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a b s t r a c t 

Diffusion-reaction problems occur commonly in heat and mass transfer analysis. In the particular case 

of a multilayer body under certain conditions, such problems are known to result in imaginary eigen- 

values that indicate divergence in the temperature/concentration field at large times. For small values of 

the reaction coefficient, past work has derived conditions in which an imaginary eigenvalue may exist. 

This work generalizes this result by showing that more than one, but not infinite imaginary eigenvalues 

may exist under certain conditions in a one-dimensional two-layer diffusion-reaction problem. A system- 

atic investigation of the eigenequation in the imaginary space is carried out in order to derive a closed 

form expression for the number of imaginary eigenvalues for any given problem. It is shown that, for 

other parameters being fixed, the larger the values of the reaction coefficients, the greater is the number 

of imaginary eigenvalues. However, unlike real eigenvalues, it is shown that the number of imaginary 

eigenvalues is never infinite. While presented for a two-layer body, similar techniques may be applied 

for a more general multilayer body, although the derivation of explicit equations may be more challeng- 

ing. Besides its theoretical importance, accounting for imaginary eigenvalues in the problem discussed 

here is clearly important to ensure accuracy of the mathematical model. The present work contributes 

towards this by systematically identifying the number and nature of imaginary eigenvalues that occur in 

multilayer diffusion-reaction heat and mass transfer problems. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat and mass transfer in a multilayer body is commonly en- 

ountered in engineering processes and systems, including energy 

onversion [1] , thermal management [2] , drug delivery [3] and 

anufacturing [4] . While some such problems are governed only 

y diffusion, for which standard analytical solutions are available 

 5 , 6 ], many problems include additional complications, such as re- 

ction and convection terms [ 3 , 7–9 ]. Consideration of this prob- 

em in one spatial dimension offers analytical simplification [ 3 , 7 , 8 ],

hereas analysis in two or three dimensions may be necessary 

n specific cases [10–12] . Development of analytical solutions that 

ccount for such complications is important for accurate design 

nd optimization of such systems, towards improved performance, 

afety and reliability. 

The solution of multilayer transport problems is usually de- 

ived using separation of variables method, in which, the solution 

s written as an infinite series for each layer, and the boundary 
∗ Corresponding author. 

E-mail address: jaina@uta.edu (A. Jain) . 
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nd interface conditions are used to derive the eigenequation for 

he problem [5] . Orthogonality of eigenfunctions involves contri- 

utions from each layer, with additional complications when con- 

ection is present [8] . Past work has shown that such multilayer 

roblems may admit imaginary eigenvalues [ 7 , 8 , 10 , 11 ], even when

he problem is one-dimensional [ 7 , 8 ]. Such imaginary eigenvalues 

re associated with divergence of the temperature/concentration 

eld at large times. This is seen, for example, in the thermal run- 

way phenomena in Li-ion cells, where an imbalance between 

emperature-dependent heat generation and dissipation results in 

 positive feedback loop, leading to uncontrolled temperature rise 

 13 , 14 ]. Imaginary eigenvalues are of much theoretical interest. Fur- 

her, understanding and computing imaginary eigenvalues is also 

f much practical importance, since standard eigenvalue computa- 

ion tools do not search in the imaginary space and ignoring imag- 

nary eigenvalues may lead to inaccurate predictions [7] . 

In the recent past, an analysis of the multilayer diffusion- 

eaction problem has been presented [7] , showing that under cer- 

ain conditions, an imaginary eigenvalue may exist. The values of 

he reaction coefficients considered in this work were quite low, 

hich is why, at most one imaginary eigenvalue was encountered. 

ased on the monotonically increasing nature of the eigenequa- 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123037
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Fig. 1. Schematic of the one-dimensional multilayer body considered in this work 

with diffusion and linear reaction in each layer. 
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Nomenclature 

Bi Biot number 

h convective heat transfer coefficient (Wm 

−2 K 

−1 ) 

i unit imaginary number, i = 

√ −1 

k thermal conductivity (Wm 

−1 K 

−1 ) 

k̄ non-dimensional thermal conductivity 

M number of layers 

N eigenvalue norm 

T temperature (K) 

z spatial coordinate (m) 

t time (s) 

α diffusivity (m 

2 s −1 ) 

ᾱ non-dimensional diffusivity 

β reaction coefficient (s −1 ) 

β̄ non-dimensional reaction coefficient 

γ non-dimensional interface location 

τ non-dimensional time 

θ non-dimensional temperature 

ξ non-dimensional spatial coordinate 

λ non-dimensional eigenvalue 

Subscripts 

m layer number 

0 initial value 

ion along the imaginary axis, a limiting condition for the existence 

f an imaginary eigenvalue was derived. It was shown that ignor- 

ng the imaginary eigenvalue may lead to significant inaccuracy in 

omputing the temperature field. 

In contrast with the work described above, more than one 

maginary eigenvalues may exist when the reaction coefficient is 

arge and positive. This paper presents theoretical analysis of a 

ne-dimensional two-layer diffusion-reaction problem in order to 

etermine the number of imaginary eigenvalues of the problem. 

hrough a systematic investigation of the eigenequation along the 

maginary axis, a closed-form expression for the number of imagi- 

ary eigenvalues for any given problem is derived. It is shown that 

ore than one imaginary eigenvalues may exist, depending on a 

areful balance between heat/species generation due to the reac- 

ion term, and dissipation due to the diffusion term and boundary 

onditions. Unlike real eigenvalues, it is shown that the number of 

maginary eigenvalues is not infinite. The impact of various prob- 

em parameters on the imaginary eigenvalues is examined. 

. Problem definition and background 

Fig. 1 presents a schematic of a one-dimensional M -layer body 

f total thickness z M 

. Interfaces between layers are located at 

 = z m 

( m = 1,2.. M -1). A heat transfer problem is considered

ere, although, due to heat and mass transfer analogy, results de- 

ived here also apply to mass transfer problems. Diffusion occurs 

ithin each layer, with a constant and uniform thermal diffusiv- 

ty αm 

( m = 1,2.. M ). Linear, temperature-dependent heat genera- 

ion/consumption occurs in each layer, with a reaction coefficient 

m 

. Positive and negative values of βm 

correspond to exothermic 

nd endothermic reactions, respectively. Boundary conditions at 

he two ends are characterized by heat transfer coefficients h A and 

 B , respectively. The initial temperature is each layer is T m,0 . All 

roperties are assumed to be constant and uniform. 

The following non-dimensionalization may be carried out: 

m 

= 

T m −T amb 
T re f −T amb 

, ξ = 

z 
z M 

, τ = 

αM t 

z 2 
M 

, γm 

= 

z m 
z M 

, k̄ m 

= 

k m 
k M 

, ᾱm 

= 

αm 
αM 

, β̄m 

= 

βm z 
2 
M 

αM 
; θm, 0 = 

T m, 0 −T amb 
T ref −T amb 

, B i A = 

h A z M 
k M 

, B i B = 

h B z M 
k M 

, where T m 

refers to 

he temperature field in the m 

th layer, while T amb and T ref are 
2 
he ambient temperature and a reference temperature, respectively. 

herefore, this problem is governed by the following energy con- 

ervation equation for the non-dimensional temperature rise in 

ach layer [7] : 

∂θm 

∂τ
= αm 

∂ 2 θm 

∂ξ 2 
+ βm 

θm 

( m = 1 , 2 , . . . M ) (1) 

The following boundary and interface conditions apply: 

k̄ 1 
∂ θ1 

∂ξ
+ B i A θ1 = 0 at ξ = 0 (2) 

∂ θM 

∂ξ
+ B i B θM 

= 0 at ξ = 1 (3) 

m 

= θm +1 at ξ = γm 

(4) 

¯
 m 

∂ θm 

∂ξ
= k̄ m +1 

∂ θm +1 

∂ξ
at ξ = γm 

(5) 

Eqs. (4) and (5) represent perfect thermal contact and energy 

onservation, respectively, at each interface ( m = 1,2,3.. M -1). A 

on-zero initial temperature distribution θm 

= θm, 0 (ξ ) is assumed 

t τ= 0. 

It can be shown [7] that a solution for this problem may be 

ritten as follows: 

m 

( ξ , τ ) = 

∞ ∑ 

n =1 

c n [ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] exp 

(
−λ2 

n τ
)

×( m = 1 , 2 ..M ) (6) 

Where ω m,n = 

√ 

λ2 
n + ̄βm 

ᾱm 
. A proof that Eq. (6) satisfies Eq. (1) ex- 

ctly is presented in Appendix A . The coefficients A m,n and B m,n 

re determined by solving a set of algebraic equations obtained 
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Fig. 2. Eigenequation plot in imaginary space for the two-layer problem. Curves are 

plotted for multiple values of β̄2 . Other problem parameters are k̄ 1 = 0 . 75 ; ᾱ1 = 

0 . 75 ; B i A = B i B = 0 . 5 ; γ1 = 0 . 6 ; β̄1 = 0 . 
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rom the boundary and interface conditions. Coefficients c n are de- 

ived using quasi-orthogonality of eigenfunctions [ 5 , 7 ]. Finally, it 

as been shown [7] that an imaginary eigenvalue may be encoun- 

ered under certain conditions, such as small B i A and B i B , and/or 

arge β̄m 

. 

. Analysis of the number of imaginary eigenvalues 

The goal of the present work is to determine the number of 

maginary eigenvalues that may exist. A two-layer body is consid- 

red here for derivation of closed-form results. The eigenequation 

or this case has been shown to be given by [7] 

f ( λ) = k 1 ω 1 
−k 1 ω 1 + Bi A cot ( ω 1 γ1 ) 

k 1 ω 1 cot ( ω 1 γ1 ) + Bi A 

+ ω 2 
−ω 2 + Bi B cot ( ω 2 ( 1 − γ1 ) ) 

ω 2 cot ( ω 2 ( 1 − γ1 ) ) + Bi B 
= 0 (7) 

here ω m 

= 

√ 

λ2 + ̄βm 
ᾱm 

( m = 1 , 2 ) . For analysis of this function in 

he imaginary space, one may substitute ˆ λ2 = −λ2 , resulting in the 

ollowing eigenequation in the imaginary space 

f 

(
ˆ λ
)

= k 1 ̂  ω 1 

k 1 ̂  ω 1 + Bi A coth 

(
ˆ ω 1 γ1 

)
k 1 ̂  ω 1 coth 

(
ˆ ω 1 γ1 

)
+ Bi A 

+ ̂  ω 2 

ˆ ω 2 + Bi B coth 

(
ˆ ω 2 ( 1 − γ1 ) 

)
ˆ ω 2 coth 

(
ˆ ω 2 ( 1 − γ1 ) 

)
+ Bi B 

= 0 (8) 

here, ˆ ω m 

= 

√ 

ˆ λ2 −β̄m 
ᾱm 

= i ω m 

for m = 1,2. Note that i = 

√ −1 is the

nit imaginary number. 

Imaginary eigenvalue analysis presented in the past work 

7] proved that the eigenequation increases monotonically along 

he imaginary axis. Therefore, it was argued that the existence of 

n imaginary eigenvalue can be predicted on the basis of whether 

he eigenequation is positive (does not exist) or negative (exists) at 

he origin, ˆ λ= 0. While such analysis is accurate for relatively mild 

onditions (small β̄m 

and/or large Biot numbers), this may lose ac- 

uracy in harsher conditions (large β̄m 

and/or small Biot numbers) 

ecause the eigenequation may no longer be continuous, and de- 

pite being monotonically increasing, the eigenfunction may go to 

∞ , resulting in additional eigenvalues at which the eigenequa- 

ion crosses the ˆ λ axis. This behavior is similar to the tan function, 

hich has an infinite number of roots despite being monotonically 

ncreasing, because it goes to ±∞ an infinite number of times. 

s a result, in the present case, it may be possible for an imagi-

ary eigenvalue to exist despite the eigenequation being positive at 
ˆ = 0. This is illustrated in Fig. 2 , which plots the eigenequation as

 function of ˆ λ for multiple values of β̄2 , while other problem pa- 

ameters are held constant ( ̄k 1 = 0 . 75 ; ᾱ1 = 0 . 75 ; B i A = B i B = 0 . 5 ;

1 = 0 . 6 ; β̄1 = 0 ). Fig. 2 shows that for a negative value of β̄2 ,

he eigenequation starts above the ˆ λ axis, at ˆ λ= 0 and increases 

onotonically, resulting in no roots. At β̄2 = 10 – a positive but 

elatively small value – the eigenequation starts below the ˆ λ axis, 

ncreases monotonically and crosses the ˆ λ axis only once, corre- 

ponding to one imaginary eigenvalue. For an even larger value of 
¯
2 = 30 , it is found that while the eigenequation starts above the 

ˆ axis and increases monotonically, however, it goes to + ∞ and 

tarts again at - ∞ . As a result of this discontinuity, the eigenequa-

ion crosses the ˆ λ axis once, resulting in one imaginary eigen- 

alue, despite starting above the ˆ λ axis. Finally, for an even larger 
¯
2 = 180 , the eigenequation attains an infinite value twice, result- 

ng in two imaginary eigenvalues. 

It is of interest to formally analyze this problem and predict the 

onditions under which imaginary eigenvalues exist, and if so, the 

umber of such imaginary eigenvalues. Specifically, the threshold 
3 
alues of the reaction coefficients that lead to a certain number of 

maginary eigenvalues may be of much practical interest, for exam- 

le in understanding the limits of thermal runaway in Li-ion cells. 

owards this, one may proceed by separately examining two inde- 

endent mechanisms that lead to the eigenequation plot crossing 

he ˆ λ-axis, and, therefore, existence of an imaginary eigenvalue. 

Firstly, if the value of the eigenequation at ˆ λ= 0, i.e., f (0) , 

s negative, then the monotonically increasing nature of the 

igenequation implies the existence of an imaginary eigenvalue. An 

xpression for f (0) may be derived by inserting ˆ λ= 0 in Eq. (8) , re-

ulting in [7] 

f ( 0 ) = −k 1 

√ 

β1 

α1 

k 1 

√ 

β1 

α1 
− Bi A cot 

(√ 

β1 

α1 
γ1 

)

k 1 

√ 

β1 

α1 
cot 

(√ 

β1 

α1 
γ1 

)
+ Bi A 

−
√ 

β2 

√ 

β2 − Bi B cot 

(√ 

β2 ( 1 − γ1 ) 

)
√ 

β2 cot 

(√ 

β2 ( 1 − γ1 ) 

)
+ Bi B 

(9) 

Therefore, the existence of an imaginary eigenvalue can be 

redicted simply by determining the sign of f (0) given by 

q. (9) above for the given set of problem parameters. 

Now, regardless of whether f (0) is negative or not, additional 

maginary eigenvalues may still exist. This is illustrated by the 
¯
2 = 30 and β̄2 = 180 curves in Fig. 2 . In these cases, f (0) is pos- 

tive, yet, one and two additional imaginary eigenvalues exist for 

hese two cases, respectively, because the eigenequation attains 

n infinite value once and twice, respectively, along the imaginary 

xis. In order to investigate such additional imaginary eigenvalues, 

t is important to note that due to the monotonically increasing 

ature of the eigenequation, an additional imaginary eigenvalue 

s encountered if and only if the eigenequation attains an infinite 

alue, i.e., the eigenequation crosses the ˆ λ axis as many times as 

t attains an infinite value and thus must start at −∞ and cross 

he ˆ λ axis once. Therefore, in order to determine the number of 

maginary eigenvalues beyond the one that is predicted based on 

he sign of f (0) , it is important to determine under what condi- 

ions does the eigenequation become infinite, and if so, how many 

imes. 
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Fig. 3. Plots of functions (a) g 1 (x ) and (b) g 2 (x ) , showing the infinite number of roots in each case. Problem parameters are k̄ 1 = 0 . 75 ; γ1 = 0.6; B i A = B i B = 0 . 5 . 
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It can be seen that an infinite value is attained when one of 

he two functions appearing in the denominator in Eq. (8) become 

ero, i.e. 

¯
 1 ̂  ω 1 coth ˆ ω 1 γ1 + B i A = 0 (10) 

r 

ˆ  2 coth ˆ ω 2 ( 1 − γ1 ) + Bi B = 0 (11) 

It is helpful to separately consider the possibility of expressions 

n Eqs. (10) and (11) becoming zero. These may be interpreted as 

he separate contributions of the two layers in the problem. Fo- 

using only on the first layer, i.e., Eq. (10) , based on the defini-

ion of ˆ ω 1 given above, ˆ ω 1 may be either real or imaginary. When 

eal, the function in Eq. (10) is always positive because x coth x is 

 positive function for real x . This could occur, for example, when 

¯
1 < 0 , i.e., the reaction term is endothermic in nature, and there- 

ore, no thermal runaway due to heat accumulation is expected. 

n the other hand, when ˆ ω 1 is imaginary, it is helpful to simplify 

y substituting ˆ ω 1 = i ̃  ω 1 , where ˜ ω 1 = 

√ 

β̄1 −ˆ λ2 

ᾱ1 
is real. Substituting 

n Eq. (10) reduces to 

¯
 1 ̃  ω 1 cot ˜ ω 1 γ1 + B i A = 0 (12) 

Therefore, the original function f given in Eq. (8) may become 

nfinite for those values of ˆ λ for which Eq. (12) is valid, i.e., for 

hich, ˜ ω 1 is equal to a root of the transcendental equation g 1 (x ) = 

¯
 1 x cot ( γ1 x ) + B i A . As an example, Fig. 3 plots g 1 (x ) for k̄ 1 = 0 . 75 ;
1 = 0 . 6 ; B i A = 0 . 5 , and illustrates the infinite number of roots of

his equation. Denoting these roots by μ1 ,n , this condition may be 

ritten mathematically as 

ˆ 2 = β̄1 − ᾱ1 μ
2 
1 ,n (13) 

Note that μ1 ,n is an increasing series of numbers, and there- 

ore, only a finite number of ˆ λ may satisfy Eq. (13) . As μ1 ,n in- 

reases, the right hand side in Eq. (13) eventually becomes nega- 

ive, at which point, there is no further possibility of a ˆ λ to sat- 

sfy Eq. (13) , given that ˆ λ is real. Therefore, the total number of 

maginary eigenvalues that exist because of the denominator of the 

rst term in Eq. (8) becoming zero may be written as n 1 , where n 1 
s the smallest non-negative integer for which β̄1 − ᾱ1 μ

2 
1 , n 1 +1 

< 0 . 

ince β̄1 is finite and μ1 ,n is a series of increasing numbers, there- 

ore, this condition will eventually be satisfied by a large enough 

 1 , and therefore, the number of imaginary eigenvalues in this 

roblem may be large but never infinite. This is in sharp contrast 

ith the infinitely many real eigenvalues of the problem, which 

an be proved as follows: the denominators in the eigenequation 

long the real axis, Eq. (7) will attain a value of zero an infinite

umber of times, due to the appearance of the x cot x function. 
4 
his, along with the continuous nature of the eigenfunction im- 

lies that the eigenfunction must cross the x -axis an infinite num- 

er of times, and, therefore, must have an infinite number of real 

igenvalues. Note that real eigenvalues are not of particular inter- 

st for the present analysis, since it is the imaginary eigenvalues 

hat cause divergence of the temperature field at large times. 

Note that when β̄1 is negative, or positive but small, then 

q. (13) may be satisfied even when n 1 = 0 , indicating that no 

maginary eigenvalues are admitted. 

A similar analysis may be carried out for the second term. 

t may be shown that the number of imaginary eigenvalues due 

o the second term becoming infinite is given by n 2 , where 

 2 is the smallest non-negative integer for which β̄2 − μ2 
2 , n 2 +1 

< 

 , where μ2 ,n are roots of the transcendental equation g 2 (x ) = 

 cot ( ( 1 − γ1 ) x ) + B i B . Fig. 3 plots g 2 (x ) for γ1 = 0 . 6 ; B i B = 0 . 5 and

hows, similar to g 1 (x ) , an infinite number of roots μ2 ,n . 

Therefore, the total number of imaginary eigenvalues is given 

y n 1 + n 2 + δ, where δ = 1 if f (0) < 0 and δ = 0 otherwise. 

Based on the derivation above, a limiting condition for the ab- 

ence of imaginary eigenvalues, i.e. stability of the system, is that 

f (0) > 0 (i.e., δ = 0 ), and β̄1 − ᾱ1 μ
2 
1 , 1 < 0 and β̄2 − μ2 

2 , 1 < 0 . Un-

er these conditions, one may expect the temperature distribution 

o not diverge at large times. This set of conditions is an improve- 

ent over past work [7] , in which, the condition for stability only 

onsidered the sign of f (0) , and therefore, for example, a certain 

et of parameters could have been predicted to result in stability, 

hen, in fact, it is not. 

. Special case – single layer body 

Imaginary eigenvalues similar to the one shown for a two-layer 

ody presented in Section 3 may also exist in the special case of a 

ingle layer body. The results derived in Section 3 for a two-layer 

ody may be reduced to those for a homogeneous single layer 

ody by choosing the thermal properties of the two layers to be 

he same ( ̄k 1 = ᾱ1 = 1) and the generation coefficients to the same 

 ̄β1 = β̄2 = β̄ ) . In such a case, the general eigenequation for the 

roblem, given by Eq. (7) reduces to 

f ( λ) = 

−ω + Bi A cot ( ωγ1 ) 

ω cot ( ωγ1 ) + Bi A 
+ 

−ω + Bi B cot ( ω ( 1 − γ1 ) ) 

ω cot ( ω ( 1 − γ1 ) ) + Bi B 
= 0 (14) 

here ω = 

√ 

λ2 + β̄ . It can be shown that the roots of Eq. (14) are

he same as the roots of the following equation: 

f ( λ) = B i A + ω 

−ω + B i B cot ω 

ω cot ω + B i B 
= 0 (15) 

hich indeed matches exactly with the eigenequation derived 

rom first principles for a homogeneous single-layer body. 
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Fig. 4. Colorplot showing the distribution of number of imaginary eigenvalues of 

the two-layer problem in the β̄1 - ̄β2 space. 
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(

Using analysis methods similar to those used in the previous 

ection for a two-layer body, the number of imaginary eigenvalues 

or this special case may be written as n + δ, where δ = 1 if 

f ( 0 ) = −
√ 

β̄

√ 

β̄ − B i B cot 
√ 

β̄√ 

β̄ cot 
√ 

β̄ + + B i B 

+ B i A < 0 (16) 

nd δ = 0 otherwise. Further, n is the smallest non-negative inte- 

er, for which, β̄ − μ2 
n +1 

< 0 , where μn are roots of the transcen- 

ental equation g(x ) = x cot x + B i B . 

Note that divergence analysis for a homogeneous cylinder with 

onvective boundary condition on the outer surface has been pre- 

ented in the past, leading to the derivation of a non-dimensional 

umber that governs stability [13] . However, results in this paper 

ere specific to the cylindrical geometry and did not analyze the 

umber of eigenvalues, as has been done here. 

. Discussion 

It is of interest to determine the regimes in which one or more 

maginary eigenvalues arise. Fig. 4 presents a colormap showing 

he distribution of number of imaginary eigenvalues in the β̄1 - ̄β2 

pace. Other problem parameters are k̄ 1 = 0 . 75 ; ᾱ1 = 0 . 75 ; B i A =
 i B = 0 . 5 ; γ1 = 0 . 6 . As expected, the theoretical model presented

n Section 2 predicts zero imaginary eigenvalues in the third quad- 

ant ( ̄β1 < 0 , β̄2 < 0 ). In this region, both reaction terms represent
ig. 5. Effect of key problem parameters on the number of imaginary eigenvalues: Minim

a) Bi , (b) β̄1 . Other parameters are k̄ 1 = 0 . 75 ; ᾱ1 = 0 . 75 ; γ1 = 0 . 6 . In addition, in (a), β̄1 =

5 
onsumption, and therefore, no imaginary eigenvalues leading to 

unaway are expected. Fig. 4 shows that no imaginary eigenvalues 

re expected even for small positive values of either β̄1 or β̄2 , pro- 

ided the other coefficient is strongly negative. This represents a 

cenario where a small amount of generation in one of the lay- 

rs is sufficiently counter-balanced by strong consumption in the 

ther layer as well as heat removal from the boundaries, resulting 

n no runaway. In all quadrants other than the third, the number of 

maginary eigenvalues increases as the magnitude of the positive 

eaction coefficients increases. This is expected because the larger 

he positive reaction coefficients, the more strongly temperature- 

ependent the reaction is, resulting in greater heat generation as 

emperature increases, which is the root cause of divergence and 

hermal runaway. Note that each additional imaginary eigenvalue 

s of greater magnitude than previous ones, and therefore, makes 

he system more and more strongly diverging. This has practical 

mplications for Li-ion batteries, where thermal runaway propaga- 

ion from one cell to the other may depend on how strong the 

hermal runaway is [15] . 

The effect of key problem parameters on the number of imagi- 

ary eigenvalues is discussed in Fig. 5 . Fig. 5 (a) presents the min-

mum value of reaction coefficient in the second layer that results 

n one or two imaginary eigenvalues as a function of the Biot num- 

er, assumed to be the same on both ends. Reaction coefficient in 

he first layer is held constant. This plots shows that as Biot num- 

er increases, it is possible to tolerate a greater value of β̄2 before 

maginary eigenvalues appear. The minimum value of β̄2 increases 

lowly when Bi is small, and then rapidly because of the increased 

mpact of boundary cooling when Bi is reasonably large. A satu- 

ation effect is observed at large Bi , when the boundary condition 

ecomes close to isothermal. The limiting value of minimum β̄2 

t small Bi is positive but small (around 0.1 in this case), indicat- 

ng that when the boundaries are heavily insulated, even a small 

eaction coefficient is capable of causing an imaginary eigenvalue, 

nd therefore, thermal runaway. As expected, the minimum value 

f β̄2 needed for two imaginary eigenvalues is always larger than 

or one. Fig. 5 (b) plots the minimum value of β̄2 needed for one or 

wo imaginary eigenvalues as functions of β̄1 , while other param- 

ters, including the Biot number are fixed. When β̄1 is negative, 

he minimum value of β̄2 is largely insensitive to β̄1 , which is be- 

ause a negative value of β̄1 does not contribute towards imaginary 

igenvalues, and in this regime, there is only a small increase in 

he minimum value of β̄2 as β̄1 changes. On the other hand, when 

¯
1 becomes positive, it also begins to contribute towards thermal 

unaway, and therefore, the minimum value of β̄2 decreases more 

harply. Consistent with the theoretical results in Section 2 , and 

imilar to Fig. 5 (a), it is found that the minimum β̄2 needed for 

wo imaginary eigenvalues is always greater than that for one. 
um value of β̄2 that results in one or two imaginary eigenvalues as a function of 

 0 , and in (b), Bi = 1 . The same Biot number is assumed on both ends. 



G. Krishnan and A. Jain International Journal of Heat and Mass Transfer 194 (2022) 123037 

Fig. 6. Plot of the initial value of the eigenequation, f (0) as a function of β̄2 . One 

imaginary eigenvalue is admitted in regions where f (0) < 0 . Other problem param- 

eters are k̄ 1 = 0 . 75 ; ᾱ1 = 0 . 75 ; B i A = B i B = 0 . 5 ; γ1 = 0 . 6 ; β̄1 = 0 . 
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Finally, the sign of f (0) is of interest, since it determines the 

xistence of one imaginary eigenvalue. As discussed in Section 2 , a 

egative value of f (0) predicts the existence of at least one imag- 

nary eigenvalue. In order to investigate this further, Fig. 6 plots 

f (0) as a function of β̄2 , while other parameters are held con- 

tant ( ̄k 1 = 0 . 75 ; ᾱ1 = 0 . 75 ; B i A = B i B = 0 . 5 ; γ1 = 0 . 6 ; β̄1 = 0 ). For

egative values of β̄2 , f (0) is positive, which is consistent with 

ero imaginary eigenvalues in that regime. As β̄2 becomes posi- 

ive and increases, f (0) becomes negative, which corresponds to 

he appearance of an imaginary eigenvalue. f (0) is a discontinu- 

us function, and quite interestingly, at even larger values of β̄2 , 

f (0) becomes positive again. This does not indicate, however, that 

here are zero imaginary eigenvalues in this regime, because, as 

iscussed in Section 2 , imaginary eigenvalues may also appear due 

o the value of the eigenequation becoming infinite. This is respon- 

ible, in this case, for one or more imaginary eigenvalues to appear, 

espite the positive value of f (0) . 

. Conclusion 

Thermal runaway is a well-known problem in engineering sys- 

ems such as Li-ion cells. Theoretical analysis of such problems is 

mportant because thermal runaway experiments are costly and 

umbersome to carry out. A good understanding of the nature of 

igenvalues in such problems is needed, particularly whether the 

roblem admits imaginary eigenvalues, and if so, how many. This 

s important not only for theoretical interest, but also for practi- 

al computation, since accurate temperature computation requires 

hat all eigenvalues, whether real or imaginary, be accounted for. 

he key contribution of the present work is in the closed-form ex- 

ression derived for the number of imaginary eigenvalues for any 

iven set of parameters. This helps understand the fundamental 

ature of thermal runaway, and can potentially be used to design 

hermal systems capable of preventing thermal runaway. Results 

erived here are also applicable to equivalent mass transfer prob- 

ems in reacting systems. 
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ppendix A: Proof that Eq. (6) is an exact solution of Eq. (1) 

Eqs. (1) and (6) are reproduced below: 

∂ θm 

∂τ
= ᾱm 

∂ 2 θm 

∂ ξ 2 
+ β̄m 

θm 

( m = 1 , 2 , 3 . . . M ) (1) 

m 

( ξ , τ ) = 

∞ ∑ 

n =1 

c n [ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] exp 

(
−λ2 

n τ
)

×( m = 1 , 2 ..M ) (6) 

By inserting Eq. (6) in each term of Eq. (1) , it can be shown that

∂ θm 

∂τ
= 

∞ ∑ 

n =1 

−λ2 
n c n [ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] exp 

(
−λ2 

n τ
)

(A.1) 

¯ m 

∂ 2 θm 

∂ ξ 2 
= 

∞ ∑ 

n =1 

−ᾱm 

ω 

2 
m,n c n [ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] 

×exp 

(
−λ2 

n τ
)

(A.2) 

¯
m 

θm 

= 

∑ ∞ 

n =1 
β̄m 

c n [ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] exp 
(
−λ2 

n τ
)

(A.3) 

Adding Eqs. ( A.2 ) and ( A.3 ) results in 

¯ m 

∂ 2 θm 

∂ ξ 2 
+ β̄m 

θm 

= 

∞ ∑ 

n =1 

(
β̄m 

− ᾱm 

ω 

2 
m,n 

)
c n 

×[ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] exp 

(
−λ2 

n τ
)
(A.4) 

Since ω m,n = 

√ 

λ2 
n + ̄βm 

ᾱm 
, therefore Eq. ( A.4 ) may be re-written as 

¯ m 

∂ 2 θm 

∂ ξ 2 
+ β̄m 

θm 

= 

∞ ∑ 

n =1 

−λ2 
n c n 

×[ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] exp 

(
−λ2 

n τ
)
(A.5) 

Comparing Eqs. ( A.1 ) and ( A.5 ), it can be concluded that 

∂ θm 

∂τ
= ᾱm 

∂ 2 θm 

∂ ξ 2 
+ β̄m 

θm 

(A.6) 

hich is the same as Eq. (1) . Therefore, Eq. (6) satisfies Eq. (1) ex-

ctly. Note that there are no approximations in the analysis pre- 

ented above. 
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