batteries. The schemes
are implemented to solve a lumped capacitance thermal runaway model for a representative thermal abuse
scenario. Results showed that explicit methods produce similar accuracy as implicit methods at a fraction of the
computational cost while maintaining stability even for stiff thermal runaway scenarios. For example, a one-
stage and a two-stage explicit Runge-Kutta method resulted in two orders of magnitude lower computational
time than the implicit methods while maintaining a similar level of accuracy. By investigating the computational
performance of various numerical schemes for analyzing thermal runaway, this work contributes towards
improved safety of energy conversion and storage in Li-ion batteries.

1. Introduction

Due to their favorable electrochemical characteristics, Li-ion batte-
ries have become the dominant energy storage and conversion system
for various applications, such as consumer electronics, electric vehicles,
and power grid [1,2]. However, despite their superior characteristics,
Li-ion batteries suffer from well-known safety problems associated with
thermal runaway [3], which occurs due to a series of decomposition
reactions triggered at higher temperatures and often results in fire or
explosions [4]. Temperatures between 20 and 50 ◦C have been reported
as the Li-ion battery’s optimal operating temperature [5]. Example
decomposition reactions which occur above this range include:
decomposition of the solid-electrolyte interphase (SEI) (T > 90 ◦C), SEI

regeneration (T > 125 ◦C), the reaction of the anode active material with
the electrolyte (T > 120 ◦C), the reaction of the cathode active material
with electrolyte (T > 250 ◦C), electrolyte decomposition reaction (T >
250 ◦C), and the reaction of intercalated Li in the anode with the binder
[6]. Due to the prohibitive cost and complexity of experimental mea-
surements, numerical modeling and simulations have been used exten-
sively to understand thermal runaway in Li-ion batteries [7].

The governing equations associated with thermal runaway phe-
nomena in Li-ion batteries generally consist of an ordinary or a partial
differential equation representing conservation of energy and a number
of first-order ordinary differential equations governing the conservation
of mass of the reactants. Various numerical models have been developed
to solve the system of equations and study the thermal behavior of Li-ion

* Corresponding author.
** Corresponding author.

E-mail addresses: gkilaz@purdue.edu (G. Kilaz), jostanek@purdue.edu (J.K. Ostanek).

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

https://doi.org/10.1016/j.jpowsour.2022.231531
Received 18 February 2022; Received in revised form 15 April 2022; Accepted 24 April 2022

mailto:gkilaz@purdue.edu
mailto:jostanek@purdue.edu
www.sciencedirect.com/science/journal/03787753
https://www.elsevier.com/locate/jpowsour
https://doi.org/10.1016/j.jpowsour.2022.231531
https://doi.org/10.1016/j.jpowsour.2022.231531
https://doi.org/10.1016/j.jpowsour.2022.231531
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpowsour.2022.231531&domain=pdf

Journal of Power Sources 538 (2022) 231531

2

batteries during abuse conditions. However, the effect of the time
integration scheme and order of accuracy has not been considered in
previous papers. Often times, the time integration scheme and order of
accuracy are not reported. For example, Kim et al. [8] developed a
three-dimensional abuse model for large format batteries using ANSYS
Fluent, but the time integration scheme and order of accuracy were not
specified. Lopez et al. [9] developed a three-dimensional abuse model
for a constant power abuse test in the STAR-CCM + simulation frame-
work. This work used an adaptive time-step backward differencing
scheme, but the time integration order of accuracy was not specified.
Peng et al. [10] developed a three-dimensional simulation of an oven
test using computational fluid dynamics (CFD) solver in ANSYS Fluent
with a fully implicit scheme for temporal discretization. Mishra et al.
[11] developed a thermal runaway propagation model in a five by five
battery pack in ANSYS Fluent, implementing a non-linear coupled solver
with a fully implicit numerical scheme. In some cases, the time inte-
gration scheme and order of accuracy are known. Zhang et al. [12]
developed a three-dimensional thermal runaway model triggered by an
internal short circuit in commercial software COMSOL Multiphysics 5.3
using the backward differentiation formula (BDF) as the numerical
scheme with the maximum order of 5 and the minimum order of 2 with a
relative and absolute error tolerance of 10− 6 and 10− 8, respectively.
Melcher et al. [13] developed a thermal runaway model for an 18650
Li-ion cell in COMSOL Multiphysics using a BDF integration scheme with
a minimum and maximum order of 1 and 5. Further, a variable time-step
algorithm with a maximum time-step of 1s and an absolute tolerance of
10− 3 was used. Ostanek et al. [14] developed a custom MATLAB pro-
gram for a lumped capacitance thermal runaway model using an ordi-
nary differential equation solver, ode15s, in MATLAB with an adaptive
time-stepping algorithm. The time integration scheme and the time
integration order of accuracy used in the previous studies mentioned
above are summarized in Table 1.

Despite the large number of studies analyzing thermal runaway and

propagation using numerical models in the form of manually-written
codes or default integration functions in a commercial software, little
consideration has been given to investigate the accuracy and efficiency
of different time integration schemes applied to thermal runaway
problems. Often times, studies that use commercial software will use the
default time integration scheme, whereas using an alternative scheme
could improve the solution time or accuracy. The coupled and non-
linear nature of the equations governing thermal runaway modeling
often results in high computational costs due to the need for extremely
small time-steps, especially close to the moment of thermal runaway.
Thus, it is clearly imperative to understand how to efficiently solve such
equations numerically to ensure high accuracy and reasonable compu-
tational time in the context of thermal runaway simulation. Such an
effort may help choose the most appropriate numerical scheme that can
be implemented in manually-written codes and commercial software
intended for simulating thermal runaway.

This paper implements and compares different numerical schemes to
solve highly non-linear and stiff ordinary differential equations that
commonly appear in the modeling and simulation of thermal runaway in
Li-ion batteries. An efficient numerical scheme suitable for imple-
mentation in hand-written codes and commercial software is proposed.
Three general integration schemes – explicit Runge-Kutta, implicit
linear multi-step, and backward-difference method – are considered to
solve a representative problem using a 0-D lumped thermal runaway
model with four decomposition reactions. The numerical schemes are
then extended to a model having a fifth reaction to account for the short
circuit reaction, resulting in a highly-stiff system of equations. Both
explicit and implicit schemes discretize the time domain into smaller
timesteps and calculate the variable of interest at each step based on the
available information. However, a direct computation of the variable of
interest is possible for explicit schemes, while for implicit methods,
iterative techniques are required to determine the variable of interest.
Thus, explicit schemes are generally faster to execute and easier to
implement but less accurate and less stable than implicit schemes.
Highly stiff problems often require implicit methods to preserve stability
at increased computational costs. However, to the best of the authors’
knowledge, there have not been any previous studies that systematically
investigate the performance of time-integration schemes for simulating
thermal runaway of Li-ion batteries.

The rest of the paper is organized as follows: Section 2 presents the
ordinary differential equations governing the energy and mass conser-
vation during thermal runaway of Li-ion batteries, various numerical
schemes to solve such equations, and the details of the adaptive time-
stepping algorithm. Section 3 discusses the results, including the com-
parison of different numerical schemes, error calculation, and compu-
tational time associated with each scheme.

Table 1
Summary of the time integration schemes and the time integration order of
accuracy in previous studies.

Study Time integration
scheme

Time integration order of
accuracy

Kim et al. [8] Not Specified Not Specified
Lopez et al. [9] Backward Differencing Not Specified
Peng et al. [10] Fully Implicit Not Specified
Mishra et al. [11] Fully Implicit Not Specified
Zhang et al. [12] Backward Differencing Max Order 5, Min Order 2
Melcher et al. [13] Backward Differencing Max Order 5, Min Order 1
Ostanek et al. [14] Runge-Kutta Max Order 5, Min Order 1

Fig. 1. (a) Schematic of the thermal resistance network representing a 0-D lumped capacitance thermal runaway model for the oven test of a cylindrical Li-ion cell,
(b) comparison of the 0D lumped model with oven test experimental data.

M. Parhizi et al.

Journal of Power Sources 538 (2022) 231531

3

2. Theory

2.1. 0-D, lumped capacitance thermal runaway model

Fig. 1 shows a schematic of the thermal resistance network used in
modeling an oven test of a cylindrical Li-ion cell at an oven temperature
of 155 ◦C, which is a commonly investigated abuse scenario. In an oven
test, the cell is placed in an oven at high temperature to trigger thermal
runaway. As shown in Fig. 1, the oven is modeled as an ideal energy
source, maintaining its temperature regardless of the heat flow rate. The
Li-ion cell is modeled as a thermal mass for which the temperature rise
rate is proportional to the heat flow rate and inversely proportional to its
mass and specific heat capacity. External heat transfer between the oven
and the cell occurs due to convection and radiation, shown as a parallel
resistance in the schematic. In this work, a standard 0-D lumped
capacitance model [14,15] was used to describe the energy balance
within the cell. A cylindrical cell of the commonly-used 18650 config-
uration was considered. The 0-D model implements conservation of
energy over a control volume comprising the entire Li-ion cell. In other
words, the spatial temperature gradient within the cell was neglected.
Under this assumption, the conservation of energy may be written as
follows [14]:

mcellcp
dT
dt

=
∑

Q̇surr +
∑

Q̇gen (1)

where mcell and cp are the mass and specific heat capacity of the Li-ion
cell, respectively, Q̇surr is the rate of heat transfer between the sur-
rounding and the surface of the control volume through convection and
radiation, and Q̇gen is the internal heat generation rate within the Li-ion
cell. During thermal runaway, internal heat generation occurs due to the
underlying decomposition reactions triggered at high temperatures. The
heat generated from these decomposition reactions is often described as
a product of the heat of reaction, H, the mass of reactant, mr, and the
reaction rate, R [8,13]:

Q̇gen,i =Hi⋅mr,i⋅Ri (2)

The reaction rates, on the other hand, are often described by
Arrhenius functions as follows [8]:

− Ri =
dxi

dt
= − Ai exp

(

−
Ei

kb⋅T

)

xi (3)

where x is the concentration of reactants, A is the frequency factor, E is
the activation energy, kb is the Boltzmann constant, and T is tempera-
ture. Note that the subscript i represents a particular reaction. The
standard four reaction model proposed by Kim et al. [8] and used in this
work includes SEI decomposition reaction (“SEId”), the reaction of the
anode active material with the electrolyte (“AnE”), cathode decompo-
sition reaction (“cat”), and the electrolyte decomposition reaction

(“elec”). Moreover, an additional equation is considered for regenera-
tion of the SEI layer (“tSEI”) that occurs concurrently with the “AnE”
equation and limits its rate. In addition to the decomposition reactions,
an additional exothermic reaction due to short circuit is also considered
to represent the commonly-occurring short circuit abuse, and to inves-
tigate the performance of numerical schemes for the resulting,
highly-stiff problem. Details of the mathematical formulation of the
short circuit reaction can be found in previous studies [16]. The short
circuit mechanism was used in this study to show the capability of each
scheme in solving a highly non-linear problem. However, the short
circuit mechanism can be replaced by other abuse scenarios/reactions.
For instance, Lopez et al. [9] considered the additional reaction as
combustion of the electrolyte instead of short circuit.

The number of decomposition reactions and values of associated
parameters may vary depending on the battery chemistry and nature of
abuse. Furthermore, some decomposition reactions may occur simulta-
neously and thus be coupled to one another resulting in an extra term in
equation (3). Table 2 summarizes the ordinary differential equations
describing the decomposition reactions and short circuit. Furthermore,
Table 3 summarizes the values of thermophysical properties of the cell
and decomposition reactions kinetic parameters, including sources for
these values.

To solve these equations, several standard numerical schemes,
including: explicit Runge-Kutta, linear multi-step implicit, and back-
ward difference methods, are discussed in the following sub-section.

Table 2
Decomposition reaction mechanisms.

Reaction Initial Condition Ordinary Differential Equation Ref.

SEId xf,0 = 0.15 dxf

dt
= − RSEId = − ASEId exp

(

−
ESEId

kbnT

)

xf
[31,33]

AnE xi,0 = 0.75 dxi

dt
= − RSEIr = − AAnE exp

(

−
EAnE

kbnT

)

exp
(

−
tSEI

tSEI,0

)

xi
[31,33]

tSEI tSEI,0 = 0.033 dtSEI

dt
= RSEIr

[31,33]

cat αcat,0 = 0.04 dαcat

dt
= Rcat = Acat exp

(

−
Ecat

kbnT

)(

1 − αcat

)

αcat
[31,34]

elec celec,0 = 1 dcelec

dt
= − Relec = − Aelec exp

(

−
Eelec

kBnT

)

celec
[8]

SC SoC0 = 1 dSoC
dt

= − RSoC = − ISCcondASC exp
(

−
ESC

kBnT

)

SoC
[16]

Table 3
Thermophysical and kinetic parameters used for simulation.

Parameter Symbol Value Units Ref.

Initial Temperature T0 28 ◦C assumed
Heat of Reaction HSEId 257 J•g− 1 [31]

HAnE 1714 J•g− 1 [31]
Hcat 314 J•g− 1 [31]
Helec 155 J•g− 1 [8]
HSC 4989.6 J•g− 1 Est.

Mass of Reactants mSEId 6 g [31]
mAnE 6 g [31]
mcat 12 g [31]
melec 4 g Est.

Frequency factor ASEId 1.667 × 1015 s− 1 [31]
AAnE 2.5 × 1013 s− 1 [31]
Acat 6.667 × 1011 s− 1 [31]
Aelec 5.14 × 1025 s− 1 [8]
ASC 1.8 × 1013 s− 1 Est.

Activation Energy ESEId 1.4 eV [31]
EAnE 1.4 eV [31]
Ecat 1.27 eV [31]
Eelec 2.84 eV [8]
ESC 1.6 eV Est.

Mass of Cell m 43 g Est.
Specific Heat Capacity cp 830 J•kg− 1•K− 1 [16]
Oven Temperature Toven 155 ◦C [31]

M. Parhizi et al.

Journal of Power Sources 538 (2022) 231531

4

2.2. Numerical solution of ordinary differential equations

The set of ordinary differential equations described in section 2.1 for
a lumped thermal runaway model can be described as an initial value
problem, written compactly as follows [17]:

dy
dt

= f (t, y) (4a)

y(t0)= y0 (4b)

where the term on the left-hand side of equation (4a) represents the rate
of change of a variable, such as temperature of a lumped body described
in equation (1) or species concentration in a first-order chemical reac-
tion described in equation (3), and y0 is the initial condition.

Initial value problems are encountered commonly in engineering,
and a number of numerical schemes are already available [18]. In the
present work, three general integration schemes are implemented to
solve ordinary differential equations describing temporal changes in
lumped temperature and chemical reactions during thermal runaway in
Li-ion cells. The numerical schemes and their implementation to solve a
thermal runaway problem are discussed next.

2.2.1. Explicit Runge-Kutta methods
The explicit Runge-Kutta (RK) method discretizes the initial value

problem as follows [19,20]:

yn = yn− 1 + Δt
∑s

i=1
biki (5)

In general, this is a multi-stage, one-step method where n is the
current timestep to be solved, n-1 is the previous time step, Δt is the
timestep size, b are weights specific to each RK method [21], and s is the
number of RK stages. The ki values are determined as follows:

k1 = f (tn− 1, yn− 1) (6)

k2 = f (tn− 1 + c2Δt, yn− 1 +Δt(a21k1))

k3 = f (tn− 1 + c3Δt, yn− 1 +Δt(a31k1 + a32k2))

ks = f
(
tn− 1 + csΔt, yn− 1 +Δt

(
as1k1 + as2k2 +…+ as,s− 1ks− 1

))

where aij is the Runge–Kutta matrix and ci are the nodes [21]. The
Runge–Kutta matrix, aij, the weights, bi, and the nodes, ci for each
Runge-Kutta method are often arranged in a Butcher tableau as follows:

(7)

For example, for the forward Euler method b1 = 1, so a one-stage RK
method (RK1) may be written as follows [22]:

yn = yn− 1 + Δtf (tn− 1, yn− 1) (8)

Further, Heun’s method is a two-stage RK method (RK2) where c2 =

1, a21 = 1, b1 = 1
2, and b2 = 1

2. Having these constants, k1 and k2 can be
calculated, and the Heun’s method may be written as follows [23]:

yn = yn− 1 +
Δt
2
(k1 + k2) (9)

The RK4 scheme is a four-stage method with the following Butcher

Fig. 2. Flowchart of the iterative approach used to solve the coupled energy and species conservation equations with explicit methods.

M. Parhizi et al.

Journal of Power Sources 538 (2022) 231531

5

tableau:

(10)

Thus, the RK4 method may be written as follows [23]:

yn = yn− 1 +
Δt
6
(k1 + 2k2 + 2k3 + k4) (11)

As shown in equations (8), (9) and (11), both backward Euler,
Heun’s, and RK4 methods are explicit, which offers a simple imple-
mentation of calculating values at the next timestep directly, rather than
solving an implicit equation. Furthermore, intermediate values do not
need to be stored and carried to the next timestep. On the other hand,
linear multi-step methods use two or more steps. And, backward dif-
ference methods use previously calculated values. Using more steps and
using previously calculated values increases the storage requirement
relative to explicit methods. The algorithm of the solution procedure for
the explicit methods is shown as a flowchart in Fig. 2. In step 1, the
solution is initialized. In step 2, the time step is advanced using the
initial step size. In step 3, the temperature and concentration at the time
step, n, is calculated based the chosen numerical scheme. In step 4, the
time step is updated using the adaptive algorithm. Then, steps 2–4 are
repeated until the solution has reached the ending time value, tfinal.

2.2.2. Linear multi-step implicit methods
Linear multi-step methods may be formulated using explicit or im-

plicit schemes. Explicit linear multi-step methods are also known as

Adams-Bashforth (AB) methods [24]. Implicit linear multi-step methods
are also known as Adams-Moulton (AM) methods. While implementa-
tion is more complicated and computational costs are higher, implicit
methods are known to have better numerical stability than explicit
methods [25]. Two single-step Adams-Moulton methods are considered
in the present work. First, the implicit Euler method (AM1):

yn = yn− 1 + Δtf (tn, yn) (12)

And, second, the implicit trapezoid method (AM1t):

yn = yn− 1 + Δt
(

f (tn− 1, yn− 1)

2
+

f (tn, yn)

2

)

(13)

Note that the implicit methods described above result in transcen-
dental equations of the variable y at the current time-step, requiring a
root-finding algorithm for calculating y. In the present work, a built-in
function in MATLAB, i.e., “fzero,” is used for finding the roots.
Furthermore, since the ordinary differential equations of the energy and
mass conservation equations are coupled to each other, iterations be-
tween the two differential equations are required at each time-step to
find the values of temperature and concentrations at the current time-
step. The flowchart of solution procedure for the implicit methods is
schematically shown in Fig. 3. In step 1, the solution is initialized. In step
2, the time step is advanced using the initial step size. In step 3, an
iteration loop is introduced to iterate between the coupled equations
governing energy and mass conservation to determine the temperature
and concentration at the time step, n, based on the chosen numerical
scheme. Step 3 is repeated until the difference between the outcomes of
two iterations is less than the specified tolerance, in this case, 10− 4. In
step 4, the time step is updated using the adaptive algorithm. Then, steps
2–4 are repeated until the solution has reached the ending time value,

Fig. 3. Flowchart of the iterative approach used to solve the coupled energy and species conservation equations with implicit methods.

M. Parhizi et al.

Journal of Power Sources 538 (2022) 231531

6

tfinal.

2.2.3. Backward difference methods
Similar to implicit multi-step methods, backward difference methods

have greater numerical stability than explicit methods and are particu-
larly suitable for stiff problems where the dependent variable changes
sharply with time [26]. Note that, similar to the implicit methods
described above, the backward difference methods require root-finding

and iterations between the energy and species conservation equations
described above. The second-order backward difference method (BDF2)
with variable timestep will be considered in the present work:

R =
(Δtn− 1 + Δtn− 2)

2

Δt2
n− 1

(14a)

yn =
1

R − 1
(yn− 1R − yn− 2 + f (tn, yn)(RΔtn− 1 − (Δtn− 1 + Δtn− 2))) (14b)

Fig. 4. Flowchart of the iterative approach used to solve the coupled energy and species conservation equations with backward difference methods.

Table 4
Summary of numerical methods, including: abbreviations, calculation steps, storage requirements, and ordinary differential equations.

Abbr. Calculation Storage Equation(s)

RK1 1 explicit n-1 yn = yn− 1 + Δtn− 1f(yn− 1)

RK2 2 explicit n-1
yn = yn− 1 + Δtn− 1

(
k1

2
+

k2

2

)

RK4 4 explicit n-1 yn = yn− 1 +
1
6
(k1 + 2k2 + 2k3 + k4)

AM1 1 implicit n-1 yn = yn− 1 + Δtn− 1f(yn)

AM1t 1 implicit n-1
yn = yn− 1 + Δtn− 1

(
f(yn− 1)

2
+

f(yn)

2

)

BDF2 1 implicit n-1, n-2
R =

(Δtn− 1 + Δtn− 2)
2

Δt2n− 1

yn =
1

R − 1
(
yn− 1R − yn− 2 + f

(
yn
)
(RΔtn− 1 − (Δtn− 1 + Δtn− 2))

)

RK1-BDF2 1 explicit n-1 yn− 1/2 = yn− 1 +
Δtn− 1

2
f(yn− 1)

1 implicit yn =
4
3
yn− 1/2 −

1
3
yn− 1 +

2
3

(Δtn− 1

2

)
f(yn)

AM1-BDF2 2 implicit n-1 yn− 1/2 = yn− 1 +
Δtn− 1

2
f(yn− 1/2)

yn =
4
3
yn− 1/2 −

1
3
yn− 1 +

2
3

(Δtn− 1

2

)
f(yn)

AM1t-BDF2 2 implicit n-1
yn− 1/2 = yn− 1 +

Δtn− 1

2

⎛

⎝f(yn− 1)

2
+

f(yn− 1/2)

2

⎞

⎠

yn =
4
3
yn− 1/2 −

1
3
yn− 1 +

2
3

(Δtn− 1

2

)
f(yn)

M. Parhizi et al.

Journal of Power Sources 538 (2022) 231531

7

where Δtn-1 and Δtn-2 are the current and the previous timesteps,
respectively. This method can be considered a two-step method since it
requires the solution at both the current and previous timesteps. For the
first timestep of the simulation, the implicit Euler or implicit trapezoid
method may be used. Then, for all timesteps, the solutions yn-2 and yn-1
are known, and the BDF2 method may be used. It should be noted that
the AM1 method is also considered a one-step backward difference
method. The flowchart of solution procedure for the BDF2 method is
also shown schematically shown in Fig. 3. The required steps of the
solution procedure are similar to the implicit methods described above.

2.2.4. Combination of explicit and implicit schemes with backward
difference methods

Finally, the backward difference method may be used in combination
with any other one-step method. In this manner, the solution is a two-
step method where the time step is exactly half of the global time
step. In other words, in the first step, i.e., Δt/2, an explicit or an implicit
method may be used to calculate the temperature and concentrations.
Then, the newly calculated temperature and concentrations (yn-1/2)
along with the temperature and concentrations at the previous step (yn-

1) can be used to calculate the values at the current time-step (yn) using
the BDF2 approach. In this method, the storage requirement may be
reduced since it eliminates the need for storing n-2 solution due to the
existence of an intermediate solution at n-1/2. For example, the first
step, denoted by the subscript n-1/2, may be calculated using the AM1
method:

yn− 1/2 = yn− 1 +
Δt
2

f
(

tn− 1/2, yn− 1/2

)
(15)

and the second step uses the BDF2 formula from equation (14)
which, for a constant time step, reduces to:

yn =
4
3

yn− 1/2 −
1
3
yn− 1 +

2
3

(Δt
2

)
f (tn, yn) (16)

This algorithm using equations (15) and (16) will be referred to as
AM1-BDF2 for the AM1 method in step 1 and BDF2 in step 2. Additional
combinations of RK1-BDF2 and AM1t-BDF2 will be considered. It should
be noted that the AM1t-BDF2 method is commonly referred to as the TR-
BDF scheme and is widely used in the solution of stiff ordinary differ-
ential equations [27,28]. The flowchart of solution procedure for the
combination of RK1, AM1, and AM1t methods with backward difference
method is schematically shown in Fig. 4. In step 1, the solution is
initialized. In step 2, the time is advanced by half of the global time step.
In step 3, the temperature and concentration at the time, tn− 1/2, are
determined based on either RK1, AM1, or AM1t schemes. In step 4, the
time is advanced by another half time step. The temperature and con-
centration at the time, tn, are determined based on the BDF2 scheme. In
step 5, the time step is updated using the adaptive algorithm. Then, steps
2–5 are repeated until the solution has reached the ending time value,
tfinal.

A summary of all the methods described in this section are shown in
Table 4. The calculation and the storage requirements are listed for each
scheme. The calculation requirement is similar to the number of steps of
the numerical method. The calculation requirement for the RK1 method
is listed as 1-explicit while the AM1 method is listed as 1-implicit.
Although BDF2 is known as a two-step method, the calculation
requirement is listed as 1-implicit since the solution at steps n-1 and n-2
have already been calculating in previous steps. The storage require-
ment describes which values must be carried to the next timestep. For
BDF2, the storage requirement is the solution at steps n-1 and n-2. In
contrast, the hybrid BDF methods such as RK1-BDF2 require two cal-
culations, 1-implicit and 1 explicit, to obtain the solution at n-1/2 and n
but only require the storage of the solution at step n-1. The intermediate
solution at n-1/2 may be discarded prior to the next time step.

2.2.5. Adaptive time-stepping algorithm
An adaptive time-stepping algorithm based on a proportional-

integral-derivative (PID) control approach is used along with the nu-
merical scheme to solve the ordinary differential equations. This method
implements PID control to adjust the step size for the next timestep by
comparing a user-specified tolerance to the change of the parameter of
interest. In the present work, changes in temperature and concentration
of each reaction were tracked for the adaptive time-step algorithm.
Previous studies have used a similar scheme to solve stiff and non-stiff
problems [29,30]. The algorithm for estimating the next time-step size
is as follows:

ΔtPID =

(
en− 1

en

)kp(Tol
en

)kI
(

e2
n− 1

enen− 2

)kD

.Δtn− 1 (17)

Δt*n =max(min(ΔtPID,Δtn− 1.fmax),Δtn− 1.fmin) (18)

Δtn =max
(
min
(
Δt*n,Δtmax

)
,Δtmin

)
(19)

The parameter en is the normalized change in the parameter of in-
terest at time tn and calculated as follows:

en =
|yn − yn− 1|

1 + min(yn, yn− 1)
(20)

where y is the variable of interest, i.e., temperature or species concen-
tration. The parameter en is calculated for temperature and all the
reactant concentrations, and the maximum en would be used in equa-
tions (13)–(15). The parameter Tol is the user-specified tolerance. The
PID controller parameters kp, ki, and kd are the proportional, integral,
and derivative constants, respectively. Furthermore, fmin and fmax are the
user-specified minimum and maximum growth rate of the next time-
step, and Δtmin and Δtmax are the user-specified minimum and
maximum time-step. An initial timestep, Δtmin = 1s was used to start the
simulation. The values of the parameters associated with the time-
stepping algorithm are summarized in Table 5.

The following section implements the numerical schemes described
in this section to solve a set of ordinary differential equations governing
the rate of change of temperature and mass concentration during ther-
mal runaway of a Li-ion cell.

3. Result and discussion

3.1. Reference model for comparison

To validate the lumped capacitance framework, the RK4 scheme was
applied to the 5-reaction kinetic model. Thermophysical and kinetic
parameters for the SEId, tSEI, AnE, and cat reactions were adopted from
Hatchard et al. [31] and simulations were compared with cell temper-
ature vs. time for a 155 ◦C oven test. Kinetic parameters for the elec
reaction were adopted from Kim et al. [8] and kinetic parameters for the
short circuit reaction were adopted from Coman et al. [16]. Fig. 1(b)
shows good agreement between the model and experiment. Note that

Table 5
Parameters associated with the time-stepping
algorithm.

Parameter Value

kp 0
ki 1
kd 0
Tol 0.001
fmin 0.8
fmax 1.2
Δtmin 10− 6 s
Δtmax 3600 s
Δt0 1 s

M. Parhizi et al.

Journal of Power Sources 538 (2022) 231531

8

the model was unable to capture the temperature decrease between
2200 and 2500s due to venting and electrolyte evaporation, which has
been neglected in the present work for simplicity. Previous work has
shown that accounting for venting and the evaporative cooling effect
will result in a better agreement with oven test data [31].

While exact analytical solutions may be derivable for special cases of
the problem posed in Section 2.1 [32], exact analytical solutions do not
exist for the general problem due to the non-linear and coupled nature of
the differential equations involved. In order to examine the accuracy of

the different numerical schemes summarized in Table 4, a reference
model is required. In the present study, a numerical simulation based on
a built-in MATLAB solver for stiff ordinary differential equations, with
minimal relative tolerance (10− 9), was used as a reference for comparing
the accuracy and determining the error associated with each scheme.
Several MATLAB solvers were considered: ode23tb (which implements
an implicit Runge-Kutta scheme with a trapezoidal rule step as its first
stage and a backward difference scheme of order two as its second stage,
i.e., TR-BDF2), ode23s (which implements a modified second-order

Fig. 5. Comparison of different ordinary differential equation solvers in MATLAB for thermal runaway model without short circuit (a) temperature as a function of
time and (b) temperature difference between ode23tb and ode15s solvers as a function of time, and with short circuit (c) temperature as a function of time and (d)
temperature difference between ode23tb and ode15s solvers as a function of time.

Fig. 6. Example results from numerical schemes: Thermal runaway model without short circuit (a) temperature as a function of time and (b) reactant concentrations
as functions of time. Thermal runaway model with short circuit (c) temperature as a function of time and (d) reactant concentrations as functions of time.

M. Parhizi et al.

Journal of Power Sources 538 (2022) 231531

9

Rosenbrock formula), ode23t (which implements the trapezoidal rule
using a free interpolant), and ode15s (which is a multi-step solver based
on the numerical differentiation formulas). A comparison of the built-in
MATLAB ODE solvers is shown in Fig. 5. Fig. 5(a) presents temperature
as a function of time for a thermal runaway model excluding the short
circuit mechanism. As shown, all four methods were in excellent
agreement with each other. To further investigate the ode15s solver
accuracy, the temperature difference between ode23tb and ode15s
solvers, i.e., ΔT(ti) = TODE23tb (ti) − TODE15s (ti), is plotted as a function of
time in Fig. 5(b). The root mean square error of the temperature dif-

ference between the two errors

(

RMSEΔT =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1

(ΔT(ti))2

N

√)

was 0.0029

K.
Fig. 5 (c) and (d) present a similar analysis for a stiffer thermal

runaway problem considering heat generation from the short circuit
mechanism. As shown, even for a highly stiff problem, ode15s accu-
rately predicted the cell temperature. Although the temperature differ-
ence between ode15s and ode23tb was slightly larger than the previous
case, the RMSEΔT was still very low, i.e., 0.05 K. Consequently, the
ode15s solver was chosen as the reference model due to its simplicity
and low computational time.

3.2. Comparison of RK1 with the reference model

Fig. 6 shows an example of the results obtained from one of the
numerical schemes introduced in Table 4. For this example, the explicit
RK1 method was used to solve the ordinary differential equations gov-
erning thermal runaway. Fig. 6(a) plots the temperature as a function of
time determined by the RK1 method and the ode15s solver for the
thermal runaway model excluding the short circuit mechanism. Fig. 6(c)
presents a similar plot for a thermal runaway model accounting for the
heat generation due to the short circuit mechanism. In general, the RK1
scheme was in good agreement with the ode15s solver. The error anal-
ysis and comparison of the numerical schemes will be discussed in detail
in the following sections.

Fig. 6(b) shows the concentration of the reactants as a function of

time for the thermal runaway model excluding the short circuit reaction.
As shown, the “SEId” reaction triggers first and continues toward
completion. Also, Fig. 6(b) shows that the SEI layer regeneration is
coupled to the “AnE” reaction rate and slows the rate of this reaction.
Finally, as shown, the electrolyte decomposition reaction, “elec,” does
not fully progress toward completion. Fig. 6(d) presents a similar anal-
ysis for the thermal runaway model accounting for the short circuit re-
action. Compared to the previous case, the “AnE” reaction progresses
further in this case, and the “elec” reaction progresses toward comple-
tion due to the high temperature resulted from the short circuit reaction.

3.3. Comparison of different numerical schemes (excluding short circuit)

A comparison of the numerical schemes introduced in Table 4 is
shown in Fig. 7 for the thermal runaway model, excluding the short
circuit reaction. Fig. 7(a) plots the difference between the temperature
determined from the numerical schemes summarized in Table 4 and the
reference temperature determined from MATLAB ode15s solver as a
function of time. Fig. 7(a) shows that the numerical schemes behave
differently at various stages of the simulation. For example, during the
initial heating between t = 0–900 s, AM1 showed a large difference
between the temperature determined from the numerical schemes and
MATLAB ode15s solver, ΔT, while the same scheme results in one of the
lowest ΔT between t = 1000–2000 s. Interestingly, the RK2 and RK4
methods resulted in a smaller ΔT compared to other schemes, including
the implicit methods almost throughout the simulation.

All of the numerical schemes showed a relatively large ΔT around the
thermal runaway initiation time. In this study, the initiation of thermal
runaway was defined when the temperature gradient, dT/dt, exceeds
0.1Ks− 1 which occurred around t = 2746s for the reference model. To
examine this phenomenon more closely, Fig. 7(b) plots the temperature
as a function of time for ode15s and one of the numerical schemes, i.e.,
BDF2. A zoomed-in plot near the region of the thermal runaway initia-
tion is also shown in the inset. The inset shows that the BDF2 method
predicted the maximum temperature at around t = 2943s while the
ode15s solver predicted the maximum temperature at around t = 2958s.
This indicates that the large difference in the temperature predicted by

Fig. 7. Comparison of the numerical schemes for solving thermal runaway without short circuit (a) temperature difference, ΔT, as a function of time, (b) temperature
as a function of time determined from the BDF2 scheme and ode15s solver, (c) root mean square error of the temperature difference, RMSEΔT, as a function of time
lag, and (d) normalized computational time associated with each numerical scheme.

M. Parhizi et al.

Journal of Power Sources 538 (2022) 231531

10

the two models around the thermal runaway initiation may be due to the
difference between the time-to-runaway predicted by the two models.

In order to account for errors in the predicted time-to-runaway, the
lag time resulting in minimal RMSEΔT was identified for each numerical
scheme. The present study uses the term “lag” to indicate the difference
between the thermal runaway initiation time determined by the nu-
merical schemes and the ode15s solver. A positive lag corresponds to the
numerical scheme predicting a delayed thermal runaway, while a
negative lag corresponds to the numerical scheme predicting an early
thermal runaway initiation compared to the ode15s solver. Fig. 7(c)
plots the RMSEΔT as a function time-lag for different numerical schemes.
The values of RMSEΔT, lags, and maximum temperature are also sum-
marized in Table 6. As shown, the explicit methods resulted in a smaller
lag compared to the implicit methods. The minimum lag magnitude of
− 6.52s was observed for the RK4 method, and the maximum lag
magnitude was observed for the BDF2 method, − 14.3s. After shifting the
solutions of each method by its respective lag, the smallest RMSEΔT
values were observed for the RK1 (0.34 K) and AM1t (0.47 K) methods.

The normalized computational time for each numerical method was
plotted in Fig. 7(d). The computational time was determined from the
average of 10 runs for each scheme. Moreover, the computational time
was normalized based on the fastest method, i.e., RK1. As shown, the
computational time associated with the explicit methods were dramat-
ically shorter than the implicit schemes since they do not require finding

roots. Note that the function “fzero” was used for root finding for the
implicit schemes. Optimizing the root-finding technique may reduce the
computational time associated with the implicit methods. Overall, the
explicit methods RK1, RK2, and RK4 are attractive schemes. Compared
to the implicit schemes, the RK1, RK2, and RK2 had smaller time-lag,
comparable RMSEΔT errors, and significantly shorter computational
times.

3.4. Comparison of different numerical schemes (including short circuit)

Fig. 8 presents a similar analysis as Fig. 7 but for a thermal runaway
model accounting for the heat generation due to the short circuit reac-
tion. Fig. 8(a) shows that the temperature difference between the nu-
merical schemes and the reference model were similar to Fig. 7(a). Fig. 8
(b) plots the temperature as a function of time obtained from the ode15s
solver and the BDF2 scheme. Similar to the previous section, Fig. 8(b)
indicates a time-lag in the thermal runaway initiation determined from
the numerical methods and the ode15s solver. Therefore, a similar al-
gorithm as the previous section was used to find the time-lag for which
the RMSEΔT is minimum. Fig. 8(c) plots the RMSEΔT as a function of the
lag-time. The values of RMSEΔT, lags, and maximum temperature are
also summarized in Table 7. Fig. 8(c) and Table 7 show a minimum lag
magnitude of − 6 s for the RK22 method and a maximum lag magnitude
of − 14.3 s for the BDF2 method. In this case, the minimum RMSEΔT

Table 6
RMSEΔT and lags associated with each scheme (without short circuit).

Method Lag (s) RMSEΔT (K) Max T (K)

RK1 − 9.0 0.89 519.4
RK2 − 8.8 1.56 519.8
RK4 − 6.52 0.34 519.5
AM1 − 13.7 0.55 519.0
AM1t − 11.3 0.47 519.2
BDF2 − 14.3 0.82 518.7
RK1-BDF2 − 10.5 0.59 519.3
AM1-BDF2 − 11.2 0.91 519.4
AM1t-BDF2 − 10.5 0.95 519.5

Fig. 8. Comparison of the numerical schemes for solving thermal runaway with short circuit (a) temperature difference, ΔT, as a function of time, (b) temperature as
a function of time determined from the BDF2 scheme and ode15s solver, (c) root mean square error of the temperature difference, RMSEΔT, as a function of time lag,
and (d) normalized computational time associated with each numerical scheme.

Table 7
RMSEΔT and lags associated with each scheme (with short circuit).

Method Lag (s) RMSEΔT (K) Max T (K)

RK1 − 8.9 0.83 731.2
RK2 − 8.3 1.14 731.1
RK4 − 6.0 0.24 730.8
AM1 − 13.2 0.86 731.6
AM1t − 11.0 0.76 731.4
BDF2 − 14.3 1.95 731.7
RK1-BDF2 − 10.3 0.98 731.1
AM1-BDF2 − 10.8 1.13 731.2
AM1t-BDF2 − 10.1 1.06 731.1

M. Parhizi et al.

Journal of Power Sources 538 (2022) 231531

11

(0.24 K) and the minimum computational time were observed for the
RK4 and RK1 method, respectively. Results for the four-reaction model
with short circuit were similar to the case without short circuit. The RK1,
RK2, and RK4 schemes had smaller time-lag, comparable RMSEΔT errors,
and significantly shorter computational times.

3.5. Application of the present work

To demonstrate the application of the present work and its capability
in reducing the computational time for thermal runaway simulation,
The RK1 scheme was implemented into a commercial CFD software,
ANSYS FLUENT version 2022 R1. The energy equation was solved using
the built-in energy equation (AM1 in this case). The ODEs describing the
time rate of change of reaction concentration were solved using either
the RK1 or AM1 method. The ODEs were implemented using Fluent’s
user-defined scalar capability.

This approach was used to solve the 4-reaction thermal runaway
model. The results showed that the RK1 method was 4.3 times faster
than AM1. This is a substantial improvement considering that the AM1
scheme was used for the energy equation in both cases. Solving the
energy equation using the RK1 method would further improve the
speed. In addition, extending the lumped model to multi-dimensional
cases may result in further improvements.

4. Conclusion

The present work investigated the performance of various numerical
schemes for solving highly-stiff ordinary differential equations that
appear in simulation of thermal runaway in Li-ion batteries, in order to
improve accuracy and computation time. Modeling and Simulation can
be an effective and efficient tool for characterizing thermal behavior of
Li-ion batteries during abuse conditions. To complement experiments,
modeling frameworks must be accurate and computationally efficient.
One important factor affecting accuracy and computational cost is the
time integration scheme. Three general integration schemes, including
explicit Runge-Kutta, implicit linear multi-step, and backward-
difference method, were considered to solve a simplified lumped
capacitance thermal runaway model. Results from the numerical
schemes were compared to a well-known ordinary differential equation
solver for stiff equations in MATLAB. The root mean square temperature
difference, time-to-runaway, and computational time were tabulated for
each numerical scheme. In general, it was shown that explicit methods
such as RK1, RK2, and RK4 generate similar accuracy to implicit
methods at a fraction of the computational cost even for stiff thermal
runaway scenarios.

Results from this work show that numerical simulations of thermal
runaway and propagation may be accelerated by using explicit methods
relative to using the default time-integration scheme in commercial
software. Since the kinetic reactions and species conservation are often
implemented in commercial software as user-defined functions,
substituting implicit methods with a single-stage or multi-stage explicit
scheme has the potential to significantly reduce computational time. It is
expected that results from this work may help improve the accuracy and
computational cost of thermal runaway simulations in both commercial
software as well as manually-written code. Future work may include
conducting similar analysis for thermal runaway models with higher
spatial dimensions or additional physics such as venting, gas generation,
and electrolyte evaporation.

CRediT authorship contribution statement

Mohammad Parhizi: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data curation, Writing –
original draft, Writing – review & editing, Visualization. Ankur Jain:
Conceptualization, Methodology, Writing – review & editing, Supervi-
sion, Project administration. Gozdem Kilaz: Conceptualization,

Methodology, Resources, Writing – review & editing, Supervision,
Project administration, Funding acquisition. Jason K. Ostanek:
Conceptualization, Methodology, Resources, Writing – review & editing,
Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

M. Parhizi acknowledges the Purdue Polytechnic Institute Post-
Doctoral Fellowship Program for financial support on this project. This
material is partly based upon work supported by CAREER Award No.
CBET-1554183 from the National Science Foundation.

References

[1] J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective, J. Am.
Chem. Soc. 135 (4) (2013) 1167–1176.

[2] K. Shah, et al., State of the art and future research needs for multiscale analysis of
Li-ion cells, J. Electrochem. Energy Storage Convers. 14 (2) (2017) 020801.

[3] M. Parhizi, M. Ahmed, A. Jain, Determination of the core temperature of a Li-ion
cell during thermal runaway, J. Power Sources 370 (2017) 27–35.

[4] Y. Chen, et al., A review of lithium-ion battery safety concerns: the issues,
strategies, and testing standards, J. Energy Chem. 59 (2021) 83–99.

[5] S. Lv, X. Wang, W. Lu, J. Zhang, H. Ni, The influence of temperature on the
capacity of lithium ion batteries with different anodes, Energies 15 (1) (2021) 60.

[6] S. Zheng, L. Wang, X. Feng, X. He, Probing the heat sources during thermal
runaway process by thermal analysis of different battery chemistries, J. Power
Sources 378 (2018) 527–536.

[7] M. Ghiji, S. Edmonds, K. Moinuddin, A review of experimental and numerical
studies of lithium ion battery fires, Appl. Sci. 11 (3) (2021) 1247.

[8] G.-H. Kim, A. Pesaran, R. Spotnitz, A three-dimensional thermal abuse model for
lithium-ion cells, J. Power Sources 170 (2) (2007) 476–489.

[9] C.F. Lopez, J.A. Jeevarajan, P.P. Mukherjee, Characterization of lithium-ion battery
thermal abuse behavior using experimental and computational analysis,
J. Electrochem. Soc. 162 (10) (2015) A2163.

[10] P. Peng, Y. Sun, F. Jiang, Thermal analyses of LiCoO 2 lithium-ion battery during
oven tests, Heat Mass Tran. 50 (10) (2014) 1405–1416.

[11] D. Mishra, K. Shah, A. Jain, Investigation of the impact of radiative shielding by
internal partitions walls on propagation of thermal runaway in a matrix of
cylindrical Li-ion cells, J. Electrochem. Soc. 168 (12) (2021), 120507.

[12] L. Zhang, P. Zhao, M. Xu, X. Wang, Computational identification of the safety
regime of Li-ion battery thermal runaway, Appl. Energy 261 (2020), 114440.

[13] A. Melcher, C. Ziebert, M. Rohde, H.J. Seifert, Modeling and simulation of the
thermal runaway behavior of cylindrical Li-ion cells—computing of critical
parameters, Energies 9 (4) (2016) 292.

[14] J.K. Ostanek, W. Li, P.P. Mukherjee, K. Crompton, C. Hacker, Simulating onset and
evolution of thermal runaway in Li-ion cells using a coupled thermal and venting
model, Appl. Energy 268 (2020), 114972.

[15] P.T. Coman, S. Rayman, R.E. White, A lumped model of venting during thermal
runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell, J. Power Sources
307 (2016) 56–62.

[16] P.T. Coman, E.C. Darcy, C.T. Veje, R.E. White, Modelling Li-ion cell thermal
runaway triggered by an internal short circuit device using an efficiency factor and
Arrhenius formulations, J. Electrochem. Soc. 164 (4) (2017) A587–A593.

[17] B. Goodwine, Engineering Differential Equations: Theory and Applications,
Springer Science & Business Media, 2010.

[18] L. Lapidus, J.H. Seinfeld, Numerical Solution of Ordinary Differential Equations,
Academic press, 1971.

[19] L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems, Academic
Press, 2017.

[20] C. Runge, Über die numerische Auflösung von Differentialgleichungen, Math. Ann.
46 (2) (1895) 167–178.

[21] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley
& Sons, 2016.

[22] S.D. Conte, C. De Boor, Elementary Numerical Analysis: an Algorithmic Approach,
SIAM, 2017.

[23] M.A. Fathoni, A.I. Wuryandari, Comparison between Euler, Heun, Runge-Kutta and
Adams-Bashforth-Moulton integration methods in the particle dynamic simulation,
in: 2015 4th International Conference on Interactive Digital Media (ICIDM), IEEE,
2015, pp. 1–7.

[24] J. Peinado, J. Ibáñez, E. Arias, V. Hernández, Adams–bashforth and
adams–moulton methods for solving differential riccati equations, Comput. Math.
Appl. 60 (11) (2010) 3032–3045.

[25] E. Hairer, G. Wanner, Stiff differential equations solved by Radau methods,
J. Comput. Appl. Math. 111 (1–2) (1999) 93–111.

M. Parhizi et al.

http://refhub.elsevier.com/S0378-7753(22)00538-9/sref1
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref1
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref2
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref2
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref3
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref3
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref4
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref4
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref5
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref5
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref6
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref6
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref6
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref7
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref7
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref8
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref8
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref9
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref9
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref9
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref10
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref10
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref11
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref11
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref11
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref12
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref12
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref13
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref13
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref13
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref14
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref14
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref14
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref15
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref15
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref15
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref16
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref16
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref16
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref17
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref17
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref18
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref18
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref19
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref19
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref20
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref20
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref21
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref21
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref22
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref22
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref23
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref23
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref23
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref23
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref24
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref24
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref24
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref25
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref25

Journal of Power Sources 538 (2022) 231531

12

[26] A.A. Nasarudin, Z.B. Ibrahim, H. Rosali, On the integration of stiff ODEs using
block backward differentiation formulas of order six, Symmetry 12 (6) (2020) 952.

[27] M. Hosea, L. Shampine, Analysis and implementation of TR-BDF2, Appl. Numer.
Math. 20 (1–2) (1996) 21–37.

[28] L. Bonaventura, A. Della Rocca, Unconditionally strong stability preserving
extensions of the TR-BDF2 method, J. Sci. Comput. 70 (2) (2017) 859–895.

[29] G. Söderlind, Automatic control and adaptive time-stepping, Numer. Algorithm. 31
(1) (2002) 281–310.

[30] A. Valli, G. Carey, A. Coutinho, Control strategies for timestep selection in
simulation of coupled viscous flow and heat transfer, Commun. Numer. Methods
Eng. 18 (2) (2002) 131–139.

[31] T. Hatchard, D. MacNeil, A. Basu, J. Dahn, Thermal model of cylindrical and
prismatic lithium-ion cells, J. Electrochem. Soc. 148 (7) (2001) A755.

[32] K. Shah, D. Chalise, A. Jain, Experimental and theoretical analysis of a method to
predict thermal runaway in Li-ion cells, J. Power Sources 330 (2016) 167–174.

[33] M. Richard, J. Dahn, Accelerating rate calorimetry study on the thermal stability of
lithium intercalated graphite in electrolyte. II. Modeling the results and predicting
differential scanning calorimeter curves, J. Electrochem. Soc. 146 (6) (1999),
2078.

[34] D. MacNeil, L. Christensen, J. Landucci, J. Paulsen, J. Dahn, An autocatalytic
mechanism for the reaction of Li x CoO2 in electrolyte at elevated temperature,
J. Electrochem. Soc. 147 (3) (2000) 970.

M. Parhizi et al.

http://refhub.elsevier.com/S0378-7753(22)00538-9/sref26
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref26
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref27
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref27
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref28
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref28
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref29
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref29
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref30
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref30
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref30
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref31
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref31
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref32
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref32
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref33
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref33
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref33
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref33
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref34
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref34
http://refhub.elsevier.com/S0378-7753(22)00538-9/sref34

	Accelerating the numerical solution of thermal runaway in Li-ion batteries
	1 Introduction
	2 Theory
	2.1 0-D, lumped capacitance thermal runaway model
	2.2 Numerical solution of ordinary differential equations
	2.2.1 Explicit Runge-Kutta methods
	2.2.2 Linear multi-step implicit methods
	2.2.3 Backward difference methods
	2.2.4 Combination of explicit and implicit schemes with backward difference methods
	2.2.5 Adaptive time-stepping algorithm

	3 Result and discussion
	3.1 Reference model for comparison
	3.2 Comparison of RK1 with the reference model
	3.3 Comparison of different numerical schemes (excluding short circuit)
	3.4 Comparison of different numerical schemes (including short circuit)
	3.5 Application of the present work

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

