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Accelerating the numerical solution of thermal runaway in Li-ion batteries 
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H I G H L I G H T S  

• A lumped capacitance model was used to simulate an oven test of an 18650 Li-ion cell. 
• Various time integration schemes were considered. 
• Explicit Runge-Kutta methods outperformed implicit methods and reduced computation time.  
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A B S T R A C T   

Computational modeling and simulation of thermal runaway in Li-ion batteries is an effective tool to understand 
safety concerns associated with Li-ion batteries. However, thermal runaway models are often computationally 
expensive due to the highly non-linear and coupled nature of the equations involved. Therefore, accelerating the 
numerical computation of thermal runaway in Li-ion batteries while maintaining computational accuracy and 
stability is of utmost practical importance. This paper compares several time integration schemes to solve the 
highly non-linear and stiff differential equations that govern thermal runaway in Li-ion batteries. The schemes 
are implemented to solve a lumped capacitance thermal runaway model for a representative thermal abuse 
scenario. Results showed that explicit methods produce similar accuracy as implicit methods at a fraction of the 
computational cost while maintaining stability even for stiff thermal runaway scenarios. For example, a one- 
stage and a two-stage explicit Runge-Kutta method resulted in two orders of magnitude lower computational 
time than the implicit methods while maintaining a similar level of accuracy. By investigating the computational 
performance of various numerical schemes for analyzing thermal runaway, this work contributes towards 
improved safety of energy conversion and storage in Li-ion batteries.   

1. Introduction 

Due to their favorable electrochemical characteristics, Li-ion batte-
ries have become the dominant energy storage and conversion system 
for various applications, such as consumer electronics, electric vehicles, 
and power grid [1,2]. However, despite their superior characteristics, 
Li-ion batteries suffer from well-known safety problems associated with 
thermal runaway [3], which occurs due to a series of decomposition 
reactions triggered at higher temperatures and often results in fire or 
explosions [4]. Temperatures between 20 and 50 ◦C have been reported 
as the Li-ion battery’s optimal operating temperature [5]. Example 
decomposition reactions which occur above this range include: 
decomposition of the solid-electrolyte interphase (SEI) (T > 90 ◦C), SEI 

regeneration (T > 125 ◦C), the reaction of the anode active material with 
the electrolyte (T > 120 ◦C), the reaction of the cathode active material 
with electrolyte (T > 250 ◦C), electrolyte decomposition reaction (T >
250 ◦C), and the reaction of intercalated Li in the anode with the binder 
[6]. Due to the prohibitive cost and complexity of experimental mea-
surements, numerical modeling and simulations have been used exten-
sively to understand thermal runaway in Li-ion batteries [7]. 

The governing equations associated with thermal runaway phe-
nomena in Li-ion batteries generally consist of an ordinary or a partial 
differential equation representing conservation of energy and a number 
of first-order ordinary differential equations governing the conservation 
of mass of the reactants. Various numerical models have been developed 
to solve the system of equations and study the thermal behavior of Li-ion 
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batteries during abuse conditions. However, the effect of the time 
integration scheme and order of accuracy has not been considered in 
previous papers. Often times, the time integration scheme and order of 
accuracy are not reported. For example, Kim et al. [8] developed a 
three-dimensional abuse model for large format batteries using ANSYS 
Fluent, but the time integration scheme and order of accuracy were not 
specified. Lopez et al. [9] developed a three-dimensional abuse model 
for a constant power abuse test in the STAR-CCM + simulation frame-
work. This work used an adaptive time-step backward differencing 
scheme, but the time integration order of accuracy was not specified. 
Peng et al. [10] developed a three-dimensional simulation of an oven 
test using computational fluid dynamics (CFD) solver in ANSYS Fluent 
with a fully implicit scheme for temporal discretization. Mishra et al. 
[11] developed a thermal runaway propagation model in a five by five 
battery pack in ANSYS Fluent, implementing a non-linear coupled solver 
with a fully implicit numerical scheme. In some cases, the time inte-
gration scheme and order of accuracy are known. Zhang et al. [12] 
developed a three-dimensional thermal runaway model triggered by an 
internal short circuit in commercial software COMSOL Multiphysics 5.3 
using the backward differentiation formula (BDF) as the numerical 
scheme with the maximum order of 5 and the minimum order of 2 with a 
relative and absolute error tolerance of 10− 6 and 10− 8, respectively. 
Melcher et al. [13] developed a thermal runaway model for an 18650 
Li-ion cell in COMSOL Multiphysics using a BDF integration scheme with 
a minimum and maximum order of 1 and 5. Further, a variable time-step 
algorithm with a maximum time-step of 1s and an absolute tolerance of 
10− 3 was used. Ostanek et al. [14] developed a custom MATLAB pro-
gram for a lumped capacitance thermal runaway model using an ordi-
nary differential equation solver, ode15s, in MATLAB with an adaptive 
time-stepping algorithm. The time integration scheme and the time 
integration order of accuracy used in the previous studies mentioned 
above are summarized in Table 1. 

Despite the large number of studies analyzing thermal runaway and 

propagation using numerical models in the form of manually-written 
codes or default integration functions in a commercial software, little 
consideration has been given to investigate the accuracy and efficiency 
of different time integration schemes applied to thermal runaway 
problems. Often times, studies that use commercial software will use the 
default time integration scheme, whereas using an alternative scheme 
could improve the solution time or accuracy. The coupled and non- 
linear nature of the equations governing thermal runaway modeling 
often results in high computational costs due to the need for extremely 
small time-steps, especially close to the moment of thermal runaway. 
Thus, it is clearly imperative to understand how to efficiently solve such 
equations numerically to ensure high accuracy and reasonable compu-
tational time in the context of thermal runaway simulation. Such an 
effort may help choose the most appropriate numerical scheme that can 
be implemented in manually-written codes and commercial software 
intended for simulating thermal runaway. 

This paper implements and compares different numerical schemes to 
solve highly non-linear and stiff ordinary differential equations that 
commonly appear in the modeling and simulation of thermal runaway in 
Li-ion batteries. An efficient numerical scheme suitable for imple-
mentation in hand-written codes and commercial software is proposed. 
Three general integration schemes – explicit Runge-Kutta, implicit 
linear multi-step, and backward-difference method – are considered to 
solve a representative problem using a 0-D lumped thermal runaway 
model with four decomposition reactions. The numerical schemes are 
then extended to a model having a fifth reaction to account for the short 
circuit reaction, resulting in a highly-stiff system of equations. Both 
explicit and implicit schemes discretize the time domain into smaller 
timesteps and calculate the variable of interest at each step based on the 
available information. However, a direct computation of the variable of 
interest is possible for explicit schemes, while for implicit methods, 
iterative techniques are required to determine the variable of interest. 
Thus, explicit schemes are generally faster to execute and easier to 
implement but less accurate and less stable than implicit schemes. 
Highly stiff problems often require implicit methods to preserve stability 
at increased computational costs. However, to the best of the authors’ 
knowledge, there have not been any previous studies that systematically 
investigate the performance of time-integration schemes for simulating 
thermal runaway of Li-ion batteries. 

The rest of the paper is organized as follows: Section 2 presents the 
ordinary differential equations governing the energy and mass conser-
vation during thermal runaway of Li-ion batteries, various numerical 
schemes to solve such equations, and the details of the adaptive time- 
stepping algorithm. Section 3 discusses the results, including the com-
parison of different numerical schemes, error calculation, and compu-
tational time associated with each scheme. 

Table 1 
Summary of the time integration schemes and the time integration order of 
accuracy in previous studies.  

Study Time integration 
scheme 

Time integration order of 
accuracy 

Kim et al. [8] Not Specified Not Specified 
Lopez et al. [9] Backward Differencing Not Specified 
Peng et al. [10] Fully Implicit Not Specified 
Mishra et al. [11] Fully Implicit Not Specified 
Zhang et al. [12] Backward Differencing Max Order 5, Min Order 2 
Melcher et al. [13] Backward Differencing Max Order 5, Min Order 1 
Ostanek et al. [14] Runge-Kutta Max Order 5, Min Order 1  

Fig. 1. (a) Schematic of the thermal resistance network representing a 0-D lumped capacitance thermal runaway model for the oven test of a cylindrical Li-ion cell, 
(b) comparison of the 0D lumped model with oven test experimental data. 
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2. Theory 

2.1. 0-D, lumped capacitance thermal runaway model 

Fig. 1 shows a schematic of the thermal resistance network used in 
modeling an oven test of a cylindrical Li-ion cell at an oven temperature 
of 155 ◦C, which is a commonly investigated abuse scenario. In an oven 
test, the cell is placed in an oven at high temperature to trigger thermal 
runaway. As shown in Fig. 1, the oven is modeled as an ideal energy 
source, maintaining its temperature regardless of the heat flow rate. The 
Li-ion cell is modeled as a thermal mass for which the temperature rise 
rate is proportional to the heat flow rate and inversely proportional to its 
mass and specific heat capacity. External heat transfer between the oven 
and the cell occurs due to convection and radiation, shown as a parallel 
resistance in the schematic. In this work, a standard 0-D lumped 
capacitance model [14,15] was used to describe the energy balance 
within the cell. A cylindrical cell of the commonly-used 18650 config-
uration was considered. The 0-D model implements conservation of 
energy over a control volume comprising the entire Li-ion cell. In other 
words, the spatial temperature gradient within the cell was neglected. 
Under this assumption, the conservation of energy may be written as 
follows [14]: 

mcellcp
dT
dt

=
∑

Q̇surr +
∑

Q̇gen (1)  

where mcell and cp are the mass and specific heat capacity of the Li-ion 
cell, respectively, Q̇surr is the rate of heat transfer between the sur-
rounding and the surface of the control volume through convection and 
radiation, and Q̇gen is the internal heat generation rate within the Li-ion 
cell. During thermal runaway, internal heat generation occurs due to the 
underlying decomposition reactions triggered at high temperatures. The 
heat generated from these decomposition reactions is often described as 
a product of the heat of reaction, H, the mass of reactant, mr, and the 
reaction rate, R [8,13]: 

Q̇gen,i =Hi⋅mr,i⋅Ri (2) 

The reaction rates, on the other hand, are often described by 
Arrhenius functions as follows [8]: 

− Ri =
dxi

dt
= − Ai exp

(

−
Ei

kb⋅T

)

xi (3)  

where x is the concentration of reactants, A is the frequency factor, E is 
the activation energy, kb is the Boltzmann constant, and T is tempera-
ture. Note that the subscript i represents a particular reaction. The 
standard four reaction model proposed by Kim et al. [8] and used in this 
work includes SEI decomposition reaction (“SEId”), the reaction of the 
anode active material with the electrolyte (“AnE”), cathode decompo-
sition reaction (“cat”), and the electrolyte decomposition reaction 

(“elec”). Moreover, an additional equation is considered for regenera-
tion of the SEI layer (“tSEI”) that occurs concurrently with the “AnE” 
equation and limits its rate. In addition to the decomposition reactions, 
an additional exothermic reaction due to short circuit is also considered 
to represent the commonly-occurring short circuit abuse, and to inves-
tigate the performance of numerical schemes for the resulting, 
highly-stiff problem. Details of the mathematical formulation of the 
short circuit reaction can be found in previous studies [16]. The short 
circuit mechanism was used in this study to show the capability of each 
scheme in solving a highly non-linear problem. However, the short 
circuit mechanism can be replaced by other abuse scenarios/reactions. 
For instance, Lopez et al. [9] considered the additional reaction as 
combustion of the electrolyte instead of short circuit. 

The number of decomposition reactions and values of associated 
parameters may vary depending on the battery chemistry and nature of 
abuse. Furthermore, some decomposition reactions may occur simulta-
neously and thus be coupled to one another resulting in an extra term in 
equation (3). Table 2 summarizes the ordinary differential equations 
describing the decomposition reactions and short circuit. Furthermore, 
Table 3 summarizes the values of thermophysical properties of the cell 
and decomposition reactions kinetic parameters, including sources for 
these values. 

To solve these equations, several standard numerical schemes, 
including: explicit Runge-Kutta, linear multi-step implicit, and back-
ward difference methods, are discussed in the following sub-section. 

Table 2 
Decomposition reaction mechanisms.  

Reaction Initial Condition Ordinary Differential Equation Ref. 

SEId xf,0 = 0.15 dxf

dt
= − RSEId = − ASEId exp

(

−
ESEId

kbnT

)

xf 
[31,33] 

AnE xi,0 = 0.75 dxi

dt
= − RSEIr = − AAnE exp

(

−
EAnE

kbnT

)

exp
(

−
tSEI

tSEI,0

)

xi 
[31,33] 

tSEI tSEI,0 = 0.033 dtSEI

dt
= RSEIr 

[31,33] 

cat αcat,0 = 0.04 dαcat

dt
= Rcat = Acat exp

(

−
Ecat

kbnT

)(

1 − αcat

)

αcat 
[31,34] 

elec celec,0 = 1 dcelec

dt
= − Relec = − Aelec exp

(

−
Eelec

kBnT

)

celec 
[8] 

SC SoC0 = 1 dSoC
dt

= − RSoC = − ISCcondASC exp
(

−
ESC

kBnT

)

SoC 
[16]  

Table 3 
Thermophysical and kinetic parameters used for simulation.  

Parameter Symbol Value Units Ref. 

Initial Temperature T0 28 ◦C assumed 
Heat of Reaction HSEId 257 J•g− 1 [31] 

HAnE 1714 J•g− 1 [31] 
Hcat 314 J•g− 1 [31] 
Helec 155 J•g− 1 [8] 
HSC 4989.6 J•g− 1 Est. 

Mass of Reactants mSEId 6 g [31] 
mAnE 6 g [31] 
mcat 12 g [31] 
melec 4 g Est. 

Frequency factor ASEId 1.667 × 1015 s− 1 [31] 
AAnE 2.5 × 1013 s− 1 [31] 
Acat 6.667 × 1011 s− 1 [31] 
Aelec 5.14 × 1025 s− 1 [8] 
ASC 1.8 × 1013 s− 1 Est. 

Activation Energy ESEId 1.4 eV [31] 
EAnE 1.4 eV [31] 
Ecat 1.27 eV [31] 
Eelec 2.84 eV [8] 
ESC 1.6 eV Est. 

Mass of Cell m 43 g Est. 
Specific Heat Capacity cp 830 J•kg− 1•K− 1 [16] 
Oven Temperature Toven 155 ◦C [31]  
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2.2. Numerical solution of ordinary differential equations 

The set of ordinary differential equations described in section 2.1 for 
a lumped thermal runaway model can be described as an initial value 
problem, written compactly as follows [17]: 

dy
dt

= f (t, y) (4a)  

y(t0)= y0 (4b)  

where the term on the left-hand side of equation (4a) represents the rate 
of change of a variable, such as temperature of a lumped body described 
in equation (1) or species concentration in a first-order chemical reac-
tion described in equation (3), and y0 is the initial condition. 

Initial value problems are encountered commonly in engineering, 
and a number of numerical schemes are already available [18]. In the 
present work, three general integration schemes are implemented to 
solve ordinary differential equations describing temporal changes in 
lumped temperature and chemical reactions during thermal runaway in 
Li-ion cells. The numerical schemes and their implementation to solve a 
thermal runaway problem are discussed next. 

2.2.1. Explicit Runge-Kutta methods 
The explicit Runge-Kutta (RK) method discretizes the initial value 

problem as follows [19,20]: 

yn = yn− 1 + Δt
∑s

i=1
biki (5) 

In general, this is a multi-stage, one-step method where n is the 
current timestep to be solved, n-1 is the previous time step, Δt is the 
timestep size, b are weights specific to each RK method [21], and s is the 
number of RK stages. The ki values are determined as follows: 

k1 = f (tn− 1, yn− 1) (6)  

k2 = f (tn− 1 + c2Δt, yn− 1 +Δt(a21k1))

k3 = f (tn− 1 + c3Δt, yn− 1 +Δt(a31k1 + a32k2))

ks = f
(
tn− 1 + csΔt, yn− 1 +Δt

(
as1k1 + as2k2 +…+ as,s− 1ks− 1

))

where aij is the Runge–Kutta matrix and ci are the nodes [21]. The 
Runge–Kutta matrix, aij, the weights, bi, and the nodes, ci for each 
Runge-Kutta method are often arranged in a Butcher tableau as follows: 

(7) 

For example, for the forward Euler method b1 = 1, so a one-stage RK 
method (RK1) may be written as follows [22]: 

yn = yn− 1 + Δtf (tn− 1, yn− 1) (8) 

Further, Heun’s method is a two-stage RK method (RK2) where c2 =

1, a21 = 1, b1 = 1
2, and b2 = 1

2. Having these constants, k1 and k2 can be 
calculated, and the Heun’s method may be written as follows [23]: 

yn = yn− 1 +
Δt
2
(k1 + k2) (9) 

The RK4 scheme is a four-stage method with the following Butcher 

Fig. 2. Flowchart of the iterative approach used to solve the coupled energy and species conservation equations with explicit methods.  
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tableau: 

(10) 

Thus, the RK4 method may be written as follows [23]: 

yn = yn− 1 +
Δt
6
(k1 + 2k2 + 2k3 + k4) (11) 

As shown in equations (8), (9) and (11), both backward Euler, 
Heun’s, and RK4 methods are explicit, which offers a simple imple-
mentation of calculating values at the next timestep directly, rather than 
solving an implicit equation. Furthermore, intermediate values do not 
need to be stored and carried to the next timestep. On the other hand, 
linear multi-step methods use two or more steps. And, backward dif-
ference methods use previously calculated values. Using more steps and 
using previously calculated values increases the storage requirement 
relative to explicit methods. The algorithm of the solution procedure for 
the explicit methods is shown as a flowchart in Fig. 2. In step 1, the 
solution is initialized. In step 2, the time step is advanced using the 
initial step size. In step 3, the temperature and concentration at the time 
step, n, is calculated based the chosen numerical scheme. In step 4, the 
time step is updated using the adaptive algorithm. Then, steps 2–4 are 
repeated until the solution has reached the ending time value, tfinal. 

2.2.2. Linear multi-step implicit methods 
Linear multi-step methods may be formulated using explicit or im-

plicit schemes. Explicit linear multi-step methods are also known as 

Adams-Bashforth (AB) methods [24]. Implicit linear multi-step methods 
are also known as Adams-Moulton (AM) methods. While implementa-
tion is more complicated and computational costs are higher, implicit 
methods are known to have better numerical stability than explicit 
methods [25]. Two single-step Adams-Moulton methods are considered 
in the present work. First, the implicit Euler method (AM1): 

yn = yn− 1 + Δtf (tn, yn) (12) 

And, second, the implicit trapezoid method (AM1t): 

yn = yn− 1 + Δt
(

f (tn− 1, yn− 1)

2
+

f (tn, yn)

2

)

(13) 

Note that the implicit methods described above result in transcen-
dental equations of the variable y at the current time-step, requiring a 
root-finding algorithm for calculating y. In the present work, a built-in 
function in MATLAB, i.e., “fzero,” is used for finding the roots. 
Furthermore, since the ordinary differential equations of the energy and 
mass conservation equations are coupled to each other, iterations be-
tween the two differential equations are required at each time-step to 
find the values of temperature and concentrations at the current time- 
step. The flowchart of solution procedure for the implicit methods is 
schematically shown in Fig. 3. In step 1, the solution is initialized. In step 
2, the time step is advanced using the initial step size. In step 3, an 
iteration loop is introduced to iterate between the coupled equations 
governing energy and mass conservation to determine the temperature 
and concentration at the time step, n, based on the chosen numerical 
scheme. Step 3 is repeated until the difference between the outcomes of 
two iterations is less than the specified tolerance, in this case, 10− 4. In 
step 4, the time step is updated using the adaptive algorithm. Then, steps 
2–4 are repeated until the solution has reached the ending time value, 

Fig. 3. Flowchart of the iterative approach used to solve the coupled energy and species conservation equations with implicit methods.  
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tfinal. 

2.2.3. Backward difference methods 
Similar to implicit multi-step methods, backward difference methods 

have greater numerical stability than explicit methods and are particu-
larly suitable for stiff problems where the dependent variable changes 
sharply with time [26]. Note that, similar to the implicit methods 
described above, the backward difference methods require root-finding 

and iterations between the energy and species conservation equations 
described above. The second-order backward difference method (BDF2) 
with variable timestep will be considered in the present work: 

R =
(Δtn− 1 + Δtn− 2)

2

Δt2
n− 1

(14a)  

yn =
1

R − 1
(yn− 1R − yn− 2 + f (tn, yn)(RΔtn− 1 − (Δtn− 1 + Δtn− 2) ) ) (14b) 

Fig. 4. Flowchart of the iterative approach used to solve the coupled energy and species conservation equations with backward difference methods.  

Table 4 
Summary of numerical methods, including: abbreviations, calculation steps, storage requirements, and ordinary differential equations.  

Abbr. Calculation Storage Equation(s) 

RK1 1 explicit n-1 yn = yn− 1 + Δtn− 1f(yn− 1)

RK2 2 explicit n-1 
yn = yn− 1 + Δtn− 1

(
k1

2
+

k2

2

)

RK4 4 explicit n-1 yn = yn− 1 +
1
6
(k1 + 2k2 + 2k3 + k4)

AM1 1 implicit n-1 yn = yn− 1 + Δtn− 1f(yn)

AM1t 1 implicit n-1 
yn = yn− 1 + Δtn− 1

(
f(yn− 1)

2
+

f(yn)

2

)

BDF2 1 implicit n-1, n-2 
R =

(Δtn− 1 + Δtn− 2)
2

Δt2n− 1 

yn =
1

R − 1
(
yn− 1R − yn− 2 + f

(
yn
)
(RΔtn− 1 − (Δtn− 1 + Δtn− 2) )

)

RK1-BDF2 1 explicit n-1 yn− 1/2 = yn− 1 +
Δtn− 1

2
f(yn− 1)

1 implicit yn =
4
3
yn− 1/2 −

1
3
yn− 1 +

2
3

(Δtn− 1

2

)
f(yn)

AM1-BDF2 2 implicit n-1 yn− 1/2 = yn− 1 +
Δtn− 1

2
f(yn− 1/2)

yn =
4
3
yn− 1/2 −

1
3
yn− 1 +

2
3

(Δtn− 1

2

)
f(yn)

AM1t-BDF2 2 implicit n-1 
yn− 1/2 = yn− 1 +

Δtn− 1

2

⎛

⎝f(yn− 1)

2
+

f(yn− 1/2)

2

⎞

⎠

yn =
4
3
yn− 1/2 −

1
3
yn− 1 +

2
3

(Δtn− 1

2

)
f(yn)
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where Δtn-1 and Δtn-2 are the current and the previous timesteps, 
respectively. This method can be considered a two-step method since it 
requires the solution at both the current and previous timesteps. For the 
first timestep of the simulation, the implicit Euler or implicit trapezoid 
method may be used. Then, for all timesteps, the solutions yn-2 and yn-1 
are known, and the BDF2 method may be used. It should be noted that 
the AM1 method is also considered a one-step backward difference 
method. The flowchart of solution procedure for the BDF2 method is 
also shown schematically shown in Fig. 3. The required steps of the 
solution procedure are similar to the implicit methods described above. 

2.2.4. Combination of explicit and implicit schemes with backward 
difference methods 

Finally, the backward difference method may be used in combination 
with any other one-step method. In this manner, the solution is a two- 
step method where the time step is exactly half of the global time 
step. In other words, in the first step, i.e., Δt/2, an explicit or an implicit 
method may be used to calculate the temperature and concentrations. 
Then, the newly calculated temperature and concentrations (yn-1/2) 
along with the temperature and concentrations at the previous step (yn- 

1) can be used to calculate the values at the current time-step (yn) using 
the BDF2 approach. In this method, the storage requirement may be 
reduced since it eliminates the need for storing n-2 solution due to the 
existence of an intermediate solution at n-1/2. For example, the first 
step, denoted by the subscript n-1/2, may be calculated using the AM1 
method: 

yn− 1/2 = yn− 1 +
Δt
2

f
(

tn− 1/2, yn− 1/2

)
(15) 

and the second step uses the BDF2 formula from equation (14) 
which, for a constant time step, reduces to: 

yn =
4
3

yn− 1/2 −
1
3
yn− 1 +

2
3

(Δt
2

)
f (tn, yn) (16) 

This algorithm using equations (15) and (16) will be referred to as 
AM1-BDF2 for the AM1 method in step 1 and BDF2 in step 2. Additional 
combinations of RK1-BDF2 and AM1t-BDF2 will be considered. It should 
be noted that the AM1t-BDF2 method is commonly referred to as the TR- 
BDF scheme and is widely used in the solution of stiff ordinary differ-
ential equations [27,28]. The flowchart of solution procedure for the 
combination of RK1, AM1, and AM1t methods with backward difference 
method is schematically shown in Fig. 4. In step 1, the solution is 
initialized. In step 2, the time is advanced by half of the global time step. 
In step 3, the temperature and concentration at the time, tn− 1/2, are 
determined based on either RK1, AM1, or AM1t schemes. In step 4, the 
time is advanced by another half time step. The temperature and con-
centration at the time, tn, are determined based on the BDF2 scheme. In 
step 5, the time step is updated using the adaptive algorithm. Then, steps 
2–5 are repeated until the solution has reached the ending time value, 
tfinal. 

A summary of all the methods described in this section are shown in 
Table 4. The calculation and the storage requirements are listed for each 
scheme. The calculation requirement is similar to the number of steps of 
the numerical method. The calculation requirement for the RK1 method 
is listed as 1-explicit while the AM1 method is listed as 1-implicit. 
Although BDF2 is known as a two-step method, the calculation 
requirement is listed as 1-implicit since the solution at steps n-1 and n-2 
have already been calculating in previous steps. The storage require-
ment describes which values must be carried to the next timestep. For 
BDF2, the storage requirement is the solution at steps n-1 and n-2. In 
contrast, the hybrid BDF methods such as RK1-BDF2 require two cal-
culations, 1-implicit and 1 explicit, to obtain the solution at n-1/2 and n 
but only require the storage of the solution at step n-1. The intermediate 
solution at n-1/2 may be discarded prior to the next time step. 

2.2.5. Adaptive time-stepping algorithm 
An adaptive time-stepping algorithm based on a proportional- 

integral-derivative (PID) control approach is used along with the nu-
merical scheme to solve the ordinary differential equations. This method 
implements PID control to adjust the step size for the next timestep by 
comparing a user-specified tolerance to the change of the parameter of 
interest. In the present work, changes in temperature and concentration 
of each reaction were tracked for the adaptive time-step algorithm. 
Previous studies have used a similar scheme to solve stiff and non-stiff 
problems [29,30]. The algorithm for estimating the next time-step size 
is as follows: 

ΔtPID =

(
en− 1

en

)kp(Tol
en

)kI
(

e2
n− 1

enen− 2

)kD

.Δtn− 1 (17)  

Δt*n =max(min(ΔtPID,Δtn− 1.fmax),Δtn− 1.fmin) (18)  

Δtn =max
(
min
(
Δt*n,Δtmax

)
,Δtmin

)
(19) 

The parameter en is the normalized change in the parameter of in-
terest at time tn and calculated as follows: 

en =
|yn − yn− 1|

1 + min(yn, yn− 1)
(20)  

where y is the variable of interest, i.e., temperature or species concen-
tration. The parameter en is calculated for temperature and all the 
reactant concentrations, and the maximum en would be used in equa-
tions (13)–(15). The parameter Tol is the user-specified tolerance. The 
PID controller parameters kp, ki, and kd are the proportional, integral, 
and derivative constants, respectively. Furthermore, fmin and fmax are the 
user-specified minimum and maximum growth rate of the next time- 
step, and Δtmin and Δtmax are the user-specified minimum and 
maximum time-step. An initial timestep, Δtmin = 1s was used to start the 
simulation. The values of the parameters associated with the time- 
stepping algorithm are summarized in Table 5. 

The following section implements the numerical schemes described 
in this section to solve a set of ordinary differential equations governing 
the rate of change of temperature and mass concentration during ther-
mal runaway of a Li-ion cell. 

3. Result and discussion 

3.1. Reference model for comparison 

To validate the lumped capacitance framework, the RK4 scheme was 
applied to the 5-reaction kinetic model. Thermophysical and kinetic 
parameters for the SEId, tSEI, AnE, and cat reactions were adopted from 
Hatchard et al. [31] and simulations were compared with cell temper-
ature vs. time for a 155 ◦C oven test. Kinetic parameters for the elec 
reaction were adopted from Kim et al. [8] and kinetic parameters for the 
short circuit reaction were adopted from Coman et al. [16]. Fig. 1(b) 
shows good agreement between the model and experiment. Note that 

Table 5 
Parameters associated with the time-stepping 
algorithm.  

Parameter Value 

kp 0 
ki 1 
kd 0 
Tol 0.001 
fmin 0.8 
fmax 1.2 
Δtmin 10− 6 s 
Δtmax 3600 s 
Δt0 1 s  
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the model was unable to capture the temperature decrease between 
2200 and 2500s due to venting and electrolyte evaporation, which has 
been neglected in the present work for simplicity. Previous work has 
shown that accounting for venting and the evaporative cooling effect 
will result in a better agreement with oven test data [31]. 

While exact analytical solutions may be derivable for special cases of 
the problem posed in Section 2.1 [32], exact analytical solutions do not 
exist for the general problem due to the non-linear and coupled nature of 
the differential equations involved. In order to examine the accuracy of 

the different numerical schemes summarized in Table 4, a reference 
model is required. In the present study, a numerical simulation based on 
a built-in MATLAB solver for stiff ordinary differential equations, with 
minimal relative tolerance (10− 9), was used as a reference for comparing 
the accuracy and determining the error associated with each scheme. 
Several MATLAB solvers were considered: ode23tb (which implements 
an implicit Runge-Kutta scheme with a trapezoidal rule step as its first 
stage and a backward difference scheme of order two as its second stage, 
i.e., TR-BDF2), ode23s (which implements a modified second-order 

Fig. 5. Comparison of different ordinary differential equation solvers in MATLAB for thermal runaway model without short circuit (a) temperature as a function of 
time and (b) temperature difference between ode23tb and ode15s solvers as a function of time, and with short circuit (c) temperature as a function of time and (d) 
temperature difference between ode23tb and ode15s solvers as a function of time. 

Fig. 6. Example results from numerical schemes: Thermal runaway model without short circuit (a) temperature as a function of time and (b) reactant concentrations 
as functions of time. Thermal runaway model with short circuit (c) temperature as a function of time and (d) reactant concentrations as functions of time. 
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Rosenbrock formula), ode23t (which implements the trapezoidal rule 
using a free interpolant), and ode15s (which is a multi-step solver based 
on the numerical differentiation formulas). A comparison of the built-in 
MATLAB ODE solvers is shown in Fig. 5. Fig. 5(a) presents temperature 
as a function of time for a thermal runaway model excluding the short 
circuit mechanism. As shown, all four methods were in excellent 
agreement with each other. To further investigate the ode15s solver 
accuracy, the temperature difference between ode23tb and ode15s 
solvers, i.e., ΔT(ti) = TODE23tb (ti) − TODE15s (ti), is plotted as a function of 
time in Fig. 5(b). The root mean square error of the temperature dif-

ference between the two errors 

(

RMSEΔT =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1

(ΔT(ti) )2

N

√ )

was 0.0029 

K. 
Fig. 5 (c) and (d) present a similar analysis for a stiffer thermal 

runaway problem considering heat generation from the short circuit 
mechanism. As shown, even for a highly stiff problem, ode15s accu-
rately predicted the cell temperature. Although the temperature differ-
ence between ode15s and ode23tb was slightly larger than the previous 
case, the RMSEΔT was still very low, i.e., 0.05 K. Consequently, the 
ode15s solver was chosen as the reference model due to its simplicity 
and low computational time. 

3.2. Comparison of RK1 with the reference model 

Fig. 6 shows an example of the results obtained from one of the 
numerical schemes introduced in Table 4. For this example, the explicit 
RK1 method was used to solve the ordinary differential equations gov-
erning thermal runaway. Fig. 6(a) plots the temperature as a function of 
time determined by the RK1 method and the ode15s solver for the 
thermal runaway model excluding the short circuit mechanism. Fig. 6(c) 
presents a similar plot for a thermal runaway model accounting for the 
heat generation due to the short circuit mechanism. In general, the RK1 
scheme was in good agreement with the ode15s solver. The error anal-
ysis and comparison of the numerical schemes will be discussed in detail 
in the following sections. 

Fig. 6(b) shows the concentration of the reactants as a function of 

time for the thermal runaway model excluding the short circuit reaction. 
As shown, the “SEId” reaction triggers first and continues toward 
completion. Also, Fig. 6(b) shows that the SEI layer regeneration is 
coupled to the “AnE” reaction rate and slows the rate of this reaction. 
Finally, as shown, the electrolyte decomposition reaction, “elec,” does 
not fully progress toward completion. Fig. 6(d) presents a similar anal-
ysis for the thermal runaway model accounting for the short circuit re-
action. Compared to the previous case, the “AnE” reaction progresses 
further in this case, and the “elec” reaction progresses toward comple-
tion due to the high temperature resulted from the short circuit reaction. 

3.3. Comparison of different numerical schemes (excluding short circuit) 

A comparison of the numerical schemes introduced in Table 4 is 
shown in Fig. 7 for the thermal runaway model, excluding the short 
circuit reaction. Fig. 7(a) plots the difference between the temperature 
determined from the numerical schemes summarized in Table 4 and the 
reference temperature determined from MATLAB ode15s solver as a 
function of time. Fig. 7(a) shows that the numerical schemes behave 
differently at various stages of the simulation. For example, during the 
initial heating between t = 0–900 s, AM1 showed a large difference 
between the temperature determined from the numerical schemes and 
MATLAB ode15s solver, ΔT, while the same scheme results in one of the 
lowest ΔT between t = 1000–2000 s. Interestingly, the RK2 and RK4 
methods resulted in a smaller ΔT compared to other schemes, including 
the implicit methods almost throughout the simulation. 

All of the numerical schemes showed a relatively large ΔT around the 
thermal runaway initiation time. In this study, the initiation of thermal 
runaway was defined when the temperature gradient, dT/dt, exceeds 
0.1Ks− 1 which occurred around t = 2746s for the reference model. To 
examine this phenomenon more closely, Fig. 7(b) plots the temperature 
as a function of time for ode15s and one of the numerical schemes, i.e., 
BDF2. A zoomed-in plot near the region of the thermal runaway initia-
tion is also shown in the inset. The inset shows that the BDF2 method 
predicted the maximum temperature at around t = 2943s while the 
ode15s solver predicted the maximum temperature at around t = 2958s. 
This indicates that the large difference in the temperature predicted by 

Fig. 7. Comparison of the numerical schemes for solving thermal runaway without short circuit (a) temperature difference, ΔT, as a function of time, (b) temperature 
as a function of time determined from the BDF2 scheme and ode15s solver, (c) root mean square error of the temperature difference, RMSEΔT, as a function of time 
lag, and (d) normalized computational time associated with each numerical scheme. 
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the two models around the thermal runaway initiation may be due to the 
difference between the time-to-runaway predicted by the two models. 

In order to account for errors in the predicted time-to-runaway, the 
lag time resulting in minimal RMSEΔT was identified for each numerical 
scheme. The present study uses the term “lag” to indicate the difference 
between the thermal runaway initiation time determined by the nu-
merical schemes and the ode15s solver. A positive lag corresponds to the 
numerical scheme predicting a delayed thermal runaway, while a 
negative lag corresponds to the numerical scheme predicting an early 
thermal runaway initiation compared to the ode15s solver. Fig. 7(c) 
plots the RMSEΔT as a function time-lag for different numerical schemes. 
The values of RMSEΔT, lags, and maximum temperature are also sum-
marized in Table 6. As shown, the explicit methods resulted in a smaller 
lag compared to the implicit methods. The minimum lag magnitude of 
− 6.52s was observed for the RK4 method, and the maximum lag 
magnitude was observed for the BDF2 method, − 14.3s. After shifting the 
solutions of each method by its respective lag, the smallest RMSEΔT 
values were observed for the RK1 (0.34 K) and AM1t (0.47 K) methods. 

The normalized computational time for each numerical method was 
plotted in Fig. 7(d). The computational time was determined from the 
average of 10 runs for each scheme. Moreover, the computational time 
was normalized based on the fastest method, i.e., RK1. As shown, the 
computational time associated with the explicit methods were dramat-
ically shorter than the implicit schemes since they do not require finding 

roots. Note that the function “fzero” was used for root finding for the 
implicit schemes. Optimizing the root-finding technique may reduce the 
computational time associated with the implicit methods. Overall, the 
explicit methods RK1, RK2, and RK4 are attractive schemes. Compared 
to the implicit schemes, the RK1, RK2, and RK2 had smaller time-lag, 
comparable RMSEΔT errors, and significantly shorter computational 
times. 

3.4. Comparison of different numerical schemes (including short circuit) 

Fig. 8 presents a similar analysis as Fig. 7 but for a thermal runaway 
model accounting for the heat generation due to the short circuit reac-
tion. Fig. 8(a) shows that the temperature difference between the nu-
merical schemes and the reference model were similar to Fig. 7(a). Fig. 8 
(b) plots the temperature as a function of time obtained from the ode15s 
solver and the BDF2 scheme. Similar to the previous section, Fig. 8(b) 
indicates a time-lag in the thermal runaway initiation determined from 
the numerical methods and the ode15s solver. Therefore, a similar al-
gorithm as the previous section was used to find the time-lag for which 
the RMSEΔT is minimum. Fig. 8(c) plots the RMSEΔT as a function of the 
lag-time. The values of RMSEΔT, lags, and maximum temperature are 
also summarized in Table 7. Fig. 8(c) and Table 7 show a minimum lag 
magnitude of − 6 s for the RK22 method and a maximum lag magnitude 
of − 14.3 s for the BDF2 method. In this case, the minimum RMSEΔT 

Table 6 
RMSEΔT and lags associated with each scheme (without short circuit).  

Method Lag (s) RMSEΔT (K) Max T (K) 

RK1 − 9.0 0.89 519.4 
RK2 − 8.8 1.56 519.8 
RK4 − 6.52 0.34 519.5 
AM1 − 13.7 0.55 519.0 
AM1t − 11.3 0.47 519.2 
BDF2 − 14.3 0.82 518.7 
RK1-BDF2 − 10.5 0.59 519.3 
AM1-BDF2 − 11.2 0.91 519.4 
AM1t-BDF2 − 10.5 0.95 519.5  

Fig. 8. Comparison of the numerical schemes for solving thermal runaway with short circuit (a) temperature difference, ΔT, as a function of time, (b) temperature as 
a function of time determined from the BDF2 scheme and ode15s solver, (c) root mean square error of the temperature difference, RMSEΔT, as a function of time lag, 
and (d) normalized computational time associated with each numerical scheme. 

Table 7 
RMSEΔT and lags associated with each scheme (with short circuit).  

Method Lag (s) RMSEΔT (K) Max T (K) 

RK1 − 8.9 0.83 731.2 
RK2 − 8.3 1.14 731.1 
RK4 − 6.0 0.24 730.8 
AM1 − 13.2 0.86 731.6 
AM1t − 11.0 0.76 731.4 
BDF2 − 14.3 1.95 731.7 
RK1-BDF2 − 10.3 0.98 731.1 
AM1-BDF2 − 10.8 1.13 731.2 
AM1t-BDF2 − 10.1 1.06 731.1  
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(0.24 K) and the minimum computational time were observed for the 
RK4 and RK1 method, respectively. Results for the four-reaction model 
with short circuit were similar to the case without short circuit. The RK1, 
RK2, and RK4 schemes had smaller time-lag, comparable RMSEΔT errors, 
and significantly shorter computational times. 

3.5. Application of the present work 

To demonstrate the application of the present work and its capability 
in reducing the computational time for thermal runaway simulation, 
The RK1 scheme was implemented into a commercial CFD software, 
ANSYS FLUENT version 2022 R1. The energy equation was solved using 
the built-in energy equation (AM1 in this case). The ODEs describing the 
time rate of change of reaction concentration were solved using either 
the RK1 or AM1 method. The ODEs were implemented using Fluent’s 
user-defined scalar capability. 

This approach was used to solve the 4-reaction thermal runaway 
model. The results showed that the RK1 method was 4.3 times faster 
than AM1. This is a substantial improvement considering that the AM1 
scheme was used for the energy equation in both cases. Solving the 
energy equation using the RK1 method would further improve the 
speed. In addition, extending the lumped model to multi-dimensional 
cases may result in further improvements. 

4. Conclusion 

The present work investigated the performance of various numerical 
schemes for solving highly-stiff ordinary differential equations that 
appear in simulation of thermal runaway in Li-ion batteries, in order to 
improve accuracy and computation time. Modeling and Simulation can 
be an effective and efficient tool for characterizing thermal behavior of 
Li-ion batteries during abuse conditions. To complement experiments, 
modeling frameworks must be accurate and computationally efficient. 
One important factor affecting accuracy and computational cost is the 
time integration scheme. Three general integration schemes, including 
explicit Runge-Kutta, implicit linear multi-step, and backward- 
difference method, were considered to solve a simplified lumped 
capacitance thermal runaway model. Results from the numerical 
schemes were compared to a well-known ordinary differential equation 
solver for stiff equations in MATLAB. The root mean square temperature 
difference, time-to-runaway, and computational time were tabulated for 
each numerical scheme. In general, it was shown that explicit methods 
such as RK1, RK2, and RK4 generate similar accuracy to implicit 
methods at a fraction of the computational cost even for stiff thermal 
runaway scenarios. 

Results from this work show that numerical simulations of thermal 
runaway and propagation may be accelerated by using explicit methods 
relative to using the default time-integration scheme in commercial 
software. Since the kinetic reactions and species conservation are often 
implemented in commercial software as user-defined functions, 
substituting implicit methods with a single-stage or multi-stage explicit 
scheme has the potential to significantly reduce computational time. It is 
expected that results from this work may help improve the accuracy and 
computational cost of thermal runaway simulations in both commercial 
software as well as manually-written code. Future work may include 
conducting similar analysis for thermal runaway models with higher 
spatial dimensions or additional physics such as venting, gas generation, 
and electrolyte evaporation. 
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