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ABSTRACT

Drug-coated balloons (DCBs) are used commonly for delivering drug into diseased arteries. When applied
on the inner surface of an artery, drug is transported from the balloon into the multilayer arterial wall
through diffusion and advection, where it is ultimately absorbed through binding reactions. Mathematical
modeling of these mass transport processes has the potential to help understand and optimize balloon-
based drug delivery, thereby ensuring both safety and efficacy. The present work derives a closed-form
solution for the multilayer cylindrical convection-diffusion-reaction (CDR) transport problem that occurs
in balloon-based endovascular drug delivery. The model is presented for an arbitrary number of lay-
ers, and accounts for various transport processes in terms of relevant non-dimensional numbers. Quasi-
orthogonality for this multilayer problem is derived. Closed-form expressions for the amounts of drug
delivered by the balloon, bound in each arterial layer and lost from the external surfaces are derived. It
is shown that only a small fraction of drug from the balloon is actually delivered into the artery during
the short exposure time, which is influenced strongly by the diffusion coefficient of the inner-most layer.
Further, binding of the drug is found to depend strongly on the reaction coefficient, expressed in terms
of the Damkdhler number. It is shown that boundary conditions on the inner and outer surfaces, ex-
pressed in terms of Sherwood numbers, play a role in drug uptake over a longer time period. The model
is general enough to be applicable for a wide variety of scenarios and operational conditions, including an
arbitrary number of layers. Results from this work provide fundamental insights into drug transport and
uptake processes. In addition, these results may help improve the safety and efficacy of balloon-based
drug delivery.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

flow, a phenomenon known as in-stent restenosis (ISR) [2]. While
DES has been successful, there is growing interest in the potential

Coronary angioplasty is a common, minimally invasive proce-
dure used to treat obstructive coronary artery disease (CAD) [1].
Historically, angioplasty consisted of deploying a balloon on the
back of a catheter to the site of the obstruction and widening the
lumen through inflation of the balloon. Nowadays, the majority of
CAD patients will also receive a tiny mesh structure called a drug-
eluting stent (DES), in what is known as Percutaneous Coronary
Intervention (PCI). The purpose of the stent is to act as a scaffold,
allowing blood flow to be maintained in the lumen, while the role
of drug elution is to combat the biological response which can lead
to excessive neointimal growth and further obstruction to blood
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of Drug-Coated Balloon (DCB) technology [3,4], particularly when
faced with ISR where a stent has previously been deployed, and in-
creasingly in the context of treating less severe de novo atheroscle-
rotic lesions. While DES have been mathematically and computa-
tionally modelled extensively in the literature [5], there is a rela-
tive lack of modeling studies related to DCB technology.

DES tends to release drug in a controlled and sustained fashion
over a period of weeks to months, which is thought to be broadly
consistent with the healing time of the artery following device de-
ployment [5]. However, a DCB typically releases their payload over
a matter of seconds or minutes, with around 60 s being repre-
sentative of current practice. Fig. 1 shows a schematic of balloon
deployment inside an artery [1]. It is important to note that the
DCB obstructs the artery during delivery - inflating for longer than
necessary could therefore have serious consequences for the pa-
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Nomenclature

coefficient appearing in velocity term (m%s—!)
balloon

concentration (molm=3)

diffusion coefficient (m2s—1)

non-dimensional diffusion coefficient
convective mass transfer coefficient (ms=1)
interfacial mass transfer conductance (ms=1)
non-dimensional interfacial mass transfer conduc-
tance

number of layers

eigenfunction norm

Péclet number

radius (m)

radial coordinate (m)

Sherwood number

time (s)

reaction coefficient (s~1)

non-dimensional reaction coefficient
non-dimensional interface location
non-dimensional time

cumulative fraction of drug delivered
cumulative fraction of drug absorbed

fraction of drug remaining

non-dimensional concentrations in Stages A and B,
respectively

non-dimensional radial coordinate
non-dimensional eigenvalue

drug partition coefficient

Subscripts

layer number

reference value

inner (luminal) wall
outer (perivascular) wall
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tient. This tiny time window for drug delivery makes device de-
sign particularly challenging. In other words, one must deliver a
sufficient amount of drug rapidly - too much drug may result in
toxicity, while too little drug could either be completely ineffective
or result in drug action waning before healing is complete. Given
the drastically different release kinetics between DCB and DES, it is
of interest to mathematically model drug release from a DCB and
subsequent distribution within the arterial wall, with a view to ex-
tracting insights that may be useful in optimizing their design.

A handful of numerical studies related to DCB are available in
the literature [6-11]. Numerical studies are typically computation-
ally expensive and make a number of (different) assumptions to
enable solutions to be obtained in a reasonable time frame. Drug
delivery from the DCB is typically modeled as either a constant
concentration for a finite time [11] or a time-dependent flux [6-
10]. All of the aforementioned numerical models assume that drug
is transported through the arterial wall due to diffusion. Only two
models [8,9] account for advective transport due to the known
pressure gradient across the arterial wall. Drug binding is depen-
dent on the physio-chemical properties of the particular drug and
is handled in different ways in these models, ranging from linear
reversible binding kinetics through to multiple phases of nonlin-
ear reversible binding [12]. While most of these models assume a
healthy artery, two of these models account for the presence of a
homogeneous atherosclerotic plaque within 3D [11] and 2D [9] ge-
ometries: however, the healthy portion of the arterial wall is as-
sumed to be a homogeneous material with the same properties.
Only one of these studies incorporates a heterogeneous tissue [8].
A major limitation of each of these numerical models is that they
do not consider the multi-layer nature of the arterial wall. Anal-
ysis of drug delivery in a multi-layer artery has been reported in
a limited number of papers, however, such work either is specific
to a two-layer geometry [13,14], neglects curvature of the artery
[15] or is completely numerical in nature [16]. Further, most of the
literature, both single-layer and multi-layer, addresses stent-based
[5,14,15,17], and not balloon-based drug delivery.

While an analytical closed-form solution for the stent drug de-
livery problem has been presented [17], no such solution exists

Fig. 1. Picture showing the application of a balloon on the luminal surface of an artery for drug delivery. (Reproduced with permission from [1]).



A. Jain, S. McGinty, G. Pontrelli et al.

Stage A (Balloon ON)

------ Intima-media interface
—— Media-Adventitia interface -
Drug coated balloon in Stage A

Inner (luminal) wall in Stage B R,R; R, R;
Free drug particles

Not To Scale .

Outer (Perivascular)
Wall

International Journal of Heat and Mass Transfer 187 (2022) 122572

Stage B (Balloon OFF)
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Fig. 2. Schematic of the geometry and boundary conditions for the balloon-driven drug delivery problem for a multi-layer artery. (a) shows Stage A during which the balloon
is applied on the luminal surface of the artery, and (b) shows Stage B during which the balloon has been withdrawn.

for the balloon problem, which is fundamentally distinct from the
stent problem. Such a solution has the potential to provide key in-
sights into the problem and may allow for rapid evaluation of the
influence of various model parameters on key quantities of inter-
est, such as drug delivery into and retention in the tissue. More-
over, analytical solutions may play a key role in providing partial
validation for more complex numerical models. While simplifica-
tions of the problem are necessary to enable analytical progress,
often the key physical processes can be captured with reasonable
accuracy.

From a mass transfer perspective, this problem is a multilayer
Convection-Diffusion-Reaction (CDR) problem, where, in addition
to radial diffusion, transvascular plasma flow causes convection
and drug binding in the artery causes reaction. CDR problems have
been widely investigated [14,15,18], although only a smaller sub-
set of papers addresses general multilayer CDR problems [18]. Key
analytical techniques used for solving such problems include sep-
aration of variables [14] and Laplace transformation [19]. In addi-
tion, numerical solution of CDR problems has also been carried out
[20,21]. It has been shown that multilayer CDR problems may ad-
mit imaginary eigenvalues [18], which is why theoretical analysis
of such problems is particularly important.

In this paper, a closed-form analytical solution is derived for
drug delivery from a DCB and subsequent drug transport and re-
tention in the arterial wall. The model incorporates each of the
key physical processes at play, namely drug diffusion, transport
through advection and drug binding and retention within a multi-
layered arterial wall, as shown schematically in Fig. 2. The analyti-
cal solution helps understand the impact of various diffusion, con-
vection and binding parameters on the extent of drug delivered by
the balloon and bound in the artery as functions of time. Expres-
sions for key safety and efficacy indicators are derived. When com-
pared to similar past work on modeling of endovascular drug deliv-
ery, the key novelty of the present work lies in accounting for the
multilayer, cylindrical nature of the artery, along with the coupled
effects of diffusion, advection and reaction involved in balloon-
based drug delivery, all in the context of balloon-based drug deliv-
ery. Unlike several past papers, this work is completely analytical,
generalized to an arbitrary number of layers and results in closed-
form equations for key parameters related to safety and efficacy
of drug delivery. Results presented here help understand the fun-

damentals of the drug delivery process, and may help in the de-
sign and optimization of drug carrying balloons towards improved
safety and efficacy.

The next section defines, non-dimensionalizes and solves
the mass transport problem in a general M-layered artery.
Section 3 defines and derives expressions for various key safety
and efficacy indicators. Results are discussed in detail in Section 4,
including expressions for the special case of a homogeneous artery.

2. A general M-layer arterial model
2.1. Problem definition

Consider the process of endovascular drug delivery by a drug-
coated balloon adhered to the luminal wall of an artery for a short
duration, typically 60-120 s in practice [9,11]. During this time, the
balloon delivers drug to the luminal wall, from where, drug trans-
port within the arterial layers occurs due to diffusion as well as
advection driven by flow of plasma in response to the transmural
pressure gradient. Some of the drug is absorbed within the artery
due to binding reactions, which are thought to occur predomi-
nantly in the media layer where the majority of the target smooth
muscle cells reside [16,22]. Finally, the drug may also be lost to the
perivascular region from the outer wall. Once the balloon is with-
drawn after a short application period, transport and binding pro-
cesses continue until all the drug has been either bound within the
artery or has been lost to the outside medium through the Iumi-
nal or perivascular wall. It is of interest to develop a mathematical
model to predict the drug concentration distribution within the ar-
terial wall as a function of space and time. Specifically, parameters
related to safety and efficacy, such as the peak drug distribution
in the tissue and the fraction of drug bound in the media layer
as a function of time are of interest to device manufacturers and
clinicians. Given the short duration of application of the balloon, it
is also of interest to determine how much drug is delivered into
the artery in that time - such information could help inform drug
loading on the balloon. A mathematical model for this balloon-
based drug delivery must account for the physical processes de-
scribed above, as well as the multilayered nature of the artery.
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In this work, the generalized case of an M-layered artery is considered first. The special case of a homogeneous artery is then presented
in the following section.

Fig. 2 presents a schematic of the geometry, boundary conditions and transport/binding processes in this problem. The multilayer artery
is assumed to be sufficiently long relative to its radius and axisymmetric, so that the problem is one-dimensional in the radial direction. A
cylindrical coordinate system, with origin at the center axis of the annular cylindrical artery is used, so that the curvature of the artery is
accounted for. The artery is modeled as an M-layer annular cylindrical body of inner radius Ry, in which the mt" layer is an annular cylinder
between r=R,,.; and r=Rpn, m = 1,2.M. The diffusion coefficient of the drug in the mt™ layer is given by Dy, assumed to be constant and
uniform. Binding reactions in each layer are modeled through first-order reaction kinetics, with a reaction constant of B, in the mt® layer.
This assumption is valid when binding is non-saturable and the time scale associated with the unbinding process is much greater than
that associated with binding. Existing literature suggests that non-saturable linear binding models may be appropriate for drugs such as
heparin [23]. Moreover, for highly lipophilic drugs such as sirolimus, while binding to specific target receptors may be saturable at the
typical doses delivered, when non-specific binding is taken into account, total bound drug is likely to be non-saturable at these drug
doses [16,22]. In addition, drugs typically coated on DCBs are known to be strongly retained. A flow field Uy(r) driven by transmural
pressure difference between the luminal and perivascular regions is also assumed in each layer. In order for the flow field to obey mass
conservation, Up(r) must be inversely proportional to r [17], i.e., Un(r)=am/r. A general convective mass transfer boundary condition,
represented by a mass transfer coefficient hoys is assumed on the perivascular of the artery, r=ry,. The value of hy,;=0 corresponds to an
impermeable wall, whereas hyy¢ tending to infinity represents a constant concentration boundary condition at r=ry;. Drug concentration
in the balloon, ¢, is applied to the luminal wall up to time ¢,.

Two distinct stages are considered over time, as shown in Fig. 2. In Stage A, O<t<ty, the balloon is applied on the luminal wall, r = Ry,
which is modeled by a constant concentration boundary condition based on cp,, the drug concentration in the balloon. In Stage B, t > ¢,
the balloon is removed, so that convective mass transfer to luminal blood flow may also occur at r = Ry, which is modeled by a convective
mass transfer coefficient h;;, on the luminal wall.

Based on this problem statement and assumptions, the following governing mass conservation equation for concentration distribution
in the m™ layer, c(r;t) may be written as follows:
dCm 19 ( acm> m OCnm

—Bmcm  (Rm_1 <7 <Rp) (m=1,2,3...M) (1)

ac ~Prrar\"or )T ar

which represents a balance between diffusion, convection and reaction terms to determine the evolution of the concentration field over
time.
The associated boundary condition on the luminal boundary is

1 =0 (0 <t <ty) (Stage A)

=R 2
-Di 5 ac‘ +%cr+hpcr =0 (t>1t) (Stage B) (atr=Ro) )
On the perivascular surface, one may write
ac a
DMT:YI — TMCM + hgutCM =0 ((lt r= Rm) (3)

where the outside concentration is taken to be zero for reference.
The following conditions apply at the interfaces

ac, a ac a

—Dn, 8;” 7’“ m = D1 é"r“ + e i @r=Ry) (mM=1,2...M—-1) (4)
0Cm  am

~Dm =g + ~*n = kn(Cn — Cme1) @CT=Rp) (M=1.2...M~1) (5)

where ky, is the mass transfer conductance at the interface between m™ and (m + 1)™ layers.
It is assumed that there is no drug present in the artery initially, i.e.,

cn=0(att=0) (m=1,2,3...M) (6)

Note that the boundary condition at the luminal surface, Eq. (2), changes from a constant concentration condition during Stage A to a
convective mass transfer condition during Stage B. The distinct nature of these boundary conditions presents challenges in modeling. For
example, while Eq. (2) can be modeled, in principle, with a time-varying step-function h;,, which is infinite during Stage A, time-varying
convective coefficients are, in general, very difficult to handle, especially in a multilayer geometry [24]. Instead, the problem is solved
separately and sequentially, such that the solution at the end of Stage A serves as the initial condition for Stage B. Before this is carried
out, however, it is important to non-dimensionalize this problem for ease and generality of analysis.

2.2. Non-dimensionalization

The following non-dimensionalization is carried out:

Qm:i"(StageA) ¢m:C—m(StageB) §=ﬁ 72%» ym—RM Vo= Dm_ 'Bm_ DM;

Pen = T? km = km i Shour = hum RM ; Shy, = m RM 3Ty = Dlsgtb'

Note that Pe;, and f, are the Péclet and Damkéhler numbers in the mt™h layer, defined as the ratios of advection and reaction rates,
respectively, to the diffusion rate. Shyy is the Sherwood number on the perivascular surface. A very large value of Shy, corresponds to a
zero concentration, i.e., infinite sink condition. Sh;, is the Sherwood number at the luminal surface, relevant only for Stage B. The Péclet
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number here is based on the coefficient a;; instead of the velocity Up, because the velocity is not a constant, but rather a function of the
radial coordinate due to mass conservation in a radial, pressure-driven flow [17].

Based on this non-dimensionalization, the following two sub-sections define and solve the drug concentration problem in Stages A
and B.

2.3. Stage A: while balloon is applied (0<t< t},)

During Stage A, the balloon present on the luminal wall of the artery is modeled as a constant concentration source, as described in
the first part of Eq. (2). The following non-dimensional set of governing equations for Stage A may be written as follows:

20 Dm 0 a0 Pe, 06 P

T: = ;85( 8;) _?maigm_ﬂmem Ym1<E<ym0<t<1) (M=1,2,3...M) (7)

subject to

61 =1 @t£ =) ®)

a0 Pey6

E eg M 4 Showthy =0 (at & = 1) 9
- 00 Pe - 00n Pe,

D g + =5 = —DmHT“ T“emﬂ @ &=ym (M=1,2...M-1) (10)
- 06, P -

~Dn g + %em = km(On —Omi1) @ E=yp) (M=1,2..M~1) (1

along with the following initial condition:

O =0 (atT=0) (m=1,2,.M) (12)

Note that 7, = % is the non-dimensional time period of application of the balloon. The set of Eqs. (7)-(12) is a multilayer cylindrical

M
CDR problem with the only non-homogeneity present in the boundary condition at £ = y,. In order to account for this non-homogeneity,
one must split the solution as follows:

Om(§.7) =um(5.7) +Um(§)(M=1,2,3...M) (13)

where vp (§) satisfies

D N
?’"(gvm) - ?mvm —BnVm =0 (Ym_1 <& < ym) (M=1,2,3...M) (14)
along with the boundary and interface conditions
Ulzlat E:)/o (15)
P Pepvy
M= 3 +Shoevy=0at & =1 (16)
_ Pe - Pe
—Dt, + ?'"vm = D1V, + %“umﬂ atE=yn (m=1,2..M—1) (17)
- Pem -
—Dmvy, + ?um =kn(Vm —Vmy1) atE=ym(m=1,2...M-1) (18)
A general solution of Eq. (14) may be written as
Um(§) = 4 [Aymlp, (OmE) + BymKy,, (0mé)] (19)
where I and K are modified Bessel functions of the first and second kind, respectively [25], and pum = % is the order of these functions.

Further, om = v/ Bm/Dn.

Based on the boundary and interface conditions, the following 2 M linear algebraic equations may be written for the 2 M unknowns -
Aym and By, (m = 1,2,.M):

¥ [Avaly, (01Y0) + BuaKy, (0110)] =1 (20)

oM [AMMI#M*] (om) — BymKyy,-1 (UM)] + (Shoue — Pey)[Avmlyy, (0m) + BymKy, (om)] =0 (21)

- Pe
~Dinm ¥ [Av.mli -1 (OmYim) — Bo.mKyiy 1 (Omim) | + ym Vi " [Avmluy, (Om¥Ym) + BomKyu,, (Om¥Yim)]
m

= _Dm+10m+1 Vi [Au,m+11um+1—1 (Oms1¥m) — Byme1 Ky, -1 (Ot Vm)] (22)
Pep i1

Ym

™ [Aumitln Ot Vi) + Bumia Ky (Omervim) | (m=1,2... M = 1)

5



A. Jain, S. McGinty, G. Pontrelli et al. International Journal of Heat and Mass Transfer 187 (2022) 122572

- Pe
—Dnomyn" [Av,m] n—1(Om¥Ym) — BymKy,, 1 (Um)’m)] + Tmynlfm [Av.mly, (OmYim) + BymKy, (Om¥m)]
m

- (23)
= km [Vr/an [Avmlyi, (Om¥m) + BomKpu,, (Om¥Ym)] = ¥in™ [Av,m+11um+1 (Om+1¥m) + Bomi1Ky,., (Jm+1ym)]] (m=12..M-1)
Solving Eqs. (20)-(23) through matrix inversion results in A, and By m, and therefore the functions vy (£).
The governing equation and boundary/interface conditions for the remainder of the solution, uy, (£, ) are given by
oum Dy 0 A Pey Oum =
_om - fgm ) _—mZTom : =1,2,3...M 24
ar S 85 (S 85 E as ,Bmum (Vm—l <$ <VmsO<T <Tb) (m s ’3 ) ( )
subject to
u=0até =y (25)
O Loy Showty = 0 at & = 1 (26)
ag g M out “M
- oJu Pe - dJu Pe
Dngg + g U = D= an;] " ?“ Umst At E =ym (M=1,2...M~1) (27)
- Ju Pe, -
—Dma—g’ + ?’”um =kn(Um —Upyq) AL E=yn (M=1,2...M—1) (28)
along with the following non-homogeneous initial condition:
Un=-Un) (at7=0) (m=1,2,..M) (29)

Egs. (24)-(28) are completely homogeneous, and the only non-homogeneity in the uy problem appears in the initial condition. There-
fore, this multilayer CDR problem may be solved using the technique of separation of variables. Specifically, one may write

tn(€.7) = Y &ufan(E)exp (A7) (m=1.2.3...M) (30)
n=1

where g, are coefficients to be determined. By separating out the spatial and time-dependent terms, and substituting fmn(§) =
EHm f 1 (£), it can be shown that fi, n(§) satisfies the Bessel differential equation, and, therefore,

fm,n ($) = S“’” [Am.njum (&)mns) + ém,nYum (&)mn";:)] (31)
where, by substituting in the governing energy equation, one may show that
32— B

Omn = —Pmm=12...M) (32)
Dp,

n are the eigenvalues of the problem. J,(x) and Y, (x) represent Bessel functions of the first and second kind, respectively, and of
order v [25].

In order to determine the unknown eigenvalues and coefficients, the transient concentration distribution given by Eq. (30) is inserted
into boundary and interface conditions given by Eqs. (25)-(28). This results in

A],n.]m (é)],nVO) + E],nYul (67)1.n)/0) =0 (33)

d)M,n[AM,nJMM—I (C?)M,n) + EM,HY/LM—l (@Mn)] = (*Shout + PeM) [AM,nJuM ((I)M,n) + gM,nYuM (d)Mn)] (34)

_Dm&)m,n)/r/p:m (Am.n]um—l (&)mnym) + Bm,ny m—1 (&)mn)/m)) + Pefmynlfm [Am,n]u,n (&)m,n]/m) + B\m,nY;Lm (Cbmn)/m)]
_ ~ N m
= —Dmi1®mi1.n Y™ (Am+l,n]um+171 (d)mﬂ,nym) + Bn1n Y -1 (®m+1,nym))+ (35)

%mﬁm*’ [Ani1 e (@ms1.0¥in) + Bmsr Ve (@mirnym)] (m=1,...M=1)
_Dm&)m,n)/;#m (Am.nlum—l (@m,n)/m) + Bm.nY m—1 (@mnym)) + I;izl Vr#m [Am.nlum (&)m.nym) + Em,nyum (é)mnym)]
'm

- R R . I (36)
= km [an:m (Am.n]um (Cbm,nym) + BmnYy, (&)m.n)’m)) — ypm (Am+1,n]um+1 (Cbm+1,n7/m) + B nYum, (d)m+1,n3/m))] (m=1,...M-1)

Egs. (33)-(36) represent a set of 2-M linear homogeneous equations in 2-M unknowns, Ay, , and By, (m = 1,2.M). Due to the homo-
geneous nature of these equations, a non-trivial solution is admitted only if the determinant of these equations is zero. This requirement
constitutes the eigenequation, the roots of which provide the eigenvalues A,. An explicit expression for the eigenequation for the general

6
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M-layer case may be derived by carefully manipulating Egs. (33)-(36), as shown in Supplementary Information. The final eigenequation is

(w1 D1 v D vatn (V1) Yoy (@ran Va1 )
—kn—1Pew—1 Vi Py—1.n (Y=1)djuss (@vnYm1-1) — Knt—1 Dua@ran Vi P10 (Ya—1)Jayy—1 (@nan 1)
~Dy-1Duéom, nV,\’/,LMlp/M 10 (VM=) -1 (@mnYa—1) + DuPeni 1MV DMt (V1) g1 (Omnym-1)
+kn_1Pen— 17/ M " Pv—tn (Ym- 1)JMM(CUMnVM 1)+DM 1Pen— ﬂ/l\l/f'w]_lP/M 1.0 (VM- 1)J;LM(@)Mn)/M—1)
—Pey;_1 vy “PM-1.a (YM-1)]j (OMn VM1 m-1Pem-1Yp " PM-1.n (YM-1) Yy (@M VM-1
P2y it Dy n (i) (@mnvia1) |/ k-1 Pem 1 Vi 1 (Vi 1) Yoy, (@uany
— k-1 Dr—1 Vi D 1.0 (Y=1) Y sy (@ninV—1) + Kna—1 D@ Vs P10 (Ya=1)Ysuss (@mnYii—1) (37)
—kn—1 Dy Vg™ D' w1 (V=) Y g (@mn Yai—1) + K1 Dudonin Vg™ Py—1.0 (Va=1)Ypp—1 (@mn -1 )
+Dar-1 Du@un V™ D' w1 0 (Y1) Y1 (@nn¥a-1) — DuPens—1@un¥is™y " 1.0 (Ya-1)Ypup—1 (@nn 1)
—knm-1Pey - 1VAI;Mf1PM 1 (YM-1) Yy (O ¥1)
~Du_1Pen-1 Vi P (Vi DY (OrinYu-1) + Pedy_ 2 Pr-1.n (Vi DY iy (@m0 Y1) |
+[wM.nJuM—1 (wM.n) — (—Shout + Pey)] un (a)M,n)]/[wM.nYuM—l (a)M,n) — (—Shout + PeM)YuM—l (d)M,n)] =0
where the ’ sign refers to derivative with respect to £ and the expression for function py_; ,(£) is found in Supplementary Information.
Once the eigenvalues are determined from the roots of this transcendental equation, thereby ensuring that the determinant of the set
of Egs. (33)—(36) is zero, one of the equations in this set is redundant. Further, a general solution for the coefficients Ay n and B n may be
obtained by assuming one of the coefficients, say, A, to be one, and determining all other coefficients in terms of A; , from Egs. (33)-(35).
Explicit expressions for Ap , and Em,n are presented in Supplementary Information.

Finally, the initial condition and principle of quasi-orthogonality may be used to determine the remaining coefficient §,. To do so,
Eq. (30) is inserted in the initial conditions given by Eq. (29), resulting in

~Vm(€) = Y En&" " [Amn i (Omnk ) + BmnYpu, (@mn€) | (M=1,2,3... M) (38)

n=1
The statement of principle of quasi-orthogonality for the cylindrical CDR problem is considerably more complicated than that of a pure-
diffusion problem, specifically in terms of the weighing functions associated W1th each layer. Qua51 orthogonality is proved separately in
Appendix A. Based on the results in Appendix A, Eq. (38) is multiplied by -1 5 [Am w)um @m§) +B,, Yo (@ §)]ET#m, where s’;”‘ =

12041
% (m = 1,2.M-1) and s; = y1l 241 The resulting expression is integrated from & = ym to & = yp,1. The resulting equations are

adnéled, which, with the use of principle of quasi-orthogonality given by Eq. (A.5) in Appendix A, leads to
1Mo 7
A _ ~ A A A, 1— m
8w = NT/ ,,12_:] a / —VUm (S)[Am.n’.]um (a)m.n’é) + B Yy, (a)mn’g)]g HmdE (39)
- Ym-1

where the norm N is given by
. R 2
Ny = Z / Ao (O €) + B Y (O ) | (40)

This completes the solution for Stage A. During this stage, the drug is expected to enter the multi-layer artery from the luminal wall.
Some of the drug may get absorbed within the artery layer and some may be lost from the perivascular wall. The second Stage, in which
the balloon has been withdrawn is considered in the next section.

2.4. Stage B: after balloon is withdrawn (t>t1},)

Once the balloon has been withdrawn, the drug already present within the artery continues to diffuse, be convected and bind within
the artery. The boundary condition at the perivascular wall continues to be characterized by a Sherwood number Shy,, whereas, it is
assumed that on the luminal surface, the constant concentration boundary condition due to the balloon is replaced by a general mass
transfer boundary condition that models drug loss to the luminal blood flow due to convection. This boundary condition may be char-
acterized by another Sherwood number, Sh;, = h"[’;fd"". In this framework, the non-dimensional concentration distribution ¢p, (£, T) during
Stage B is given by

9¢m Dm 0Pm Pep dpm 7 . _
e =E7 S(g $>_§8S_ﬂm¢m (Ym-1 <& <¥Vm T>T7) (M=1,2,3...M) (41)
subject to
= 0 P€1¢1
ddu  Pendu _ _
W - £ + Shoupy =0 (at £ = 1) (43)
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= 0¢m | Pep
Ongg g O
A 0Pms1 | Pemyr

Gme1 @t E=yn) (M=1,2..M—-1) (44)

:_Dm+1 a;g. + E

0pm  Pen

Ongg g om

= kn(dm — Pmi1) @ E =ym) (M=1,2...M-1) (45)
along with the following initial condition:
Om=0m(€,75) (at T=0) (m=1,2,.M) (46)

where 6p,(&, 7;) is the concentration distribution at the end of
Stage A, which serves as the initial condition for Stage B. Note that
the time coordinate associated with ¢y, in these equations begins
at the time that the balloon is withdrawn.

This problem is similar to the up (€, T) problem encountered in
Stage A. A solution may be written as follows:

Pm(5.T) =) GnEMm [Am.njum (@nn€) + BnnYu, (G)m.nf)]
n=1

x exp(—A2r)(m=1,2,3...M) (47)

where, by substituting in the governing energy equation, one may
show that

@mn = /)”%D_i’gm(mzl,Z...M) (48)

The coefficients Am,n and Bp,, satisfy boundary and interface
conditions similar to Egs. (34)-(36). In addition, due to the change
in boundary condition at & = yq, the cofficients satisfy the follow-
ing equation instead of Eq. (33):

—@1 5Dy [Al,njul—l (@1.0Y0) +B1.nYp -1 (67)1,:1}/0)]
PE] ~ ~ 5 ~

+ <5hin + m) [A1.nJis @1.0%0) + BrnYyu, (@1070)] =0 (49)

Similar to the process for u;,; (&, 7), the eigenvalues for Stage B
may be determined by setting the determinant of equations rep-
resenting boundary and interface conditions to zero. Subsequently,
the coefficients f\m,n and By, , may be determined by first setting
Ai,=1 and determining the remaining coefficients from these
equations. Supplementary Information provides an explicit expres-
sion for the eigenequation for Stage B, as well as closed-form re-
cursive expressions for Ap , and B .

Finally, the remaining coefficient g, may be determined by us-
ing the initial condition

Om(€,19) = Zgn%‘llm [Am,n.],u.m (Omn€) + Em,an.m (Cbmné,:)]

n=1
(m=1,2,3...M) (50)
Similar to Stage A, Eq. (50) is multiplied by

A pim @ &) + B Y i (O &)]E17#m. The  resulting
expression is integrated from & =y to & = yp,1. The result-
ing equations are added, which, with the use of principle of
quasi-orthogonality as outlined in Appendix A leads to

Vm

s _ 151 [, i N 5 v
& = N Zg / m(‘i:’fd)[ mnum (@m &) + Bmw um(wm.n’g)]

n m—
m=1 V-1

glotndg (51)

where the norm Nn/ is given by
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Vm

Mo ~ - < - 2
Ny = Z - / S[Am,n’.];tm (Omn&) + B Y (a)mng)] dé

m=1 Ym-1
(52)

This completes the solution for concentration distribution in
Stage B, during which, the drug introduced into the artery in Stage
A diffuses and binds further, and some of it may also be lost from
the luminal and perivascular surfaces.

3. Key safety and efficacy indicators

Key performance indicators that characterize the safety and ef-
ficacy of drug delivery include v(7), the amount of drug delivered
up to time 7, ¥m(7), the amount of drug bound in the mt" layer
up to time 7, Om(7), the amount of drug remaining unbound in
the mt layer at time 7, and VYo (t) and vy, (T), the amounts
of drug lost from the perivascular and luminal surfaces, respec-
tively, up to time t. Note that, by the very definition of the prob-
lem, 1/},-,.,(1) is zero during Stage A, when drug is being transported
from the balloon into the artery - drug loss from the luminal sur-
face only begins in Stage B when the balloon has been withdrawn.
Definitions for these non-dimensional parameters are summarized
in Table 1. Closed-form expressions, determined by appropriate in-
tegration/differentiation of concentration distributions are given in
Appendix B. Note that non-dimensionalization is carried out by di-
viding the corresponding dimensional quantity by the balloon drug
concentration and total artery volume.

It may be noted that by multiplying the governing conservation
equations, given by Eq. (1) by &, integrating spatially within each
layer and over time, and finally adding all equations, one may de-
rive the following overall mass conservation relationship between
these quantities:

M
‘_’(T):‘ﬁout(f)‘f‘win(r)""Z[Xm(f)"":ém(f)] (53)
m=1

4. Results and discussion

As shown in Section 2, the general solution for concentration
distribution in the multilayer artery depends on several parame-
ters, including thicknesses, diffusion coefficients, velocities and re-
action coefficients for each layer and convection coefficients at the
boundaries. Values/ranges for these parameters based on past liter-
ature [13,15,16,26] are listed in Table 2. A three-layer artery com-
prising intima, media and adventitia is assumed. Binding reaction
is assumed to occur only in the media layer. The intima layer is
much thinner and with greater diffusivity than the other two lay-
ers. While the nominal value of luminal and perivascular Sherwood
numbers is taken to be 1, these may vary in a broad range between
0 and oo, representing an impenetrable and constant concentration
boundary, respectively. For example, following the withdrawal of
the balloon, the value of Sh;, likely depends on the extent of dam-
age to the inner lining of the arterial wall. Similarly, the value of
Shour depends on the nature of tissue surrounding the artery. Since
these values are not fixed, a broad range of values is considered in
the analysis presented in this section.

4.1. Convergence of series solution

Since the closed-form analytical solution for concentration dis-
tribution derived in Section 2, as well as expressions for various
performance parameters derived in Section 3 are all in the form
of eigenfunction-based infinite series, it is important to determine
the number of terms needed in the series to ensure accuracy. This
is an important consideration because such series solutions often
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Table 1
Definitions and explicit expressions for various drug delivery and absorption parameters.
Stage A Stage B
Parameter . - o .
Integral definition Expression Integral definition Expression
T ~ . - . w = .
1 Amount delivered up  v(t) = 12771‘302 I (_D](%)gzn + %‘)dr* Eq. (B.1) in b(t) = 1350“2 (—Dﬂ%)é:y0 + '%)dr* Eq. (B.6) in
to time t 0 Appendix B 0 Appendix B
. _ 23 T Vm . _ 23 T4 Vm T Vm )
2 Amount absorbed in Am(T) = ﬁf [ E6m(E. T*)dEdT Eq. (B.2) in Am(T) = 1722 [ [ &€ t)dEdT + [ [ EPm(E,T*)dEdT* | Eq. (B.7) in
mt layer up to time 0 ¥mt Appendix B 0 Vin-1 0 Ymr Appendix B
¥Ym ¥Ym
3 Amount remaining in = fn(7) = ﬁ [ EOm(E,T)dE Eq. (B.3) in pPm(T) = ﬁ [ Epm(E, T)dE Eq. (B.8) in
mt layer at time T Ymt Appendix B Ymot Appendix B
- T - T T
4 Amount lost from the Yoy (T) = %5%%; fom(1, T*)dT* Eq. (B.4) in Yout (T) = %;:;[[dem(l, )dt* + [ pu(1, r*)df*:| Eq. (B.9) in
perivascular surface 0 Appendix B 0 0 Appendix B
up to time T
- - T
5 Amount lost from Yin(T) =0 Eq. (B.5) in Yin(T) = % [ 1(y0, T*)dT* Eq. (B.10) in
luminal surface up to Appendix B ‘o Appendix B
time T
Table 2
Values of various problem parameters based on past work [13,15,16,26].
Symbol Definition Value Unit Source
Ro Lumen radius 1.5 x 1073 m [16]
hin Luminal mass transfer coefficient 0to oo ms~! [13]
hout Perivascular mass transfer coefficient 0 to oo ms~! [16]
Pe Péclet number for fluid flow 0-4 [13]
M Number of arterial layers 3 [15]
Di, Dy, D3 Diffusivity in arterial layers 1.67 x 107117 x 10712, 4 x 1012 m?2s~! [15,16]
Ry —Ro, R, — Ry, R3 —R,  Arterial layer thicknesses 10 x 1075, 500 x 1076, 400 x 10°® m [16]
ki, ky Interfacial mass transfer conductance 9.6 x 1076 ms™! [16,26]
Bi, B2, Bs Reaction coefficient in artery 0,104, 0 st [15]
ty Duration of balloon application 60 s
converge slowly [27], and yet, computing too many terms in the 0.025 ———
series may lead to unnecessary computational difficulties. There- === T mmEEEEm -
. . . . L
fore, determining the minimum number of terms needed to be [ ’
computed is important. In the present problem, since the two key T 0.02 " 5
performance parameters are v(t), the total amount of drug deliv- 8 |
ered up to a given time and x,(t), the total amount of drug ab- Q !
sorbed in the media layer up to a given time, the variation in these 8 0.015|, 5
quantities with the number of eigenvalues considered is examined. o 1
Fig. 3 pl.ots V(T =13) apd X2 (r_: 0.017) as funct_ions of the num- = 1 - - (r=m1)
ber of eigenvalues considered. Fig. 3 shows that x, converges very g 0.01h Yo = 0.017) 8
quickly, within around 20 eigenvalues. However, in contrast, v con- o
verges very slowly and takes nearly 1000 eigenvalues to converge. 2 J
The calculation of such a large number of eigenvalues can be te- A 0.005F 7]
dious, but in the present case is needed to ensure accuracy. In the
present work, eigenvalues are computed by identifying intervals in f
O L L n 1 K L L 1 L L L 1 L L L 1

the eigenfunction plot where the curve crosses the x axis, followed
by successive application of Newton-Raphson iterations to accu-
rately determine the root. By automating the process, it is possible
to seamlessly compute the eigenvalues for any given set of param-
eter values. All subsequent plots discussed in this work have been
computed using 1000 eigenvalues.

4.2. Evolution of the concentration field for a representative problem

The concentration field in the three-layer artery in response to
drug delivery by a balloon over a small amount of time is com-
puted for a representative set of parameters, as listed in Table 2.
The concentration distribution is plotted as a function of £ at sev-
eral different times during Stages A and B in Fig. 4(a) and (b), re-
spectively. The intima-media interface location is indicated in both
plots.

0 200 400 600 800 1000
Number of eigenvalues

Fig. 3. Effect of number of eigenvalues: Total drug delivered (V) at the end of Stage
A and total drug absorbed in media layer (j,) at T = 0.017 as functions of number
of eigenvalues considered.

Note that Stage A is relatively short because the balloon is
kept in place only for a short amount of time, so that the non-
dimensional duration of Stage A is only T; =4.1 x 107°. Fig. 4(a)
shows that as time passes, the drug supplied by the balloon at the
inner boundary transports farther and farther into the artery. How-
ever, the total diffusion length into the artery is relatively short
due to the small time period of Stage A. Drug transport clearly
crosses over the relatively thin intima and into the media, but does
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Fig. 4. Plots showing evolution of concentration distribution with time during (a) Stage A; (b)

interface location is indicated in both plots.

not traverse a large distance into the media layer. The total diffu-
sion length during Stage A shown in Fig. 4(a) is consistent with the
diffusion length scale estimate based on diffusivities of the intima
and media layers. As a result, the average drug concentration in the
media layer at the time of balloon withdrawal is relatively small.
The dynamics of drug transport and absorption during Stage B, in
which the balloon has been withdrawn, are shown in Fig. 4(b). This
plot shows that the drug continues to transport through the artery
and be absorbed in the media layer during this Stage. Drug con-
centration at £ = 0 starts to drop during Stage B, which is because
of drug loss at that boundary, at which, the drug-containing bal-
loon has been replaced by a convective boundary condition that
represents drug loss to the luminal blood flow. As time passes dur-
ing Stage B, drug concentration in regions close to the lumen re-
duces and in regions close to the perivascular region increases due
to outwards diffusion and convective transport. Over time, drug
loss at the two boundaries as well as drug binding reactions in
the media layer all contribute towards a gradual reduction in drug
concentration, which, at large times, is either lost from the bound-
aries or bound within the media layer.

4.3. Overall mass balance during stages A and B

The amount of drug delivered up to any time may be calcu-
lated from knowledge of the amount of drug absorbed, still present
and lost from the luminal and perivascular surfaces. Section 3 and
Table 1 define and present explicit analytical expressions for each
of these quantities. It is instructive to examine the evolution of
these various quantities over time. Fig. 5(a) and (b) plot these com-
ponents as functions of time during Stages A and B, respectively.
Since drug absorption occurs only in the media layer, x; and x3
are both zero, and therefore are not plotted. Fig. 5(a) shows that
during Stage A, when the balloon is present, the amount of drug
delivered increases over time. The increase is relatively rapid at
early times and slows down later, which is consistent with the na-
ture of diffusion. The amount of drug present in the intima layer
rises rapidly due to being next to the drug-containing balloon, be-
fore saturating. In contrast, the amount of drug in the media layer
rises slowly throughout the time period. Due to the short amount
of time in Stage A and the small amount of drug available in the
media layer, there is no significant drug absorption in the me-
dia layer. The amount of drug lost from the perivascular surface
is also approximately zero, which is because not much drug has
yet reached the perivascular surface. As shown in Eq. (53), up to

10
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- (b)

A S

0.64 0.66 0.68
£

Stage B. Values of other parameters are listed in Table 2. Intima-media

0.7 0.72 0.74

any given time, the sum of total drug absorbed and present in all
layers, as well as lost from the luminal and perivascular surfaces
must add up to the total amount of drug delivered. This total sum
is also plotted in Fig. 5(a), and is shown to be very close to the
total amount of drug delivered. The overall mass balance shown
by this agreement is encouraging and indicates validation of the
analysis presented in Section 2.

A similar plot of evolution of drug delivered, absorbed, present
and lost during Stage B is presented in Fig. 5(b). As expected, the
total amount of drug delivered remains flat during Stage B, be-
cause the balloon has been withdrawn, and no more drug enters
the artery. Drug present in the three layers of the artery at the
start of Stage B continues to transport over time, and can be either
absorbed in the media layer, or lost from the luminal and perivas-
cular boundaries. Fig. 5(b) clearly shows that during Stage B, the
amount of drug present in intima and media layers reduces as time
passes. These layers were saturated with a high drug content dur-
ing Stage A. In contrast, not much drug transported into the outer-
most adventitia layer during Stage A, which is why, Fig. 5(b) shows
that during Stage B, drug available in the adventitia layer first in-
creases due to diffusion from the media layer, and then gradually
decreases due to drug loss at the perivascular surface. The amount
of drug lost from the luminal and perivascular surfaces increases
and reaches a saturation value. Finally, the amount of drug bound
in the media layer rises sharply at first, due to the large amount of
drug available in the media layer, and then saturates as the amount
of drug available for binding reduces over time. The total amount
of drug bound in the media is a small fraction of the drug concen-
tration in the balloon. This indicates that despite the application of
the balloon, the amount of drug actually delivered into the media
layer is expected to be relatively small compared to drug concen-
tration in the balloon. The drug loading in the balloon must there-
fore be designed accordingly. Similar to Fig. 5(a), the total sum of
drug available, bound and lost is also plotted as a function of time
in Fig. 5(b). This sum is found to be close to the total amount of
drug delivered, which confirms overall mass balance during Stage
B. Note that the time scale over which Stage B has been computed
(approximately 3 days) is much longer compared to Stage A (60 s,
which is the typical period after which the balloon is withdrawn).

In addition to providing validation of the analytical expressions
derived in Section 2, Fig. 5(a) and (b) highlight the interesting dy-
namics between drug diffusion, advection, absorption and bound-
ary loss. These plots provide practical insights into the design of
balloon based drug delivery systems.
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Fig. 5. Overall mass balance plots: amount of drug delivered, lost from the two boundaries, remaining in each of the three layers and absorbed in media layer as functions
of time for (a) Stage A, (b) Stage B. Total sum of drug lost, absorbed and remaining is also shown to demonstrate overall mass balance. Values of other parameters are listed

in Table 2. For interpretation of curves in (a), please refer to legend in (b).
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Fig. 6. Effect of reaction coefficient in media layer: (a) drug content in artery as a function of time during Stage A, and (a) drug bound in artery as a function of time during
Stage B, both for different values of . Values of other parameters are listed in Table 2.

4.4. Impact of reaction coefficient

The impact of reaction coefficient in the media layer, Bz on
drug content and amount of drug bound in the artery is exam-
ined next. Drug content in the artery is the total amount of drug
present in all layers of the artery, whether bound or not, and is
an important indicator of the safety of the drug delivery process
[22]. Fig. 6(a) plots the drug content in the artery as a function
of time during Stage A for four different values of B, within the
range reported in the literature [15]. As expected, there is practi-
cally no influence of 8, on the amount of drug delivered. This is
because the amount of drug delivered, and thus contained in the
artery mainly depends on the nature of the boundary conditions,
as well as diffusion properties of the inner-most arterial layer. This
process is largely unrelated to the reaction coefficient in the media
layer, especially since only a small amount of drug diffuses into the
media layer during the short time period of Stage A.

In contrast, Fig. 6(b) plots the drug bound in the artery as a
function of time during Stage B, when most of the drug binding
process occurs within the media layer. During this Stage, Fig. 6(b)
shows that the larger the value of B, the faster is the drug ab-
sorption process, and the larger is the amount of drug bound in

1

the artery. This is because a small value of 8, results in lesser drug
binding, and therefore, a greater amount of drug available to dif-
fuse to the boundaries and be lost into the luminal blood flow and
surrounding perivascular tissue.

The total drug content in the artery is the sum of bound and
unbound drug available in the artery. The impact of the reaction
coefficient 52 on the relative amounts of bound and unbound drug
is of interest, and is examined in Supplementary Fig. 1. These two
components as well as the total drug content are plotted as func-
tions of B, at T = 0.18. This plots shows that most of the drug is
in the bound state: since T = 0.18 corresponds to a relatively long
time, much of the drug delivered by the balloon has been con-
sumed in binding reactions. Supplementary Fig. 1 shows that for
very small values of ,32, there may be some unbound drug still re-
maining at this time.

4.5. Impact of luminal and perivascular boundary conditions

The impact of convective boundary conditions on the lumi-
nal and perivascular boundaries, as expressed mathematically by
Eqs. (2) and (3) is investigated next. These boundary conditions
are represented by Sherwood numbers, Sh;, and Shyy, respectively.
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Fig. 7. Impact of luminal and perivascular boundary conditions: Drug lost (as a fraction

of Shy,, (b) perivascular surface for different values of Shyy.

The specific value of the Sherwood number depends, among other
factors, on the physical properties and functionality of the arterial
tissue at these boundaries. For example, application of the balloon
on the luminal surface may damage the endothelial cells at that
surface, resulting in reduced rate of convective transport at that
surface. Further, the nature of tissue surrounding the artery may
influence the value of Shyy. Fig. 7(a) and (b) plot the amount of
drug lost at the luminal and perivascular surfaces as functions of
time for different values of Sh;, and Shyy, respectively. The amount
of drug lost is expressed as a fraction of the total drug delivered.
In both cases, as expected, the greater the Sherwood number, the
greater is the amount of drug lost. Note that for a large value of
Shi,, up to around 80% of the drug delivered may be lost at the
luminal surface. This strong impact is because the luminal sur-
face is close to where most of the drug delivered by the end of
Stage A is concentrated. Comparing the dynamics of drug loss at
the two surfaces, it is seen that while drug loss at the luminal sur-
face rises sharply with time, drug loss at the perivascular surface
lags behind, which is explained by the time taken for the drug to
transport through the artery to the perivascular surface. In con-
trast, drug is readily available close to the luminal surface because
that is where the balloon was applied in Stage A. This also explains
why the amount of drug lost from the luminal surface is nearly
an order of magnitude larger than drug lost from the perivascular
surface. Over the time period considered here, the amount of drug
lost at the luminal surface reaches a steady value because the drug
in the intima layer continues to transport radially outwards and
towards the perivascular surface. This is also the reason why drug
lost at the perivascular surface takes longer to reach a steady value.

To investigate this further, Fig. 8 plots the amount of drug lost
up to a certain time as a function of the Sherwood numbers. Plots
for the luminal and perivascular surfaces are presented in Fig. 8(a)
and (b), respectively. Similar to Fig. 7, the amount of drug lost is
expressed as a fraction of the total drug delivered. As expected, the
amount of drug lost increases with increasing value of Sherwood
number. A saturation effect is observed in both cases. For example,
beyond a value of 100 for Shy:, Fig. 8(b) shows negligible addi-
tional drug loss upon increasing Shey; further, indicating that this
value is the threshold for reaching an infinite sink boundary con-
dition.

It is also important to examine the impact of the boundary con-
ditions on drug content in the artery. Supplementary Fig. 2 plots
drug content in the artery as a function of time during Stage A
for different values of the perivascular Sherwood number, Shoy:.
As expected, Shyy, has negligible impact on drug content during

0.015 0.02 0.025 0.03
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Stage A. This is because in the short time duration of Stage A, drug
transport into the artery is limited mainly to the intima and me-
dia layers, and therefore, the boundary condition on the perivascu-
lar surface is relatively insignificant. In contrast, Fig. 9(a) and (b)
plot drug content as a function of time in Stage B for different val-
ues of luminal and perivascular Sherwood numbers, Sh;, and Shgy,
respectively. Fig. 9(a) shows a very strong dependence of drug con-
tent in the artery on Sh;,. For relatively large value of Sh;,, the
drug content drops dramatically with time. This is because the
luminal surface, where Sh;, is applied, is located next to the in-
tima, which is rich in drug delivered during Stage A. Therefore,
Sh;, strongly influences drug content in the artery, and for large
values of Sh;,, there is significant drug loss from the luminal sur-
face. A large value of Sh;, may arise, for example, due to strong
convective mass transfer to luminal blood flow, facilitated also by
possible endothelial damage due to the application of the balloon.
In contrast, the impact of Shyy, which is applied on the perivas-
cular surface, is relatively smaller, particularly in the early part of
Stage B, as shown in Fig. 9(b). This is because the perivascular sur-
face is located far from the drug-rich intima, and by the time drug
transports to the perivascular surface, so that the impact of Shgy
begins to be felt, much of the drug is already bound in the me-
dia layer. The five curves shown in Fig. 9(b) are nearly identical at
early times, when not much drug has diffused to the perivascular
surface, and the influence of Shyy is mainly observed only after-
wards.

4.6. Impact of diffusion coefficient of the intima

While each layer in the artery has a distinct diffusion coeffi-
cient, that of the intima layer is expected to play a key role in
determining the drug delivery and binding characteristics. This is
because the intima layer is adjacent to the drug-carrying balloon.
Further, drug diffusion during Stage A occurs mainly in the intima
layer, and therefore, the total amount of drug delivered before the
balloon is withdrawn is strongly dependent on the diffusion coef-
ficient of the intima.

Despite the short duration, Stage A is critical for determining
the total amount of drug delivered, because the balloon is with-
drawn at the end of Stage A, after which, there is no more drug
entering the artery. In order to investigate the impact of intima
diffusion coefficient on drug delivery, Fig. 10 plots the amount of
drug delivered as a function of time during Stage A for different
values of D;. The parametric range considered here is one order of
magnitude lower and greater than the nominal value based on past
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literature [15,16]. Fig. 10 shows that the larger the value of D;, the
greater is the amount of drug delivered. For each case considered
here, the drug delivery curve becomes approximately linear after a
short time. However, the greater the value of Dy, the greater is the

initial slope, and thus, the greater is the total amount of drug de-
livered by the end of Stage A. A saturation effect is also observed,
in that once D; is reasonably large, further increase in D; does
not significantly increase the amount of drug delivered. This may
be because once D; is sufficiently large, drug diffuses very rapidly
through the intima, and the overall drug delivery process starts to
become limited by D, instead. Note that the intima diffusion coef-
ficient is assumed to not be influenced by the process of applying
the balloon on the luminal surface.

Drug content and drug bound in the media is plotted as a func-
tion of time for different values of D in Fig. 11(a) and (b), respec-
tively. During Stage B, the drug content reduces with time due to
loss from the boundaries, whereas the amount of drug bound in-
creases with time because of reactions that convert unbound drug
available in the media to a bound state. Fig. 11(a) shows very grad-
ual reduction in the drug content over time since the definition
of drug content includes both unbound and bound drug. The in-
tima diffusion coefficient only influences the initial drug content
at the start of Stage A, and not so much the extent of reduction
over time. On the other hand, as shown in Fig. 11(b), the amount
of drug bound in the media layer has a strong dependence on Dj,
particularly in the low range of D;. This is because the greater the
value of D;, the more rapid is the rate of diffusion of the drug
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from the drug-rich intima into the media, where binding reactions
occur. Similar to the effect observed in Fig. 10, there is a saturation
effect, in that beyond a threshold value of D, further increase in
Dy does not result in significant further increase in the amount of
drug bound.

4.7. Impact of advection

A key feature of drug transport in this problem is the advection
of drug due to radially outwards plasma flow. This radial flow is
driven by the transmural pressure difference, and the velocity has
been shown to proportional to 1/r, also depending on the pres-
sure gradient and various porous flow properties [17]. The impact
of the Péclet number, which represents the magnitude of this flow
field on drug delivery and binding characteristics is examined next.
Supplementary Fig. 3(a) and (b) plot the amount of drug delivered
during Stage A and amount of drug bound during Stage B as func-
tions of time for several different values of Pe, including the base-
line value of Pe=0 that represents the case of no advection. Note
that the range of Pe considered is based on estimates derived from
existing literature [13]. The plots show that the value of the Péclet
number, in the range considered here, has minimal impact on drug
delivery and binding characteristics. In Stage B, the amount of drug
bound in the media layer actually reduces with increasing Péclet
number. This is likely because as Pe increases, a greater amount
of drug is removed from the media layer and into the adventitia
due to advection than is brought into the media from the intima.
Note that there are several second-order effects that are not con-
sidered in this analysis. For example, the application of the balloon
is likely to increase the transmural pressure gradient during Stage
A. Due to the relatively short time duration of Stage A, it is antic-
ipated that the effect on the performance indicators considered in
this model will be small and, therefore, a constant Péclet number
is assumed throughout the time duration considered here. Further,
the application of the balloon may damage endothelial cells in the
intima layer, which may impact the nature of porous flow through
the intima, and therefore, the Péclet number. However, the intima
thickness is only 5% of the overall artery thickness, and therefore,
this is also likely to be a small effect.

4.8. Results for a homogeneous artery

In some cases, it may be acceptable to neglect the multi-layer
nature of the artery, and instead treat it as a homogeneous body.
The drug transport problem can be considerably simplified in such
a case. Due to the practical importance of this special case, it is in-
structive to explicitly write the solution for this problem. The gov-
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erning equations and solution for this problem can be derived by
setting M = 1 in Section 2. These equations and closed-form ex-
pressions for concentration distribution and various performance
indicators for this case are summarized in Supplementary Infor-
mation.

5. Summary and conclusions

Endovascular drug delivery involves complex interactions be-
tween several physical and biological processes, including diffu-
sion, advection and binding reactions, which is further complicated
by the multilayer nature of the artery. Experimental investigation
of drug delivery is time-consuming, expensive and may raise ethi-
cal questions where animals are used, which is why mathematical
models can provide valuable insights and guidance into appropri-
ate design of experiments. The general mathematical model pre-
sented in this work may fulfill this role for arterial drug delivery
from a balloon. Key insights gained from this work include the im-
portant role of intima diffusion coefficient and media reaction rate
in determining the amount of drug delivered and bound, respec-
tively. The model also highlights the key role played by the nature
of boundary conditions in this process. Such insights can be used
to balance safety and efficacy.

It is important to re-emphasize the key assumptions made here,
necessarily employed to enable a closed-form analytical solution.
Only one linear, non-saturable binding reaction is assumed to oc-
cur. Boundary conditions, as well as transvascular pressure, which
influences the Péclet number, are assumed to not be influenced by
balloon application or withdrawal. All properties are assumed to
be uniform and independent of concentration. For a broad range of
practical scenarios, these assumptions are reasonable. Further, note
that while values of various properties were taken from existing
literature, an integrated effort to measure these properties in the
same arterial system, and to study possible variations in these val-
ues, may help further improve the accuracy of model predictions.

In addition to the practical insights into the endovascular drug
delivery problem, this work also contributes towards theoretical
heat and mass transfer by presenting an analytical solution for the
multilayer cylindrical CDR problem, including the nature of quasi-
orthogonality.
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Appendix A: quasi-orthogonality of eigenfunctions for the general M-layer cylinder case with diffusion, convection and reaction

For pure-diffusion multilayer problems, quasi-orthogonality of eigenequations is well-known, and has been widely used for solving
standard problems. In the present problem, however, due to the presence of advection and reaction terms in addition to diffusion, the
quasi-orthogonality relationship between eigenfunctions is not obvious. This Appendix derives an orthogonality relationship that accounts
for these transport processes.

For the general M-layer cylindrical geometry considered in this work, the spatial component of the solution, f;,, for the mth layer is
given by Eq. (31). For two distinct numbers n and j, fmn and fy,; satisfy

Pen\ frn (47— Bn)
1 + 1 _ _7m m,n + — A.l
m,n Dm %- Dm fm n ( )
Pep, f,;” ()L?—B )
4+ =0 A2
" ( Dm>§ 5 fni= (A2)
For each m, multiply Eqs. (A.1) and (A.2) by fi, ;E172#m and fi n&1-24m, respectively, then subtract to obtain
, A2 )\.2
[( r/n,nfm,j - ,%jfm.n)é]imlm] = ( )fm nf E] ~Zitm (A.3)
m
Now, for each layer, m, Eq. (A.3) is divided by u;, where ”Z‘—;] = % (m = 1,2,.M-1) and u; = y; 1721, Each of the resulting
equations is integrated within the respective layer, and added, to result in
[fln(Vo)fu(J/o) f’1,<yo>f1n(yo>] [ mn D fj D= F i (D fun (D]
Y172 Yu-1'"2M
Mo _ _
+ Y [Dm- l(f/m 1nVme) Fne1.j (Ym=1) = 1 j(Vne1) fne1.0 (Ym=1)) = D (F i (Vme) Finj (Ym=1) = Fm j (Vin=1) finn (V1)) | (A4)

m=

2
= (A3 - 4) P LI fnfm &2 dE

The first term on the left hand side of Eq. (A.4) is zero because from the boundary condition at & =y, during Stage A, f1,(Yo) =
f1,j(¥o) = 0. Similarly, the second term in the left-hand side of Eq. (A.4) may be shown to be zero, based on the boundary condition at

Focusing on the remaining terms on the left hand side, each term within the square bracket inside the summation pertains to the
interface between the (m-1)" and mth layer (m = 2 .M). Each term in this summation can be shown to be zero as follows: From the in-

terface condition at & =y, given by Eq. (10), D1 f},_q , =Dmfhn— P Em L finn + ”‘*1 fm—1n and Dm 1f 1= Dmfr/n] - Pe—mfm,j +
P -

y:j;l fm—].j- Further, from Eq. (11), Dm—lf,;',_lﬂ = y;mllfm 1n*km l(fmn*fm 1.n) and Dm 1fm 1,j= Vm 1 L fo 1]*km 1(fm] fm—l,j)-
Here, all functions are evaluated at & = y,,,_;. Using these relationships, each term within square bracket inside the summation on
the left hand side of Eq. (A.4) can be re-arranged as Pfﬂ’"*’fm 1.jfm=1.n — ko1 (fmn = finz1,0) fin— 1j—5:"—*11fm 1.ifm_tn + ko1 (fnn —
fm—],j)fm—l n— (fr/n nfmj fm ]fm n), which can be further simplified to km 1(fm, ]fm 10— fmnfm- 1) — ( fm nfm] - km 1(fmn —

fm—l,n)fm,j Vm 1 S fo jfm n— km—l (fm.] fm—],])fm,n)' which is zero.
This shows that the left hand side of Eq. (A.4) is zero. Therefore, for distinct n and j, the following relationship between the spatial
eigenfunctions may be written:

M VYm

> — ! ffmnfmjé‘ 2ndE =0 n#j (A5)

Um
m=1 VYm-1

This orthogonality relationship differs from the standard orthogonality for pure-diffusion multilayer problems in the £1-2#m term as
well as the definition of up. Eq. (A.5) plays an important role in deriving an expression for the last remaining coefficient, g, of the problem.
Along similar lines, it can be shown that the orthogonality relationship given by Eq. (A.5) also holds for the eigenfunctions for Stage B.
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Appendix B: explicit expressions for parameters

By inserting Eqs. (13) and (47) in the definitions for various performance parameters given in Table 1, one may derive the following
explicit expressions:

Stage A:

-2
V(1) = ]’/"; x

(B.1)

2
n=1 A
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Xm(T) = z X
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Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jjheatmasstransfer.
2022.122572.
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