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Local Thermal Nonequilibrium
(LTNE) Modeling of a Partially
Porous Channel With Spatial
Variation in Biot Number
The local thermal nonequilibrium (LTNE) model has been used widely for analyzing heat
transfer during internal flow through porous media, including when a channel is only
partially filled with a porous medium. In such problems, the Biot number describes the
rate of convective heat transfer between solid and fluid phases. While uniform Biot num-
ber models are commonly available, recent advances in functionally graded materials
necessitate the analysis of spatially varying Biot number in such geometries. This paper
presents LTNE-based heat transfer analysis for fully developed flow in a channel par-
tially filled with porous medium and with spatially varying Biot number to describe solid-
fluid interactions in the porous medium. Fully uncoupled ordinary differential equations
for solid and fluid temperature distributions are derived under three different boundary
condition models. Solid and fluid temperature fields are presented for a variety of Biot
number distributions, including quadratically and periodically varying functions. An
explanation of the nature of temperature distribution predictions for such problems is
provided. For special cases, the results presented here are shown to reduce to past work
on constant Biot number. This work improves the theoretical understanding of porous
media heat transfer and facilitates the use of such theoretical models for functionally
graded materials. [DOI: 10.1115/1.4053676]

Keywords: porous medium, heat transfer, local thermal nonequilibrium, variable Biot
number

1 Introduction

Fluid flow and heat transfer in porous media are of much practi-
cal and theoretical interest, with applications including micro-
electronics cooling [1,2], geothermal energy extraction [3],
thermofluidic/thermochemical energy systems [4], oil/gas extrac-
tion [5], bio-engineering [6] and thermal energy storage [7]. Heat
transfer and fluid flow in porous media are relevant for both natu-
rally occurring materials, such as soil [8], as well as engineered
materials such as metal foams [2]. In both cases, the porous nature
of the material results in increased specific interfacial area for
heat transfer and facilitates performance unavailable with nonpo-
rous materials.

Several complications exist in the theoretical analysis of porous
media heat transfer. Specifically, modeling of local thermal inter-
actions between solid and fluid phases that co-exist in the porous
medium must be carefully developed. The simplest approach is to
ignore local heat exchange between solid and fluid phases by
assuming local thermal equilibrium between the two phases [9].
This may not be valid beyond a limited number of specific, sim-
plified problems. In a more general approach, local thermal none-
quilibrium (LTNE) between the two phases may be assumed [10],
with distinct temperature fields for the solid and fluid phases
linked to each other through a local convective heat transfer coef-
ficient. Due to its improved accuracy, the LTNE technique has
been used widely to study heat transfer characteristics in a channel
filled with porous medium [10–13]. For instance, the LTNE tech-
nique was used to investigate constant wall heat flux boundary
conditions in porous media [14] and to model two-phase flows

with phase-change in porous media [15]. Partially porous flow in
a pipe [16] and between parallel plates [17] has been analyzed.
Solutions for conjugate heat transfer problems under the LTNE
assumptions have been derived [18]. In addition, a numerical and
experimental study of liquid-cooled aluminum foam to cool power
electronics was reported recently [19]. The study validated the
enhancement of heat transfer as a result of using a porous medium
and the accuracy of LTNE over local thermal equilibrium [19]. In
addition, an experimental investigation to highlight the heat trans-
fer performance of a channel filled with metal foam has also been
carried out [2].

In general, a porous medium within a channel aids in heat trans-
fer, but also results in increased pressure drop. A possible mitiga-
tion strategy is to fill the channel only partially with a porous
medium, resulting in fully developed fluid flow in the remainder
of the channel. This approach has been studied in several theoreti-
cal and experimental papers. An experimental and numerical
study on heat transfer enhancement for gas heat exchangers fitted
with porous medium confirms the consequence of increased pres-
sure drop and increased pumping power [20]. Numerical analysis
of a partially filled porous channel has been presented [21]. In the
modeling of a partially filled channel, the boundary condition at
the porous-fluid interface must be modeled carefully. Several
models have been proposed for this purpose. In the first model,
the temperatures of solid and fluid phases are assumed to be equal
at the interface because of a very large rate of heat transfer (model
A) [12]. The second model in turn assumes different temperatures
for the solid and fluid phases at the interface and distribution of
heat flux between both the phases, through an interface thermal
parameter (model B) [12]. Finally, a flux jump condition has been
proposed based on an interface heat transfer coefficient (model C)
[12,22].

Most of the past work on porous media heat transfer, including
in partially filled channel, assumes a uniform Biot number (Bi)
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throughout the channel [11–14,23], which is defined based on of
the local convective heat transfer coefficient, the specific interfa-
cial area in the porous medium, the effective thermal conductivity
of the solid phase and the half-width of the channel. While this
may be a reasonable assumption for several applications, a non-
uniform Bi may be encountered in specific cases. For example,
change in the specific interfacial area across the channel may
result in a nonuniform Bi. This could occur in a functionally
graded material [24] or due to variations caused by inadvertent
manufacturing defects. A numerical investigation has shown that
nonlinear gradient in porous material may help improve heat
transfer without pressure drop penalty [25]. Given the relative
lack of literature in this direction, however, more detailed theoret-
ical modeling, including analysis of the fluid-porous interface is
needed for a partially porous channel, in which Bi varies across
the channel. While an LTNE-based theoretical model has been
presented to account for spatial variation in Bi in a fully porous
channel [10], a similar analysis for a partially filled channel is
desirable.

This paper presents an LTNE-based analysis of heat transfer in
a channel partially filled with porous medium with spatially vary-
ing Biot number. In this work, spatially varying Biot number is
modeled as a consequence of variation in the specific interfacial
area. Uncoupled fourth-order ordinary differential equations for
solid and fluid temperature fields are derived for three different
interface heat transfer models. Solutions of the uncoupled ODEs
are used to understand the effect of Biot number variation and
other nondimensional parameters on the temperature distribution
of the solid and fluid phases in the channel. Results presented here
improve the fundamental understanding of porous media heat
transfer, and may also help in the design and optimization of func-
tionally graded materials in heat transfer applications.

2 Mathematical Modeling

Figure 1 presents a schematic of the problem under considera-
tion. A symmetric channel with half-width H is partially filled
with a porous medium of half-width H1. The channel experiences
a uniform heat flux qw at the wall. Steady, incompressible, and
laminar fluid flow in the porous region governed by the Darcy
model is assumed across the channel, with thermally and hydrody-
namically developed conditions. Assumption of local thermal
nonequilibrium between the solid and fluid phases, along with
heat generation in the porous region of the channel results in the
following governing energy equations [12]:

kf ;eff

@2Tf

@y2
þ hinta Ts � Tfð Þ þ Sf ¼ qCpup

@Tf

@x
(1)

ks;eff

@2Ts

@y2
� hinta Ts � Tfð Þ þ Ss ¼ 0 (2)

Here, Tf and Ts are fluid and solid phase temperatures in the
porous medium, respectively, whereas up, Sf , Ss, kf ;eff , ks;eff , q, Cp,
and hint are the porous region fluid velocity, fluid and solid inter-
nal heat generation, effective fluid and solid thermal conductiv-
ities, fluid density, fluid specific heat, and interstitial heat transfer
coefficient, respectively. a is the specific interfacial area in the
porous medium. Hydrodynamic analysis of this problem has been
presented before [12] and is not affected by the spatially varying
Bi considered in this work. These hydrodynamic equations are
summarized below.

Using the Darcy model, the constant velocity of the fluid flow-
ing in the porous region is [26]

up ¼ �
dP

dx

K

lf

(3)

where K is the permeability of the porous medium, and lf and P
are the dynamic viscosity of the fluid and pressure, respectively.

The corresponding governing equations for fluid flow in the
open region of the channel are as follows [12]:

lf

d2uo

dy2
¼ dP

dx
(4)

kf
@2Tf

@y2
¼ qCpuo

@Tf

@x
(5)

In Eqs. (4) and (5), u0 is the velocity of the fluid in the open
region.

The associated boundary conditions are as follows:

@uo

@y

� �
y¼0

¼ 0 (6)

uoð Þy¼H
¼ 0 (7)

@u

@y

� �
y¼Hþ

1

¼ a�ffiffiffiffi
K
p ui � up;ið Þ (8)

@Tf

@y

� �
y¼0

¼ 0 (9)

@Ts

@y

� �
y¼0

¼ 0 (10)

kf
@Tf

@y

� �
y¼H

¼ qw (11)

Equations (6) and (9) arise from the assumed symmetry in the
problem. Equation (7) represents the no-slip condition at the chan-
nel wall. Subsequently, the interface condition represented by
Eq. (8) corresponds to the slip velocity condition [27], which
implies relative motion between the fluid in the open region and
porous medium interface. In Eq. (8), ui is the interface pure fluid
velocity, up,i is the fluid velocity in the porous region at the inter-
face and a* is the velocity slip coefficient. The velocity slip coef-
ficient is a dimensionless quantity that mainly depends on the
structure of the porous material near the interface [27]. Velocity
slip coefficient impacts the interface velocity, as well as the rate
of heat transfer in the transition region. Further, the slip velocity
coefficient is known to have a strong dependence on the porosity
and permeability of the porous medium [28].

While Eq. (8) fully defines the hydrodynamic interfacial condi-
tion at the interface between porous and nonporous regions, a sim-
ilar thermal interfacial condition remains to be defined. In the past
work, three distinct interface models have been proposed [12].

Fig. 1 Schematic of the problem showing fluid flow in a chan-
nel that is partially filled with a porous solid. The local Biot
number is assumed to be a function of y to account for spatial
variation in the properties of the porous solid.
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The assumption of a very high rate of heat transfer between the
solid and fluid results in model A, in which, the two phases are at
the same temperature at the interface. The assumption of a moder-
ate rate of heat transfer between the solid and fluid gives rise to
model B, in which, heat flux is distributed between the solid and
fluid phases by an interface thermal parameter. Finally, by assum-
ing an interface heat transfer coefficient to determine the rate of
heat transfer between the solid and fluid, one may obtain model C.
Nondimensionalization is carried out as shown below:

h ¼ ks;effðT � Ts;iÞ
qwH

; g ¼ y

H
; g1 ¼

H1

H
;

k ¼ kf ;eff

ks;eff

; k1 ¼
kf

ks;eff

; Bi gð Þ ¼
hintaH2

ks;eff

Ls ¼
SsH1

qi
; Lf ¼

Sf H1

qi
; Bii ¼

hiH

ks;eff

;

Da ¼ K

H2
; U ¼ u

� dP

dx

H2

lf

; c ¼ qi

qw

(12)

where qi is the heat flux at the interface. Note that Bi in this work
is assumed to be a function of g.

The resulting equations and solutions are discussed below for
three specific interfacial models next.

2.1 Model A. Model A assumes that temperatures of the two
phases are equal at the interface due to a sufficiently large rate of
heat transfer between the solid and fluid at the interface. The cor-
responding boundary and interface conditions for this model are
as follows:

@Tf

@y

� �
y¼0

¼ @Ts

@y

� �
y¼0

¼ 0 (13)

Tfð Þy¼H�
1

¼ Tsð Þy¼H�
1
¼ Tfð Þy¼Hþ

1

(14)

kf ;eff

@Tf

@y

� �
y¼H�

1

þ ks;eff

@Ts

@y

� �
y¼H�

1

¼ kf
@Tf

@y

� �
y¼Hþ

1

¼ qi (15)

Here, H�1 and Hþ1 refer to the porous and pure-fluid sides of the
interface, respectively.

Expressions for the advection terms in Eqs. (1) and (5) are
given as shown below [12]:

qCpup
@Tf

@x
¼ qi

H1

þ Ss þ Sf (16)

qCpum;o
@Tf

@x
¼ qw � qi

H � H1

(17)

Using the nondimensionalization scheme described in Eq. (12),
the expressions for the fluid velocity in the porous medium and
open region are as shown below [12]:

Up ¼ Da 0 � g � g1 (18)

Uo ¼
� g� g1ð Þ2

2
þ a�ffiffiffiffiffiffi

Da
p Ui � Dað Þ g� g1ð Þ þ Ui g1 < g � 1

(19)

where Ui is the dimensionless interface pure fluid velocity and is
given by

Ui ¼
1� g1ð Þ2

2
þ a�

ffiffiffiffiffiffi
Da
p

1� g1ð Þ

1þ a�ffiffiffiffiffiffi
Da
p 1� g1ð Þ

(20)

The dimensionless average velocity over the entire channel is
as follows:

Um ¼ g1Up þ 1� g1ð ÞUm;o (21)

In Eq. (21), Um;o is the dimensionless average velocity of the
fluid in the open region, given by

Um;o ¼
� 1� g1ð Þ2

6
þ a�

2
ffiffiffiffiffiffi
Da
p Ui � Dað Þ 1� g1ð Þ þ Ui (22)

Now, dividing Eq. (17) with Eq. (16) and carrying out nondi-
mensionalization, along with the use of Eq. (21) results in an
expression for the dimensionless heat flux at the interface

c ¼ qi

qw
¼ 1

1þ Lf þ Lsð Þ
Um

Upg1

� 1

� �
þ 1

(23)

Note that setting Lf¼ Ls¼ 0 in Eq. (23) results in the same
expression for the dimensionless interfacial heat flux as Yang and
Vafai’s work [12], in which, heat generation was neglected. The
following set of nondimensional equations and boundary/interface
conditions are obtained from Eqs. (1)–(2), (5), (11), and
(13)–(15):

kh00f gð Þ þ Bi gð Þ hS gð Þ � hf gð Þ
� �

¼ c
g1

1þ Lsð Þ 0 � g � g1 (24)

h00s gð Þ � Bi gð Þ hS gð Þ � hf gð Þ
� �

þ Ls ¼ 0 0 � g � g1 (25)

k1h
00
f gð Þ ¼

Uo

ðUm � Upg1Þ þ
Upg1

1þ Lf þ Ls

� � g1 < g � 1 (26)

h0f ð0Þ ¼ h0sð0Þ ¼ 0 (27)

hf ðg�1 Þ ¼ hsðg�1 Þ ¼ hf ðgþ1 Þ ¼ 0 (28)

kh0f ðg�1 Þ þ h0sðg�1 Þ ¼ k1h
0
f ðgþ1 Þ ¼ c (29)

h0f 1ð Þ ¼ 1

k1

(30)

It can be noted that the governing equation for the open region
differs slightly from previous work [12], where heat generation
was not assumed. Setting Ls and Lf equal to zero in Eq. (26)
reduces it to the form appropriate for zero heat generation [12].

hs and hf are coupled to each other in Eqs. (24) and (25). In
order to uncouple, hs is written in terms of hf from Eq. (24) and
substituted in Eq. (25), resulting in

h0000f

�k

Bi

� �
þh00f 1þkþ2k Bi0ð Þ2

Bi3
�kBi00

Bi2

 !

þLs 1� c
g1

þ2c Bi0ð Þ2

g1Bi3
� cBi00

g1Bi2

 !
þ 2c Bi0ð Þ2

g1Bi3
� cBi00

g1Bi2
� c

g1

 !
¼0

(31)

Similarly, an uncoupled ordinary differential equation for hs is
obtained as follows:
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h0000s

�k

Bi

� �
þ h000s

2kBi0

Bi2

� �
þ h00s 1þ k þ kBi00

Bi2
� 2k Bi0ð Þ2

Bi3

 !

þ Ls 1� c
g1

� 2k Bi0ð Þ2

Bi3
þ kBi00

Bi2

 !
� c

g1

¼ 0 (32)

Note that unlike past work, Bi is treated to be a function of g
here, which is why Eqs. (31) and (32) are more complicated than
similar results for constant Bi in past work [12].

Additional boundary conditions needed to solve Eqs. (31) and
(32) are obtained as follows: First, differentiating Eqs. (24) and
(25) and evaluating at the center of the channel results in

h000f 0ð Þ ¼ �Bi0ð0Þðhs 0ð Þ � hf 0ð ÞÞ
k

(33)

h000s ð0Þ ¼ Bi0ð0Þðhs 0ð Þ � hf 0ð ÞÞ (34)

Further, Bi0 0ð Þ ¼ 0 due to channel symmetry, and, therefore,
Eqs. (33) and (34) result in

h000f ð0Þ ¼ 0 (35)

h000s ð0Þ ¼ 0 (36)

The remaining boundary conditions are obtained by simply
evaluating Eqs. (24) and (25) at the interface and using Eq. (28)

h00f g�1ð Þ ¼
c

g1k
1þ Lsð Þ (37)

h00s g�1ð Þ ¼ �Ls (38)

Temperature distribution in the nonporous region remains unaf-
fected by the Bi generalization carried out in this work. The tem-
perature distribution in the nonporous region is [12]

hf ¼ D0 g� g1ð Þ4 þ D1 g� g1ð Þ3 þ D2 g� g1ð Þ2 þ D3 g� g1ð Þ
(39)

where

K ¼ ðUm � Upg1Þ þ
Upg1

1þ Lf þ Ls
; D0 ¼

�1

24Kk1

;

D1 ¼
a�

6Kk1

ffiffiffiffiffiffi
Da
p UB � Dað Þ; D2 ¼

Ui

2Kk1

;

D3 ¼
1

k1

� 4D0 1� g1ð Þ3 � 3D1 1� g1ð Þ2 � 2D2 1� g1ð Þ

(40)

In summary, Eqs. (31) and (32) are the uncoupled ODEs for hf

and hs, respectively, that must be solved in order to determine
solid and fluid temperature distributions in the porous region in
the presence of spatially varying Biot number. Associated bound-
ary conditions for hf are given by Eqs. (27), (28), (35), and (37),
and for hs are given by Eqs. (27), (28), (36), and (38). While a
general analytical solution is not likely to be possible for the gen-
eral case of Bi(g), these equations can be easily solved
numerically.

2.2 Model B. Model B assumes that heat flux distribution in
the solid and fluid phases of the porous medium at the interface is
proportional to the porosity of the porous medium [12]. The gov-
erning energy equations for model B are the same as model A,
given by Eqs. (24)–(26). The boundary condition given by
Eq. (27) remains unchanged. Other associated boundary and inter-
face conditions are as follows:

hf g�1ð Þ ¼ hf gþ1
� �

and hsðg�1 Þ ¼ 0 (41)

kh0f ðg�1 Þ ¼ bc (42)

h0sðg�1 Þ ¼ ð1� bÞc (43)

k1h
0
f ðgþ1 Þ ¼ c (44)

The uncoupled fourth-order ordinary differential equations for
model B are the same as for model A, given by Eqs. (31) and
(32), since these models differ only in the treatment of the interfa-
cial boundary condition. Further, boundary conditions at the cen-
ter of the channel are also the same, given by Eqs. (35) and (36).
Other boundary conditions for model B are derived. Evaluating
Eq. (24) at the interface results in

kh00f g�1ð Þ � Bi g�1ð Þhf g�1ð Þ ¼
c
g1

1þ Lsð Þ (45)

Now, differentiating Eq. (25) and evaluating at the interface
gives the final boundary condition as follows:

h000s g�1ð Þ � Bi g�1ð Þ h0s g�1ð Þ �
bc
k

� �
þ Bi g�1ð Þhf g�1ð Þ ¼ 0 (46)

The temperature distribution in the open region for this model
can be obtained from the expression shown below [12]:

hf ¼ D0 g� g1ð Þ4 þ D1 g� g1ð Þ3 þ D2 g� g1ð Þ2 þ D3 g� g1ð Þ
þ hf g�1ð Þ

(47)

where D0, D1, D2, and D3 are given by Eq. (40). The uncoupled
ODEs for hf and hs, given by Eqs. (31) and (32) are solved
numerically using corresponding boundary conditions. The
boundary conditions for hf are given by Eqs. (27), (42), (35), and
(45), whereas the associated boundary conditions for hs are given
by Eqs. (27), (41), (36), and (46).

2.3 Model C. The final model considered here assumes an
interface heat transfer coefficient hint [12] to distribute the heat
flux among the solid and fluid phases (model C). Similar to model
B, temperatures of the solid and fluid phases at the interface are
not equal, and are, in fact, governed by the value of hint.

Similar to model B, Eqs. (24)–(26) remain the governing differ-
ential equations for the fluid and solid temperature distributions,
and as usual, the nondimensionalization scheme helps transform
the boundary/interface conditions into the following.

kh0f ðg�1 Þ ¼ c� Biiðhf ðg�1 Þ � hsðg�1 ÞÞ (48)

h0sðg�1 Þ ¼ Biiðhf ðg�1 Þ � hsðg�1 ÞÞ (49)

where

Bii ¼
hiH

ks;eff

(50)

The boundary and interface are conditions given by Eqs. (27),
(41), and (44) remain the same.

The uncoupled ordinary differential equations and the set of
additional boundary conditions do not change for this model as
well. Similar to model B, the remaining boundary/interface condi-
tions are obtained as follows:

kh00f g�1ð Þ � Bi g�1ð Þhf g�1ð Þ ¼
c
g1

1þ Lsð Þ (51)
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h000s g�1ð Þ � Bi g�1ð Þðhs g�1ð Þ �
c
k
þ Biihf g�1ð ÞÞ þ Bi0 g�1ð Þhf g�1ð Þ ¼ 0

(52)

In this case, the relevant boundary conditions for hf are given
by Eqs. (27), (48), (35), and (51) and for hs are given by Eqs. (27),
(41), (36), and (52). Finally, the temperature distribution for the
open region can be determined using the expression available in
the previous section.

3 Results and Discussion

3.1 Comparison With Past Work. A fourth-order boundary
value problem solver is used to solve the governing equations
associated with models A, B, and C using appropriate boundary
conditions. The three-stage Lobatto IIIa formula is used by the
solver. Results from the present model are first compared with
past work for the special case of uniform Bi. Figure 2 compares
fluid and solid temperature distributions predicted by this work
with results from Yang and Vafai [12] for a special case of con-
stant Biot number, Bi¼ 10. Results are plotted for Models A and
C in Figs. 2(a) and 2(b), respectively. Table 1 lists the values of
various parameters for this and all subsequent figures. In this case,
k¼ 0.01, g1 ¼ 0.98, Bi¼ 10, Ls ¼ 0, Lf ¼ 0, a*¼ 0.1, and
Da¼ 10�5 for model A. In addition, Bii ¼ 0.1 for model C. Note
that g1 is very close to 1, indicating that nearly the entire channel
is porous. Figures 2(a) and 2(b) both show excellent agreement
between the present analysis and past work. The solid phase tem-
perature at the interface g¼ g1 is shown to be zero for both mod-
els A and C, which is consistent with the boundary condition
given by Eqs. (28) and (41), respectively. In addition, for model
A, the solid and fluid temperatures match at the interface, which is
consistent with model assumptions discussed in Sec. 2.1. On the

other hand, the curves do not necessarily match with each other at
the interface for model C, as shown in Fig. 2(b). Finally, for both
models, the curves exhibit zero slope at the center of the channel,
which is justifiable by the symmetry conditions assumed in the
problem.

Further, a special case of this work is compared with a recent
paper that reported LTNE modeling for spatially varying Biot
number in a fully filled channel [10]. For k¼ 1, Bi¼Bi0(1�g2),
Da¼ 10�5, Bi0¼ 30, a*¼ 0.1, Ls ¼ 0, and Lf ¼ 0, Figs. 3(a) and
3(b) plot fluid and solid temperature distributions for this work
with different values of g1. For comparison, results corresponding
to the fully porous channel case for the same set of parameters
reported in a recent paper [10] are also plotted. As g1 becomes
closer and closer to 1, the fluid and solid temperature distributions
predicted by this work get closer and closer to results for the pre-
viously reported fully porous channel case. At g1¼ 1, the two are
identical, thereby providing additional verification of this work
for a specific special case. Similar to Fig. 2, the results plotted in
Fig. 3 are consistent with the various boundary conditions consid-
ered in the problem.

While the model is, in general, capable of accounting for any
Biot number distribution, two specific Biot number distributions
are of particular interest and, therefore, are analyzed next. Polyno-
mial and sinusoidal functions are commonly used to approximate
and represent more general functions encountered in practical
applications. Therefore, the effect of Bi represented by such func-
tions is analyzed next.

3.2 Analysis of Quadratically Varying Biot Number Dis-
tribution. Figure 4 plots fluid and solid temperature distributions
for a quadratically varying Biot number, given by Bi¼Bi0
(1þ g2). The effect of the magnitude of the Biot number function,
Bi0 is investigated first. Other problem parameters for this figure

Fig. 2 Comparison of this work with past work [12] based on fluid and solid temperature
distributions for (a) model A and (b) model C. Values of various parameters are listed in
Table 1.

Table 1 Summary of the values and ranges of parameters for each figure
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are k¼ 1, g1 ¼ 0.98, b ¼ 0.9, Bii ¼ 1, Ls ¼ 0, Lf ¼ 0, a*¼ 0.1,
and Da¼ 10�5. Results for models A, B, and C are plotted in
Figs. 4(a)–4(c), respectively. In each case, the fluid temperature
distributions approach those of the solid close to the interface.
Due to the nature of Biot number distribution considered here, the
rate of local solid-to-fluid heat transfer increases going from the
centerline to the interface. In addition, for model A, the boundary
condition also causes the fluid and solid temperatures to converge
with each other at the interface, as seen in Fig. 4(a). In each
model, the temperature of the solid phase increases as g increases,
which is attributable to the heat flux imposed at the interface
g¼ g1. A similar increase in fluid temperature as g increases is
also attributed to heat flux at the interface as well as localized solid-
to-liquid heat transfer that increases with g. In the case of model C
(Fig. 4(c)), the quadratic Biot number near the interface is dominant
over the interface Biot number that defines the amount of heat trans-
ferred from the fluid to the solid phase in the porous region. There-
fore, the rate of heat transfer to the solid phase closer to the interface
is much lesser than the rate of heat transfer to the fluid phase, which
is the reason behind the greater fluid temperature near the interface.
For model B, most of the heat flux at the interface flows through the
fluid phase because of the large value of b. Therefore, the temperature
of the fluid phase near the interface is higher than that of the solid

phase for Bi0¼ 0.5 and Bi0¼ 0.7 as a result of increased heat transfer
to the fluid phase. In addition, the quadratically increasing Biot num-
ber also contributes toward the increased heat transfer to the fluid
phase. In contrast, for the Bi0¼ 0.3 cases the Biot number is not as
high as the other cases. Hence, the temperature of the fluid phase is
lower than the solid phase temperature even near the interface.

3.3 Analysis of Thermal Conductivity Ratio for Quadrati-
cally Varying Biot Number Distribution. Figure 5 investigates
the effect of the ratio of thermal conductivities, k on the tempera-
ture distribution. In contrast with k¼ 1 in Fig. 4, k is taken to be
10 in Fig. 5. All other parameters, including the quadratic Biot
number distribution, are the same as Fig. 4. The impact of the
greater thermal conductivity ratio is clearly seen in the resulting
solid and fluid temperature plots for models A, B, and C plotted in
Figs. 5(a)–5(c), respectively. Similar to Fig. 4(a), the fluid and
solid temperatures come close to each other as g increases in
Fig. 5(a) due to the boundary condition. In model A, the effective
thermal conductivity determines the amount of heat flowing
through each of the phases. As a result of the greater value of k in
Fig. 5(a), the effective thermal conductivity of the fluid phase is
much higher than that of the solid phase. This causes higher Bi0

Fig. 4 Fluid and solid temperature distributions for models (a) A, (b) B, and (c) C for quadratically varying Biot number,
Bi 5 Bi0(11g2). Plots are presented for different values of Bi0. Values of various parameters are listed in Table 1.

Fig. 3 Validation against past work [10] based on (a) fluid and (b) solid temperature distri-
butions for model A. Plots are generated using quadratically varying Biot number,
Bi 5 Bi0(12g2) for different values of g1. Values of various parameters are listed in Table 1. In
addition, Bi0 5 30.

Fig. 5 Fluid and solid temperature distributions for models (a) A, (b) B, and (c) C for quadratically varying Biot number,
Bi 5 Bi0(11g2). Plots are presented for different values of Bi0. Values of various parameters are listed in Table 1.
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values to have a diminished impact on the fluid temperature
throughout the channel. Interestingly, this reduces the solid phase
temperature throughout the channel. In the case of model B, the
solid phase temperature distribution is largely invariant of the
value of Bi0, whereas the fluid temperature distribution goes up
with increasing Bi0. Both temperature distributions exhibit weak
dependence on g because of the high value of fluid thermal con-
ductivity and b. In comparison with Fig. 4(c), the behavior of the
plot for model C largely remains the same with only a change in
the scale. The behavior does not change because the localized heat
transfer still has the same effect on the temperature distributions.

3.4 Analysis of Periodical Biot Number Distribution.
Figure 6 presents the temperature distribution plot for a periodi-
cally varying Biot number, given by Bi¼ 50(1 þ cos(2pxg)).
Other problem parameters are k¼ 1, g1 ¼ 0.98, b ¼ 0.9, Bii ¼ 1,
Ls ¼ 5, Lf ¼ 0, a*¼ 0.1, and Da¼ 10�5. Temperature distribu-
tions are plotted for models A, B, and C in Figs. 6(a)–6(c), respec-
tively. In each case, three different frequencies, x¼ 1, 2, and 3
are considered. In each model, and for different values of x, the
Biot number is maximum at the center of the channel and very
close to the maximum value at the porous-fluid interface. As
expected, the temperature distributions appear close to each other
at g¼ 0. In the case of model A alone, the temperatures of the
solid and fluid phases converge at the interface because of the
boundary condition. For models B and C, the fluid phase tempera-
ture curves near the interface are located above the solid phase
temperature curves. For model B, this is due to increased heat
transfer to the fluid phase at the interface. In the case of model C,
the dominance of the periodic Biot number over the interfacial
Biot number near the interface results in greater fluid temperature
near the interface. In the rest of the porous medium away from the
interface, the solid phase temperature is significantly higher
because of heat generation in the solid phase. For x¼ 2, Biot
number is minimum at g¼ 0.25 and 0.75. This can be noticed
through an increase in the difference between the temperature dis-
tributions at these points, with the fluid temperature staying below
the solid temperature. For x¼ 3, the Biot number has two addi-
tional maxima, in addition to the ones at the center of the channel

and the interface. At these points, a reduction in temperature dif-
ference can be observed, with the fluid phase distribution lying
below the solid phase curve.

3.5 Analysis of Thermal Conductivity Ratio for Periodic
Biot Number Distribution. Figure 7 presents results for a similar
periodic Biot number distribution, but with a greater thermal con-
ductivity ratio, k¼ 10. Similar to Fig. 6(a), the temperature distri-
butions converge at the interface for model A. For model B, the
increased heat transfer to the fluid phase as seen in the previous
case (Fig. 6) causes the temperature of the fluid phase to be higher
than the solid phase temperature near the interface. In the case of
model C, the Biot number still dominates over the interfacial Biot
number, which causes the temperature of the fluid phase to be
greater than that of the solid phase near the interface. In each
model, the effect of the Biot number on fluid temperature variation
is negligible compared to the effect on solid temperature distribu-
tion. This is attributable to the relatively higher fluid thermal con-
ductivity in this case due to the larger value of k.

3.6 Analysis of Porous Region Thickness. Temperature dis-
tributions predicted by the three models for different thicknesses
of the porous medium, i.e., g1, are plotted in Figs. 8 and 9, for
quadratically varying (Bi¼Bi0 (1þ g2)) and periodically varying
(Bi¼ 50(1 þ cos(2pxg)) Biot number distributions, respectively.
The problem parameters used for these figures are k¼ 10,
Da¼ 10�5, Bii¼ 1, Bi0¼ 0.5, Ls ¼ 0, Lf ¼ 0, a*¼ 0.1, and x¼ 1.
As expected, for each model, the temperature difference between
the solid and fluid phases reduces as g1 decreases, as shown in
Fig. 8. In Fig. 9, at the location of the minimum Biot number, the
temperature difference between the solid and fluid phase is the
lowest for g1¼ 0.96. This is due to a reduction in the imposed
heat flux at the interface as g1 is reduced. As seen in Fig. 8, for the
quadratically varying Biot number case, reducing g1 has a signifi-
cant effect on the fluid phase temperature distribution. On the con-
trary, for the periodic Biot number case, the effect is uniform
across both phases. Beyond a certain value of g1, the temperature
difference will reduce to zero and the temperature distributions in

Fig. 6 Fluid and solid temperature distributions for models (a) A, (b) B, and (c) C for periodically varying Biot number,
Bi 5 50(11Cos(2pxg)). Plots are presented for different values of x. Values of various parameters are listed in Table 1.

Fig. 7 Fluid and solid temperature distributions for models (a) A, (b) B, and (c) C for periodically varying Biot number,
Bi 5 50(11Cos(2pxg)). Plots are presented for different values of x. Values of various parameters are listed in Table 1.
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the porous region will be a constant zero because the imposed
heat flux at the interface will be negligible.

3.7 Analysis of Interfacial Biot Number. The interfacial
Biot number, Bii is a key nondimensional parameter governing

model C. Bii defines the rate of heat transfer from the pure fluid
region to the solid phase at the interface, g¼ g1, as shown in
Eq. (52). Figure 10 plots the temperature distributions for model
C to analyze the effect of Bii. The interfacial Biot number essen-
tially competes with the local Biot number to determine the over-
all rate and direction of heat transfer. For lower values of Bii, the
quadratically increasing Biot number dominates near the inter-
face. Therefore, the rate of heat transfer to the solid phase closer
to the interface is much lesser than the rate of heat transfer to the
fluid phase, thereby raising the fluid phase temperature beyond the
solid phase temperature. As the interfacial Biot number is
increased, this effect is countered, and the fluid phase curve shifts
to the right. This can be noticed in Fig. 10. For a particular interfa-
cial Biot number that is sufficiently large, the temperature of the
fluid phase is equal to the temperature of the solid phase at the
interface.

3.8 Analysis of Internal Heat Generation in the Solid
Phase. The impact of heat generation is also investigated. Heat
generation is more likely to occur in the solid phase, for example,
due to Joule heating. Figure 11 presents the effect of Ls, the solid
phase internal heat generation on the temperature distribution for the
case of a periodic Biot number. The problem parameters used for

Fig. 8 Fluid and solid temperature distributions for models (a) A, (b) B, and (c) C to analyze the effect of g1. Plots are gener-
ated using quadratically varying Biot number, Bi 5 0:5 (11g2). Values of various parameters are listed in Table 1.

Fig. 9 Fluid and solid temperature distributions for models (a) A, (b) B, and (c) C to analyze the effect of g1. Plots are gener-
ated using periodically varying Biot number, Bi 5 50 (11Cos(2pxg)). Values of various parameters are listed in Table 1. In addi-
tion, x 5 1.

Fig. 10 Fluid and solid temperature distributions for model C
to analyze the effect of Bii. The plot is generated using quadrati-
cally varying Biot number, Bi 5 0:5 (11g2). Values of various
parameters are listed in Table 1.

Fig. 11 Fluid and solid temperature distributions to analyze the effect of solid internal heat generation. The plot is generated
using periodically varying Biot number, Bi 5 50(11Cos(2pxg)). Values of various parameters are listed in Table 1. In addition,
x 5 2.
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this figure are k¼ 1, g1¼ 0.98, b¼ 0.9, Bii¼ 1, x¼ 2, Lf ¼ 0,
a*¼ 0.1, and Da¼ 10�5. Three different values for Ls are considered
– 0, 3, and 5. As expected, in each model, the solid and fluid phase
temperatures in the porous medium go up as the internal heat genera-
tion increases. The difference between solid and fluid temperatures
also increases, as increasing the value of Ls has a more significant
impact on the solid temperature. As expected, the temperature differ-
ence is highest at points where the Biot number is minimum.

3.9 Analysis of Velocity Slip Coefficient. In Fig. 12, the
effect of velocity slip coefficient on the temperature distribution is
analyzed using model B for a quadratically varying (Bi¼Bi0
(1þ g2)) Biot number distribution. Problem parameters used to
analyze the effect of the velocity slip coefficient are k¼ 1, g1 ¼ 0.98,
b ¼ 0.9, Bi0¼ 0.5, Ls¼ 0, Lf ¼ 0, and Da¼ 10�5. As a* increases,
the velocity of the fluid at the interface reduces. This causes decreased
advection in the transition region. As a result, the temperature of the
fluid phase is higher for a*¼ 0.3 near the interface. At the same time,
the temperature of the solid phase and fluid phase in the porous region
is lower for a*¼ 0.3 because of lesser heat flow into the porous
region.

3.10 Analysis of Darcy Number. Finally, temperature distri-
butions for model B are plotted in Fig. 13 for different values of
the Darcy number. Quadratically varying Biot number distribution
(Bi¼Bi0 (1þ g2)) is used for this figure. Other parameters used to
study the impact of Darcy number are k¼ 1, g1 ¼ 0.98, b ¼ 0.9,
Bi0 ¼ 0.5, Ls ¼ 0, Lf ¼ 0, and a*¼ 0.1. As the Darcy number
reduces, the temperature of the solid phase starts to rise due to the
diminishing effect of advection in the porous region. If the Darcy
number is reduced beyond a certain point, the effect of advection

in the porous region is negligible. This results in the solid and
fluid phase distributions aligning with the solid phase temperature
at the interface. In the figure, this can be noticed when
Da¼ 10�10.

4 Conclusions

Heat transfer during internal flow through porous media has
been widely analyzed using the LTNE assumptions. While much
of the past work assumed spatially invariant Biot number, recent
progress in functionally graded porous materials has necessitated
theoretical analysis of problems with spatially varying Biot num-
ber, which may occur, for example, due to variation in the specific
interfacial area of the porous medium. The analysis presented in
this work in the context of a partially porous channel provides the
theoretical groundwork for analyzing heat transfer problems in
functionally graded porous materials.

While results are derived here for general Biot number func-
tions, two specific functions—quadratic and sinusoidal—are dis-
cussed in more detail due to their practical importance. The
resulting solid and fluid temperature curves for three different
interfacial models are consistent with constraints imposed on the
problem by various boundary conditions. It is expected that the
results presented in this work improve the theoretical understand-
ing of heat transfer in a porous medium, and may also help in the
design and optimization of functionally graded porous materials
in a wide variety of applications.
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Nomenclature

Bi ¼ Biot number in the porous region, Bi gð Þ ¼ hintaH2

ks;eff

Bii ¼ interfacial Biot number, Bii ¼ hiH
ks;eff

Cp ¼ specific heat of the fluid (J kg21 K21)
Da ¼ Darcy number, Da ¼ K

H2

H ¼ half height of the channel (m)
hi ¼ interfacial heat transfer coefficient at the interface between

porous and nonporous regions (W m22 K21)
hint ¼ interstitial solid–liquid heat transfer coefficient in the

porous region (W m22 K21)
H1 ¼ half height of the porous medium (m)

k ¼ thermal conductivity ratio, k ¼ kf ;eff

ks;eff

K ¼ permeability (m22)
keff ¼ effective thermal conductivity (W m21 K21)

kf ¼ thermal conductivity of the fluid (W m�1 K�1)
k1 ¼ ratio of fluid thermal conductivity to solid effective

thermal conductivity, k1 ¼ kf

ks;eff

L ¼ nondimensional internal heat generation; L ¼ SH1

qi

p ¼ pressure (N m�2)
qi ¼ heat flux at the interface (W m�2)

qw ¼ heat flux at the wall (W m22)
S ¼ internal heat generation (W m�3)
T ¼ temperature (K)
u ¼ fluid velocity (m s21)
U ¼ dimensionless fluid velocity, U ¼ u

�dP
dx � H2

lf

ui ¼ interface pure-fluid velocity (m s�1)
Ui ¼ dimensionless interface pure fluid velocity

Um ¼ dimensionless average fluid velocity over the entire
channel

x ¼ horizontal coordinate (m)
y ¼ vertical coordinate (m)
a ¼ specific interfacial area of the porous medium (m�1)

Fig. 12 Fluid and solid temperature distributions for model B
to analyze the effect of a*. The plot is generated using quadrati-
cally varying Biot number, Bi 5 0:5 (11g2). Values of various
parameters are listed in Table 1.

Fig. 13 Fluid and solid temperature distributions for model B
to analyze the effect of Da. The plot is generated using quadrati-
cally varying Biot number, Bi 5 0:5 (11g2). Values of various
parameters are listed in Table 1.
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a* ¼ velocity slip coefficient
b ¼ ratio of fluid phase heat flux to the total heat flux at the

interface
c ¼ dimensionless interfacial heat flux, c ¼ qi

qw

g ¼ nondimensional coordinate, g ¼ y
H

g1 ¼ nondimensional thickness of porous region, g1 ¼ H1

H

h ¼ nondimensional temperature, h ¼ ks;effðT�Ts;iÞ
qwH

l ¼ dynamic viscosity (kg m�1 s�1)
q ¼ fluid density (kg m�3)
x ¼ nondimensional frequency

Subscripts

f ¼ fluid
i ¼ interface
o ¼ open region
s ¼ solid

w ¼ wall
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