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a b s t r a c t 

Drug-coated balloons (DCBs) are used commonly for delivering drug into diseased arteries. When applied 

on the inner surface of an artery, drug is transported from the balloon into the multilayer arterial wall 

through diffusion and advection, where it is ultimately absorbed through binding reactions. Mathematical 

modeling of these mass transport processes has the potential to help understand and optimize balloon- 

based drug delivery, thereby ensuring both safety and efficacy. The present work derives a closed-form 

solution for the multilayer cylindrical convection-diffusion-reaction (CDR) transport problem that occurs 

in balloon-based endovascular drug delivery. The model is presented for an arbitrary number of lay- 

ers, and accounts for various transport processes in terms of relevant non-dimensional numbers. Quasi- 

orthogonality for this multilayer problem is derived. Closed-form expressions for the amounts of drug 

delivered by the balloon, bound in each arterial layer and lost from the external surfaces are derived. It 

is shown that only a small fraction of drug from the balloon is actually delivered into the artery during 

the short exposure time, which is influenced strongly by the diffusion coefficient of the inner-most layer. 

Further, binding of the drug is found to depend strongly on the reaction coefficient, expressed in terms 

of the Damköhler number. It is shown that boundary conditions on the inner and outer surfaces, ex- 

pressed in terms of Sherwood numbers, play a role in drug uptake over a longer time period. The model 

is general enough to be applicable for a wide variety of scenarios and operational conditions, including an 

arbitrary number of layers. Results from this work provide fundamental insights into drug transport and 

uptake processes. In addition, these results may help improve the safety and efficacy of balloon-based 

drug delivery. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coronary angioplasty is a common, minimally invasive proce- 

ure used to treat obstructive coronary artery disease (CAD) [1] . 

istorically, angioplasty consisted of deploying a balloon on the 

ack of a catheter to the site of the obstruction and widening the 

umen through inflation of the balloon. Nowadays, the majority of 

AD patients will also receive a tiny mesh structure called a drug- 

luting stent (DES), in what is known as Percutaneous Coronary 

ntervention (PCI). The purpose of the stent is to act as a scaffold, 

llowing blood flow to be maintained in the lumen, while the role 

f drug elution is to combat the biological response which can lead 

o excessive neointimal growth and further obstruction to blood 
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ow, a phenomenon known as in-stent restenosis (ISR) [2] . While 

ES has been successful, there is growing interest in the potential 

f Drug-Coated Balloon (DCB) technology [ 3 , 4 ], particularly when 

aced with ISR where a stent has previously been deployed, and in- 

reasingly in the context of treating less severe de novo atheroscle- 

otic lesions. While DES have been mathematically and computa- 

ionally modelled extensively in the literature [5] , there is a rela- 

ive lack of modeling studies related to DCB technology. 

DES tends to release drug in a controlled and sustained fashion 

ver a period of weeks to months, which is thought to be broadly 

onsistent with the healing time of the artery following device de- 

loyment [5] . However, a DCB typically releases their payload over 

 matter of seconds or minutes, with around 60 s being repre- 

entative of current practice. Fig. 1 shows a schematic of balloon 

eployment inside an artery [1] . It is important to note that the 

CB obstructs the artery during delivery - inflating for longer than 

ecessary could therefore have serious consequences for the pa- 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.122572
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2022.122572&domain=pdf
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Nomenclature 

a coefficient appearing in velocity term (m 

2 s −1 ) 

b balloon 

c concentration (molm 

−3 ) 

D diffusion coefficient (m 

2 s −1 ) 

D̄ non-dimensional diffusion coefficient 

h convective mass transfer coefficient (ms −1 ) 

k interfacial mass transfer conductance (ms −1 ) 

k̄ non-dimensional interfacial mass transfer conduc- 

tance 

M number of layers 

N eigenfunction norm 

Pe Péclet number 

R radius (m) 

r radial coordinate (m) 

Sh Sherwood number 

t time (s) 

β reaction coefficient (s −1 ) 

β̄ non-dimensional reaction coefficient 

γ non-dimensional interface location 

τ non-dimensional time 

ψ cumulative fraction of drug delivered 

χ cumulative fraction of drug absorbed 

ρ fraction of drug remaining 

θ , φ non-dimensional concentrations in Stages A and B, 

respectively 

ξ non-dimensional radial coordinate 

λ non-dimensional eigenvalue 

σ drug partition coefficient 

Subscripts 

m layer number 

ref reference value 

0,in inner (luminal) wall 

out outer (perivascular) wall 
Fig. 1. Picture showing the application of a balloon on the luminal surface o

2 
ient. This tiny time window for drug delivery makes device de- 

ign particularly challenging. In other words, one must deliver a 

ufficient amount of drug rapidly - too much drug may result in 

oxicity, while too little drug could either be completely ineffective 

r result in drug action waning before healing is complete. Given 

he drastically different release kinetics between DCB and DES, it is 

f interest to mathematically model drug release from a DCB and 

ubsequent distribution within the arterial wall, with a view to ex- 

racting insights that may be useful in optimizing their design. 

A handful of numerical studies related to DCB are available in 

he literature [6–11] . Numerical studies are typically computation- 

lly expensive and make a number of (different) assumptions to 

nable solutions to be obtained in a reasonable time frame. Drug 

elivery from the DCB is typically modeled as either a constant 

oncentration for a finite time [11] or a time-dependent flux [6–

0] . All of the aforementioned numerical models assume that drug 

s transported through the arterial wall due to diffusion. Only two 

odels [ 8 , 9 ] account for advective transport due to the known 

ressure gradient across the arterial wall. Drug binding is depen- 

ent on the physio-chemical properties of the particular drug and 

s handled in different ways in these models, ranging from linear 

eversible binding kinetics through to multiple phases of nonlin- 

ar reversible binding [12] . While most of these models assume a 

ealthy artery, two of these models account for the presence of a 

omogeneous atherosclerotic plaque within 3D [11] and 2D [9] ge- 

metries: however, the healthy portion of the arterial wall is as- 

umed to be a homogeneous material with the same properties. 

nly one of these studies incorporates a heterogeneous tissue [ 8 ]. 

 major limitation of each of these numerical models is that they 

o not consider the multi-layer nature of the arterial wall. Anal- 

sis of drug delivery in a multi-layer artery has been reported in 

 limited number of papers, however, such work either is specific 

o a two-layer geometry [ 13 , 14 ], neglects curvature of the artery 

15] or is completely numerical in nature [16] . Further, most of the 

iterature, both single-layer and multi-layer, addresses stent-based 

 5 , 14 , 15 , 17 ], and not balloon-based drug delivery. 

While an analytical closed-form solution for the stent drug de- 

ivery problem has been presented [17] , no such solution exists 
f an artery for drug delivery. (Reproduced with permission from [1] ). 
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Fig. 2. Schematic of the geometry and boundary conditions for the balloon-driven drug delivery problem for a multi-layer artery. (a) shows Stage A during which the balloon 

is applied on the luminal surface of the artery, and (b) shows Stage B during which the balloon has been withdrawn. 
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or the balloon problem, which is fundamentally distinct from the 

tent problem. Such a solution has the potential to provide key in- 

ights into the problem and may allow for rapid evaluation of the 

nfluence of various model parameters on key quantities of inter- 

st, such as drug delivery into and retention in the tissue. More- 

ver, analytical solutions may play a key role in providing partial 

alidation for more complex numerical models. While simplifica- 

ions of the problem are necessary to enable analytical progress, 

ften the key physical processes can be captured with reasonable 

ccuracy. 

From a mass transfer perspective, this problem is a multilayer 

onvection-Diffusion-Reaction (CDR) problem, where, in addition 

o radial diffusion, transvascular plasma flow causes convection 

nd drug binding in the artery causes reaction. CDR problems have 

een widely investigated [ 14 , 15 , 18 ], although only a smaller sub-

et of papers addresses general multilayer CDR problems [18] . Key 

nalytical techniques used for solving such problems include sep- 

ration of variables [14] and Laplace transformation [19] . In addi- 

ion, numerical solution of CDR problems has also been carried out 

 20 , 21 ]. It has been shown that multilayer CDR problems may ad-

it imaginary eigenvalues [18] , which is why theoretical analysis 

f such problems is particularly important. 

In this paper, a closed-form analytical solution is derived for 

rug delivery from a DCB and subsequent drug transport and re- 

ention in the arterial wall. The model incorporates each of the 

ey physical processes at play, namely drug diffusion, transport 

hrough advection and drug binding and retention within a multi- 

ayered arterial wall, as shown schematically in Fig. 2 . The analyti- 

al solution helps understand the impact of various diffusion, con- 

ection and binding parameters on the extent of drug delivered by 

he balloon and bound in the artery as functions of time. Expres- 

ions for key safety and efficacy indicators are derived. When com- 

ared to similar past work on modeling of endovascular drug deliv- 

ry, the key novelty of the present work lies in accounting for the 

ultilayer, cylindrical nature of the artery, along with the coupled 

ffects of diffusion, advection and reaction involved in balloon- 

ased drug delivery, all in the context of balloon-based drug deliv- 

ry. Unlike several past papers, this work is completely analytical, 

eneralized to an arbitrary number of layers and results in closed- 

orm equations for key parameters related to safety and efficacy 

f drug delivery. Results presented here help understand the fun- 
s

3 
amentals of the drug delivery process, and may help in the de- 

ign and optimization of drug carrying balloons towards improved 

afety and efficacy. 

The next section defines, non-dimensionalizes and solves 

he mass transport problem in a general M -layered artery. 

ection 3 defines and derives expressions for various key safety 

nd efficacy indicators. Results are discussed in detail in Section 4 , 

ncluding expressions for the special case of a homogeneous artery. 

. A general M -layer arterial model 

.1. Problem definition 

Consider the process of endovascular drug delivery by a drug- 

oated balloon adhered to the luminal wall of an artery for a short 

uration, typically 60–120 s in practice [ 9 , 11 ]. During this time, the

alloon delivers drug to the luminal wall, from where, drug trans- 

ort within the arterial layers occurs due to diffusion as well as 

dvection driven by flow of plasma in response to the transmural 

ressure gradient. Some of the drug is absorbed within the artery 

ue to binding reactions, which are thought to occur predomi- 

antly in the media layer where the majority of the target smooth 

uscle cells reside [ 16 , 22 ]. Finally, the drug may also be lost to the

erivascular region from the outer wall. Once the balloon is with- 

rawn after a short application period, transport and binding pro- 

esses continue until all the drug has been either bound within the 

rtery or has been lost to the outside medium through the lumi- 

al or perivascular wall. It is of interest to develop a mathematical 

odel to predict the drug concentration distribution within the ar- 

erial wall as a function of space and time. Specifically, parameters 

elated to safety and efficacy, such as the peak drug distribution 

n the tissue and the fraction of drug bound in the media layer 

s a function of time are of interest to device manufacturers and 

linicians. Given the short duration of application of the balloon, it 

s also of interest to determine how much drug is delivered into 

he artery in that time – such information could help inform drug 

oading on the balloon. A mathematical model for this balloon- 

ased drug delivery must account for the physical processes de- 

cribed above, as well as the multilayered nature of the artery. 
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idered first. The special case of a homogeneous artery is then presented 

i

s and transport/binding processes in this problem. The multilayer artery 

i etric, so that the problem is one-dimensional in the radial direction. A 

c annular cylindrical artery is used, so that the curvature of the artery is 

a al body of inner radius R 0 , in which the m 

th layer is an annular cylinder 

b  the drug in the m 

th layer is given by D m 

, assumed to be constant and 

u order reaction kinetics, with a reaction constant of βm 

in the m 

th layer. 

T ime scale associated with the unbinding process is much greater than 

t saturable linear binding models may be appropriate for drugs such as 

h us, while binding to specific target receptors may be saturable at the 

t account, total bound drug is likely to be non-saturable at these drug 

d own to be strongly retained. A flow field U m 

( r ) driven by transmural 

p is also assumed in each layer. In order for the flow field to obey mass 

c  U m 

( r ) = a m 

/ r . A general convective mass transfer boundary condition, 

r erivascular of the artery, r = r M 

. The value of h out = 0 corresponds to an 

i nstant concentration boundary condition at r = r M 

. Drug concentration 

i

 . In Stage A, 0 < t < t b , the balloon is applied on the luminal wall, r = R 0 , 

w  based on c b , the drug concentration in the balloon. In Stage B, t ≥ t b , 

t  blood flow may also occur at r = R 0 , which is modeled by a convective 

m

g governing mass conservation equation for concentration distribution 

i

 = 1 , 2 , 3 . . . M ) (1) 

w ction terms to determine the evolution of the concentration field over 

t

c

−  0 ) (2) 

D (3) 

w

− 1 , 2 . . . M − 1 ) (4) 

− 1 ) (5) 

w n m 

th and ( m + 1) th layers. 

y, i.e., 

c (6) 

) , changes from a constant concentration condition during Stage A to a 

c ure of these boundary conditions presents challenges in modeling. For 

e arying step-function h in , which is infinite during Stage A, time-varying 

c pecially in a multilayer geometry [24] . Instead, the problem is solved 

s tage A serves as the initial condition for Stage B. Before this is carried 

o r ease and generality of analysis. 

2

θ  m 

 M 
, γ0 = 

R 0 
R M 

, D̄ m 

= 

D m 
D M 

, β̄m 

= 

βm R 
2 
M 

D M 
;

P

in the m 

th layer, defined as the ratios of advection and reaction rates, 

r n the perivascular surface. A very large value of S h out corresponds to a 

z d number at the luminal surface, relevant only for Stage B. The Péclet 
In this work, the generalized case of an M -layered artery is cons

n the following section. 

Fig. 2 presents a schematic of the geometry, boundary condition

s assumed to be sufficiently long relative to its radius and axisymm

ylindrical coordinate system, with origin at the center axis of the 

ccounted for. The artery is modeled as an M -layer annular cylindric

etween r = R m-1 and r = R m 

, m = 1,2.. M . The diffusion coefficient of

niform. Binding reactions in each layer are modeled through first-

his assumption is valid when binding is non-saturable and the t

hat associated with binding. Existing literature suggests that non-

eparin [23] . Moreover, for highly lipophilic drugs such as sirolim

ypical doses delivered, when non-specific binding is taken into 

oses [ 16 , 22 ]. In addition, drugs typically coated on DCBs are kn

ressure difference between the luminal and perivascular regions 

onservation, U m 

( r ) must be inversely proportional to r [17] , i.e.,

epresented by a mass transfer coefficient h out is assumed on the p

mpermeable wall, whereas h out tending to infinity represents a co

n the balloon, c b , is applied to the luminal wall up to time t b . 

Two distinct stages are considered over time, as shown in Fig. 2

hich is modeled by a constant concentration boundary condition

he balloon is removed, so that convective mass transfer to luminal

ass transfer coefficient h in on the luminal wall. 

Based on this problem statement and assumptions, the followin

n the m 

th layer, c m 

( r,t ) may be written as follows: 

∂c m 

∂t 
= D m 

1 

r 

∂ 

∂r 

(
r 
∂c m 

∂r 

)
− a m 

r 

∂c m 

∂r 
− βm 

c m 

( R m −1 < r < R m 

) ( m

hich represents a balance between diffusion, convection and rea

ime. 

The associated boundary condition on the luminal boundary is 

 1 = c b ( 0 < t < t b ) ( Stage A ) 

D 1 
∂c 1 
∂r 

+ 

a 1 
r 

c 1 + h in c 1 = 0 ( t ≥ t b ) ( Stage B ) 
( at r = R

On the perivascular surface, one may write 

 M 

∂c M 

∂r 
− a M 

r 
c M 

+ h out c M 

= 0 ( at r = R M 

) 

here the outside concentration is taken to be zero for reference. 

The following conditions apply at the interfaces 

D m 

∂c m 

∂r 
+ 

a m 

r 
c m 

= −D m +1 
∂c m +1 

∂r 
+ 

a m +1 

r 
c m +1 ( at r = R m 

) ( m = 

D m 

∂c m 

∂r 
+ 

a m 

r 
c m 

= k m 

( c m 

− c m +1 ) ( at r = R m 

) ( m = 1 , 2 . . . M −

here k m 

is the mass transfer conductance at the interface betwee

It is assumed that there is no drug present in the artery initiall

 m 

= 0 ( at t = 0 ) ( m = 1 , 2 , 3 . . . M ) 

Note that the boundary condition at the luminal surface, Eq. (2

onvective mass transfer condition during Stage B. The distinct nat

xample, while Eq. (2) can be modeled, in principle, with a time-v

onvective coefficients are, in general, very difficult to handle, es

eparately and sequentially, such that the solution at the end of S

ut, however, it is important to non-dimensionalize this problem fo

.2. Non-dimensionalization 

The following non-dimensionalization is carried out: 

m 

= 

c m 
c b 

( Stage A ) , φm 

= 

c m 
c b 

( Stage B ) , ξ = 

r 
R M 

, τ = 

D M t 

R 2 
M 

, γm 

= 

R
R

 e m 

= 

a m 
D M 

; k̄ m 

= 

k m R M 
D M 

; S h out = 

h out ·R M 
D M 

; S h in = 

h in ·R M 
D M 

; τb = 

D M t b 
R 2 

M 

. 

Note that P e m 

and β̄m 

are the Péclet and Damköhler numbers 

espectively, to the diffusion rate. S h out is the Sherwood number o

ero concentration, i.e., infinite sink condition. S h is the Sherwoo
in 

4 
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n U m 

, because the velocity is not a constant, but rather a function of the 

r ven flow [17] . 

ections define and solve the drug concentration problem in Stages A 

a

2

 artery is modeled as a constant concentration source, as described in 

t ning equations for Stage A may be written as follows: 

 τ < τb ) ( m = 1 , 2 , 3 . . . M ) (7) 

s

θ (8) 

(9) 

−  = 1 , 2 . . . M − 1 ) (10) 

− − 1 ) (11) 

a

θ (12) 

cation of the balloon. The set of Eqs. (7) –(12) is a multilayer cylindrical 

C ary condition at ξ = γ0 . In order to account for this non-homogeneity, 

o

θ (13) 

w

 M ) (14) 

a

v (15) 

v (16) 

−  . . . M − 1 ) (17) 

− (18) 

v (19) 

w  kind, respectively [25] , and μm 

= 

P e m 
2 ̄D m 

is the order of these functions. 

F

 M linear algebraic equations may be written for the 2 M unknowns –

A

γ (20) 

σ ) + B v ,M 

K μM ( σM 

) ] = 0 (21) 

− m 

I μm ( σm 

γm 

) + B v ,m 

K μm ( σm 

γm 

) ] 

=
 

γm 

) 
]

+  1 , 2 . . . M − 1 ) 

(22) 
umber here is based on the coefficient a m 

instead of the velocity 

adial coordinate due to mass conservation in a radial, pressure-dri

Based on this non-dimensionalization, the following two sub-s

nd B. 

.3. Stage A: while balloon is applied (0 ≤τ≤ τ b ) 

During Stage A, the balloon present on the luminal wall of the

he first part of Eq. (2) . The following non-dimensional set of gover

∂θm 

∂τ
= 

D̄ m 

ξ

∂ 

∂ξ

(
ξ
∂θm 

∂ξ

)
− P e m 

ξ

∂θm 

∂ξ
− β̄m 

θm 

( γm −1 < ξ < γm 

; 0 <

ubject to 

1 = 1 ( at ξ = γ0 ) 

∂θM 

∂ξ
− P e M 

θM 

ξ
+ Sh out θM 

= 0 ( at ξ = 1 ) 

D̄ m 

∂θm 

∂ξ
+ 

P e m 

ξ
θm 

= −D̄ m +1 
∂θm +1 

∂ξ
+ 

P e m +1 

ξ
θm +1 ( at ξ = γm 

) ( m

D̄ m 

∂θm 

∂ξ
+ 

P e m 

ξ
θm 

= k̄ m 

( θm 

− θm +1 ) ( at ξ = γm 

) ( m = 1 , 2 . . . M 

long with the following initial condition: 

m 

= 0 ( at τ = 0 ) ( m = 1 , 2 , ..M ) 

Note that τb = 

D M t b 
R 2 

M 

is the non-dimensional time period of appli

DR problem with the only non-homogeneity present in the bound

ne must split the solution as follows: 

m 

( ξ , τ ) = u m 

( ξ , τ ) + v m 

( ξ ) ( m = 1 , 2 , 3 . . . M ) 

here v m 

(ξ ) satisfies 

D̄ m 

ξ

(
ξv ′ m 

)′ 
− P e m 

ξ
v ′ m 

− β̄m 

v m 

= 0 ( γm −1 < ξ < γm 

) ( m = 1 , 2 , 3 . . .

long with the boundary and interface conditions 

 1 = 1 at ξ = γ0 

 

′ 
M 

− P e M 

v M 

ξ
+ S h out v M 

= 0 at ξ = 1 

D̄ m 

v ′ m 

+ 

P e m 

ξ
v m 

= −D̄ m +1 v ′ m +1 + 

P e m +1 

ξ
v m +1 at ξ = γm 

( m = 1 , 2

D̄ m 

v ′ m 

+ 

P e m 

ξ
v m 

= k̄ m 

( v m 

− v m +1 ) at ξ = γm 

( m = 1 , 2 . . . M − 1 ) 

A general solution of Eq. (14) may be written as 

 m 

( ξ ) = ξμm [ A v ,m 

I μm ( σm 

ξ ) + B v ,m 

K μm ( σm 

ξ ) ] 

here I and K are modified Bessel functions of the first and second

urther, σm 

= 

√ 

β̄m 

/ ̄D m 

. 

Based on the boundary and interface conditions, the following 2

 v ,m 

and B v ,m 

( m = 1,2,.. M ): 

μ1 

0 [ A v , 1 I μ1 ( σ1 γ0 ) + B v , 1 K μ1 ( σ1 γ0 ) ] = 1 

M 

[
A v ,M 

I μM −1 ( σM 

) − B v ,M 

K μM −1 ( σM 

) 
]

+ ( S h out − P e M 

) [ A v ,M 

I μM ( σM 

D̄ m 

σm 

γ μm 

m 

[
A v ,m 

I μm −1 ( σm 

γm 

) − B v ,m 

K μm −1 ( σm 

γm 

) 
]

+ 

P e m 

γm 

γ μm 

m 

[ A v ,

 −D̄ m +1 σm +1 γ
μm +1 

m 

[
A v ,m +1 I μm +1 −1 ( σm +1 γm 

) − B v ,m +1 K μm +1 −1 ( σm +1

 

P e m +1 

γm 

γ μm +1 
m 

[
A v ,m +1 I μm +1 ( σm +1 γm 

) + B v ,m +1 K μm +1 ( σm +1 γm 

) 
]

( m =
5 
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− m 

I μm ( σm 

γm 

) + B v ,m 

K μm ( σm 

γm 

) ] 

=
 

σm +1 γm 

) + B v ,m +1 K μm +1 ( σm +1 γm 

) 
]]

( m = 1 , 2 . . . M − 1 ) 
(23) 

nd B v ,m 

, and therefore the functions v m 

(ξ ) . 

he remainder of the solution, u m 

( ξ , τ ) are given by 

 τ < τb ) ( m = 1 , 2 , 3 . . . M ) (24) 

s

u (25) 

(26) 

−  1 , 2 . . . M − 1 ) (27) 

− 1 ) (28) 

a

u (29) 

omogeneity in the u m 

problem appears in the initial condition. There- 

f ue of separation of variables. Specifically, one may write 

u (30) 

w  the spatial and time-dependent terms, and substituting f m,n (ξ ) = 

ξ ential equation, and, therefore, 

(31) 

w show that 

ω (32) 

ent Bessel functions of the first and second kind, respectively, and of 

o

s, the transient concentration distribution given by Eq. (30) is inserted 

i s results in 

A (33) 

ω J μM 

(
ˆ ω M,n 

)
+ 

ˆ B M,n Y μM 

(
ˆ ω M,n 

)]
(34) 

− m 

 

[
ˆ A m,n J μm 

(
ˆ ω m,n γm 

)
+ 

ˆ B m,n Y μm 

(
ˆ ω m,n γm 

)]
=   m +1 ,n γm 

))
+ 

 = 1 , . . . M − 1 ) 

(35) 

− m 

 

[
ˆ A m,n J μm 

(
ˆ ω m,n γm 

)
+ 

ˆ B m,n Y μm 

(
ˆ ω m,n γm 

)]
=

m +1 

(
ˆ ω m +1 ,n γm 

)
+ 

ˆ B m +1 ,n Y μm +1 

(
ˆ ω m +1 ,n γm 

))]
( m = 1 , . . . M − 1 ) 

(36) 

tions in 2 ·M unknowns, ˆ A m,n and 

ˆ B m,n ( m = 1,2.. M ). Due to the homo- 

g d only if the determinant of these equations is zero. This requirement 

c values ˆ λn . An explicit expression for the eigenequation for the general 
D̄ m 

σm 

γ μm 

m 

[
A v ,m 

I μm −1 ( σm 

γm 

) − B v ,m 

K μm −1 ( σm 

γm 

) 
]

+ 

P e m 

γm 

γ μm 

m 

[ A v ,

 k̄ m 

[
γ μm 

m 

[ A v ,m 

I μm ( σm 

γm 

) + B v ,m 

K μm ( σm 

γm 

) ] − γ μm +1 
m 

[
A v ,m +1 I μm +1 (

Solving Eqs. (20) –(23) through matrix inversion results in A v ,m 

a

The governing equation and boundary/interface conditions for t

∂u m 

∂τ
= 

D̄ m 

ξ

∂ 

∂ξ

(
ξ
∂u m 

∂ξ

)
− P e m 

ξ

∂u m 

∂ξ
− β̄m 

u m 

( γm −1 < ξ < γm 

; 0 <

ubject to 

 1 = 0 at ξ = γ0 

∂ u M 

∂ξ
− P e M 

ξ
u M 

+ S h out u M 

= 0 at ξ = 1 

D̄ m 

∂ u m 

∂ξ
+ 

P e m 

ξ
u m 

= −D̄ m +1 
∂ u m +1 

∂ξ
+ 

P e m +1 

ξ
u m +1 at ξ = γm 

( m =

D̄ m 

∂ u m 

∂ξ
+ 

P e m 

ξ
u m 

= k̄ m 

( u m 

− u m +1 ) at ξ = γm 

( m = 1 , 2 . . . M −

long with the following non-homogeneous initial condition: 

 m 

= −v m 

( ξ ) ( at τ = 0 ) ( m = 1 , 2 , ..M ) 

Eqs. (24) –(28) are completely homogeneous, and the only non-h

ore, this multilayer CDR problem may be solved using the techniq

 m 

( ξ , τ ) = 

∞ ∑ 

n =1 

ˆ g n f m,n ( ξ ) exp 

(
−ˆ λ2 

n τ
)

( m = 1 , 2 , 3 . . . M ) 

here ˆ g n are coefficients to be determined. By separating out
μm ˆ f m,n (ξ ) , it can be shown that ˆ f m,n (ξ ) satisfies the Bessel differ

f m,n ( ξ ) = ξμm 
[

ˆ A m,n J μm 

(
ˆ ω m,n ξ

)
+ 

ˆ B m,n Y μm 

(
ˆ ω m,n ξ

)]
here, by substituting in the governing energy equation, one may 

ˆ  m,n = 

√ 

ˆ λ2 
n − β̄m 

D̄ m 

( m = 1 , 2 . . . M ) 

ˆ λn are the eigenvalues of the problem. J ν (x ) and Y ν (x ) repres

rder ν [25] . 

In order to determine the unknown eigenvalues and coefficient

nto boundary and interface conditions given by Eqs. (25) –(28) . Thi

ˆ 
 1 ,n J μ1 

(
ˆ ω 1 ,n γ0 

)
+ 

ˆ B 1 ,n Y μ1 

(
ˆ ω 1 ,n γ0 

)
= 0 

ˆ  M,n 

[
ˆ A M,n J μM −1 

(
ˆ ω M,n 

)
+ 

ˆ B M,n Y μM −1 

(
ˆ ω M,n 

)]
= ( −S h out + P e M 

) 
[

ˆ A M,n 

D̄ m ̂

 ω m,n γ
μm 

m 

(
ˆ A m,n J μm −1 

(
ˆ ω m,n γm 

)
+ 

ˆ B m,n Y μm −1 

(
ˆ ω m,n γm 

))
+ 

P e m 

γm 

γ μ
m

 −D̄ m +1 ̂  ω m +1 ,n γ
μm +1 

m 

(
ˆ A m +1 ,n J μm +1 −1 

(
ˆ ω m +1 ,n γm 

)
+ 

ˆ B m +1 ,n Y μm +1 −1 

(
ω̂

P e m +1 

γm 

γ μm +1 
m 

[
ˆ A m +1 ,n J μm +1 

(
ˆ ω m +1 ,n γm 

)
+ 

ˆ B m +1 ,n Y μm +1 

(
ˆ ω m +1 ,n γm 

)]
( m

D̄ m ̂

 ω m,n γ
μm 

m 

(
ˆ A m,n J μm −1 

(
ˆ ω m,n γm 

)
+ 

ˆ B m,n Y μm −1 

(
ˆ ω m,n γm 

))
+ 

P e m 

γm 

γ μ
m

 k̄ m 

[
γ μm 

m 

(
ˆ A m,n J μm 

(
ˆ ω m,n γm 

)
+ 

ˆ B m,n Y μm 

(
ˆ ω m,n γm 

))
− γ μm +1 

m 

(
ˆ A m +1 ,n J μ

Eqs. (33) –(36) represent a set of 2 ·M linear homogeneous equa

eneous nature of these equations, a non-trivial solution is admitte

onstitutes the eigenequation, the roots of which provide the eigen
6 
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M 6) , as shown in Supplementary Information. The final eigenequation is [
−  

1 
p M−1 ,n ( γM−1 ) J μM −1 

(
ˆ ω M,n γM−1 

)
− n γ

μM −1 
M−1 

p M−1 ,n ( γM−1 ) J μM −1 

(
ˆ ω M,n γM−1 

)
+ 1 

 

p ′ M−1 ,n ( γM−1 ) J μM 

(
ˆ ω M,n γM−1 

)
− −1 ,n ( γM−1 ) Y μM 

(
ˆ ω M,n γM−1 

)
−

 

p M−1 ,n ( γM−1 ) Y μM 

(
ˆ ω M,n γM−1 

)
−

 

p M−1 ,n ( γM−1 ) Y μM −1 

(
ˆ ω M,n γM−1 

)
+ ,n γ

μM −1 
M−1 

p M−1 ,n ( γM−1 ) Y μM −1 

(
ˆ ω M,n γM−1 

)
−
− −1 ,n ( γM−1 ) Y μM 

(
ˆ ω M,n γM−1 

)]
+ n 

)
− ( −Sh out + P e M 

) Y μM −1 

(
ˆ ω M,n 

)]
= 0 

(37) 

w ression for function p M−1 ,n (ξ ) is found in Supplementary Information. 

scendental equation, thereby ensuring that the determinant of the set 

o nt. Further, a general solution for the coefficients ˆ A m,n and 

ˆ B m,n may be 

o d determining all other coefficients in terms of ˆ A 1 ,n from Eqs. (33) –(35) . 

E ary Information. 

ty may be used to determine the remaining coefficient ˆ g n . To do so, 

E ting in 

−  , 3 . . . M ) (38) 

ical CDR problem is considerably more complicated than that of a pure- 

d associated with each layer. Quasi-orthogonality is proved separately in 

A plied by 1 
s m 

[ ̂  A m,n ′ J μm ( ̂  ω m,n ′ ξ ) + 

ˆ B m,n ′ Y μm ( ̂  ω m,n ′ ξ ) ] ξ 1 −μm , wher e 
s m +1 

s m 
= 

n is integrated from ξ = γm 

to ξ = γm +1 . The resulting equations are 

a n by Eq. (A.5) in Appendix A , leads to 

g
]
ξ 1 −μm dξ (39) 

w

N (40) 

rug is expected to enter the multi-layer artery from the luminal wall. 

S me may be lost from the perivascular wall. The second Stage, in which 

t

2

t within the artery continues to diffuse, be convected and bind within 

t nues to be characterized by a Sherwood number S h out , whereas, it is 

a boundary condition due to the balloon is replaced by a general mass 

t  blood flow due to convection. This boundary condition may be char- 

a work, the non-dimensional concentration distribution φm 

( ξ , τ ) during 

S

> τb ) ( m = 1 , 2 , 3 . . . M ) (41) 

s

− (42) 

(43) 
 -layer case may be derived by carefully manipulating Eqs. (33) –(3

k̄ M−1 ̄D M−1 γ
μM 

M−1 
p ′ M−1 ,n ( γM−1 ) Y μM 

(
ˆ ω M,n γM−1 

)
k̄ M−1 P e M−1 γ

μM −1 
M−1 

p M−1 ,n ( γM−1 ) J μM 

(
ˆ ω M,n γM−1 

)
− k̄ M−1 ̄D M ̂

 ω M,n γ
μM

M−
D̄ M−1 ̄D M ̂

 ω M,n γ
μM 

M−1 
p ′ M−1 ,n ( γM−1 ) J μM −1 

(
ˆ ω M,n γM−1 

)
+ D̄ M 

P e M−1 ̂  ω M,

 ̄k M−1 P e M−1 γ
μM −1 

M−1 
p M−1 ,n ( γM−1 ) J μM 

(
ˆ ω M,n γM−1 

)
+ D̄ M−1 P e M−1 γ

μM −
M−1

P e 2 M−1 γ
μM −2 

M−1 
p M−1 ,n ( γM−1 ) J μM 

(
ˆ ω M,n γM−1 

)]
/ 
[
k̄ M−1 P e M−1 γ

μM −1 
M−1 

p M

k̄ M−1 ̄D M−1 γ
μM 

M−1 
p ′ M−1 ,n ( γM−1 ) Y μM 

(
ˆ ω M,n γM−1 

)
+ ̄k M−1 ̄D M ̂

 ω M,n γ
μM 

M−1

k̄ M−1 ̄D M−1 γ
μM 

M−1 
p ′ M−1 ,n ( γM−1 ) Y μM 

(
ˆ ω M,n γM−1 

)
+ ̄k M−1 ̄D M ̂

 ω M,n γ
μM 

M−1

 ̄D M−1 ̄D M ̂

 ω M,n γ
μM 

M−1 
p ′ M−1 ,n ( γM−1 ) Y μM −1 

(
ˆ ω M,n γM−1 

)
− D̄ M 

P e M−1 ̂  ω M

k̄ M−1 P e M−1 γ
μM −1 

M−1 
p M−1 ,n ( γM−1 ) Y μM 

(
ˆ ω M,n γM−1 

)
D̄ M−1 P e M−1 γ

μM −1 
M−1 

p ′ M−1 ,n ( γM−1 ) Y μM 

(
ˆ ω M,n γM−1 

)
+ P e 2 M−1 γ

μM −2 
M−1 

p M

 [ ̂  ω M,n J μM −1 

(
ˆ ω M,n 

)
− ( −Sh out + P e M 

) J μM 

(
ˆ ω M,n 

)]
/ 
[

ˆ ω M,n Y μM −1 

(
ˆ ω M,

here the ′ sign refers to derivative with respect to ξ and the exp

Once the eigenvalues are determined from the roots of this tran

f Eqs. (33) –(36) is zero, one of the equations in this set is redunda

btained by assuming one of the coefficients, say, ˆ A 1 ,n to be one, an

xplicit expressions for ˆ A m,n and 

ˆ B m,n are presented in Supplement

Finally, the initial condition and principle of quasi-orthogonali

q. (30) is inserted in the initial conditions given by Eq. (29) , resul

v m 

( ξ ) = 

∞ ∑ 

n =1 

ˆ g n ξ
μm 

[
ˆ A m,n J μm 

(
ˆ ω m,n ξ

)
+ 

ˆ B m,n Y μm 

(
ˆ ω m,n ξ

)]
( m = 1 , 2

The statement of principle of quasi-orthogonality for the cylindr

iffusion problem, specifically in terms of the weighing functions 

ppendix A . Based on the results in Appendix A , Eq. (38) is multi

γ
1 −2 μm +1 
m 

γ 1 −2 μm 
m 

( m = 1,2.. M -1) and s 1 = γ
1 −2 μ1 

1 
. The resulting expressio

dded, which, with the use of principle of quasi-orthogonality give

ˆ 
 n ′ = 

1 

N n ′ 

M ∑ 

m =1 

1 

s m 

γm ∫ 
γm −1 

−v m 

( ξ ) 
[

ˆ A m,n ′ J μm 

(
ˆ ω m,n ′ ξ

)
+ 

ˆ B m,n ′ Y μm 

(
ˆ ω m,n ′ ξ

)
here the norm N n ′ is given by 

 n ′ = 

M ∑ 

m =1 

1 

s m 

γm ∫ 
γm −1 

ξ
[

ˆ A m,n ′ J μm 

(
ˆ ω m,n ′ ξ

)
+ 

ˆ B m,n ′ Y μm 

(
ˆ ω m,n ′ ξ

)]2 
dξ

This completes the solution for Stage A. During this stage, the d

ome of the drug may get absorbed within the artery layer and so

he balloon has been withdrawn is considered in the next section. 

.4. Stage B: after balloon is withdrawn ( τ≥τ b ) 

Once the balloon has been withdrawn, the drug already presen

he artery. The boundary condition at the perivascular wall conti

ssumed that on the luminal surface, the constant concentration 

ransfer boundary condition that models drug loss to the luminal

cterized by another Sherwood number, S h in = 

h in R M 
D M 

. In this frame

tage B is given by 

∂φm 

∂τ
= 

D̄ m 

ξ

∂ 

∂ξ

(
ξ
∂φm 

∂ξ

)
− P e m 

ξ

∂φm 

∂ξ
− β̄m 

φm 

( γm −1 < ξ < γm 

; τ

ubject to 

D̄ 1 
∂ φ1 

∂ξ
+ 

P e 1 φ1 

ξ
+ S h in φ1 = 0 ( at ξ = γ0 ) 

∂ φM 

∂ξ
− P e M 

φM 

ξ
+ S h out φM 

= 0 ( at ξ = 1 ) 
7 
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S
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t

4

t

p

o

t

i

D̄ m 
∂φm 

∂ξ
+ 

Pe m 

ξ
φm 

= −D̄ m +1 

∂φm +1 

∂ξ
+ 

Pe m +1 

ξ
φm +1 ( at ξ = γm ) ( m = 1 , 2 . . . M − 1 ) (44) 

D̄ m 

∂φm 

∂ξ
+ 

P e m 

ξ
φm 

= k̄ m 

( φm 

− φm +1 ) ( at ξ = γm 

) ( m = 1 , 2 . . . M − 1 ) (45) 

long with the following initial condition: 

m 

= θm 

( ξ , τd ) ( at τ = 0 ) ( m = 1 , 2 , ..M ) (46) 

here θm 

( ξ , τd ) is the concentration distribution at the end of 

tage A, which serves as the initial condition for Stage B. Note that 

he time coordinate associated with φm 

in these equations begins 

t the time that the balloon is withdrawn. 

This problem is similar to the u m 

( ξ , τ ) problem encountered in 

tage A. A solution may be written as follows: 

m 

( ξ , τ ) = 

∞ ∑ 

n =1 

˜ g n ξ
μm 

[
˜ A m,n J μm ( ̃  ω m,n ξ ) + 

˜ B m,n Y μm ( ̃  ω m,n ξ ) 
]

× exp 

(
−˜ λ2 

n τ
)
( m = 1 , 2 , 3 . . . M ) (47) 

here, by substituting in the governing energy equation, one may 

how that 

˜  m,n = 

√ 

˜ λ2 
n − β̄m 

D̄ m 

( m = 1 , 2 . . . M ) (48) 

The coefficients ˜ A m,n and 

˜ B m,n satisfy boundary and interface 

onditions similar to Eqs. (34) –(36) . In addition, due to the change 

n boundary condition at ξ = γ0 , the cofficients satisfy the follow- 

ng equation instead of Eq. (33) : 

˜ ω 1 ,n ̄D 1 

[
˜ A 1 ,n J μ1 −1 ( ̃  ω 1 ,n γ0 ) + 

˜ B 1 ,n Y μ1 −1 ( ̃  ω 1 ,n γ0 ) 
]

+ 

(
S h in + 

P e 1 
γ0 

)[
˜ A 1 ,n J μ1 ( ̃  ω 1 ,n γ0 ) + 

˜ B 1 ,n Y μ1 ( ̃  ω 1 ,n γ0 ) 
]

= 0 (49) 

Similar to the process for u m 

( ξ , τ ) , the eigenvalues for Stage B 

ay be determined by setting the determinant of equations rep- 

esenting boundary and interface conditions to zero. Subsequently, 

he coefficients ˜ A m,n and 

˜ B m,n may be determined by first setting 
˜ 
 1 ,n = 1 and determining the remaining coefficients from these 

quations. Supplementary Information provides an explicit expres- 

ion for the eigenequation for Stage B, as well as closed-form re- 

ursive expressions for ˜ A m,n and 

˜ B m,n . 

Finally, the remaining coefficient ˜ g n may be determined by us- 

ng the initial condition 

m 

( ξ , τd ) = 

∞ ∑ 

n =1 

˜ g n ξ
μm 

[
˜ A m,n J μm ( ̃  ω m,n ξ ) + 

˜ B m,n Y μm ( ̃  ω m,n ξ ) 
]

( m = 1 , 2 , 3 . . . M ) (50) 

Similar to Stage A, Eq. (50) is multiplied by 
1 

s m 
[ ̃  A m,n ′ J μm ( ̃  ω m,n ′ ξ ) + 

˜ B m,n ′ Y μm ( ̃  ω m,n ′ ξ ) ] ξ 1 −μm . The resulting 

xpression is integrated from ξ = γm 

to ξ = γm +1 . The result- 

ng equations are added, which, with the use of principle of 

uasi-orthogonality as outlined in Appendix A leads to 

˜  n ′ = 

1 

˜ N n ′ 

M ∑ 

m =1 

1 

s m 

γm ∫ 
γm −1 

θm 

( ξ , τd ) 
[

˜ A m,n ′ J μm ( ̃  ω m,n ′ ξ ) + 

˜ B m,n ′ Y μm ( ̃  ω m,n ′ ξ ) 
]

ξ 1 −μm dξ (51) 

here the norm 

˜ N n ′ is given by 
8 
 n ′ = 

M ∑ 

m =1 

1 

s m 

γm ∫ 
γm −1 

ξ
[

˜ A m,n ′ J μm ( ̃  ω m,n ′ ξ ) + 

˜ B m,n ′ Y μm ( ̃  ω m,n ′ ξ ) 
]2 

dξ

(52) 

This completes the solution for concentration distribution in 

tage B, during which, the drug introduced into the artery in Stage 

 diffuses and binds further, and some of it may also be lost from 

he luminal and perivascular surfaces. 

. Key safety and efficacy indicators 

Key performance indicators that characterize the safety and ef- 

cacy of drug delivery include ν̄(τ ) , the amount of drug delivered 

p to time τ , χ̄m 

(τ ) , the amount of drug bound in the m 

th layer

p to time τ , ρ̄m 

(τ ) , the amount of drug remaining unbound in 

he m 

th layer at time τ , and ψ̄ out (τ ) and ψ̄ in (τ ) , the amounts 

f drug lost from the perivascular and luminal surfaces, respec- 

ively, up to time τ . Note that, by the very definition of the prob- 

em, ψ̄ in (τ ) is zero during Stage A, when drug is being transported 

rom the balloon into the artery – drug loss from the luminal sur- 

ace only begins in Stage B when the balloon has been withdrawn. 

efinitions for these non-dimensional parameters are summarized 

n Table 1 . Closed-form expressions, determined by appropriate in- 

egration/differentiation of concentration distributions are given in 

ppendix B . Note that non-dimensionalization is carried out by di- 

iding the corresponding dimensional quantity by the balloon drug 

oncentration and total artery volume. 

It may be noted that by multiplying the governing conservation 

quations, given by Eq. (1) by ξ , integrating spatially within each 

ayer and over time, and finally adding all equations, one may de- 

ive the following overall mass conservation relationship between 

hese quantities: 

¯ ( τ ) = ψ̄ out ( τ ) + ψ̄ in ( τ ) + 

M ∑ 

m =1 

[ ̄χm 

( τ ) + ρ̄m 

( τ ) ] (53) 

. Results and discussion 

As shown in Section 2 , the general solution for concentration 

istribution in the multilayer artery depends on several parame- 

ers, including thicknesses, diffusion coefficients, velocities and re- 

ction coefficients for each layer and convection coefficients at the 

oundaries. Values/ranges for these parameters based on past liter- 

ture [ 13 , 15 , 16 , 26 ] are listed in Table 2 . A three-layer artery com-

rising intima, media and adventitia is assumed. Binding reaction 

s assumed to occur only in the media layer. The intima layer is 

uch thinner and with greater diffusivity than the other two lay- 

rs. While the nominal value of luminal and perivascular Sherwood 

umbers is taken to be 1, these may vary in a broad range between 

 and ∞ , representing an impenetrable and constant concentration 

oundary, respectively. For example, following the withdrawal of 

he balloon, the value of S h in likely depends on the extent of dam- 

ge to the inner lining of the arterial wall. Similarly, the value of 

 h out depends on the nature of tissue surrounding the artery. Since 

hese values are not fixed, a broad range of values is considered in 

he analysis presented in this section. 

.1. Convergence of series solution 

Since the closed-form analytical solution for concentration dis- 

ribution derived in Section 2 , as well as expressions for various 

erformance parameters derived in Section 3 are all in the form 

f eigenfunction-based infinite series, it is important to determine 

he number of terms needed in the series to ensure accuracy. This 

s an important consideration because such series solutions often 
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Table 1 

Definitions and explicit expressions for various drug delivery and absorption parameters. 

Parameter 

Stage A Stage B 

Integral definition Expression Integral definition Expression 

1 Amount delivered up 

to time τ

ν̄( τ ) = 

2 γ0 

1 −γ 2 
0 

τ∫ 
0 

(
−D̄ 1 ( 

∂ θ1 

∂ξ
) 
ξ= γ0 

+ 

P e 1 
γ0 

)
d τ ∗ Eq. (B.1) in 

Appendix B 

ν̄( τ ) = 

−2 γ0 

1 −γ 2 
0 

τd ∫ 
0 

(
−D̄ 1 ( 

∂ θ1 

∂ξ
) 
ξ= γ0 

+ 

P e 1 
γ0 

)
d τ ∗ Eq. (B.6) in 

Appendix B 

2 Amount absorbed in 

m 

th layer up to time τ

χ̄m ( τ ) = 

2 ̄βm 

1 −γ 2 
0 

τ∫ 
0 

γm ∫ 
γm −1 

ξθm ( ξ , τ ∗) d ξd τ ∗ Eq. (B.2) in 

Appendix B 

χ̄m ( τ ) = 

2 ̄βm 

1 −γ 2 
0 

[
τd ∫ 
0 

γm ∫ 
γm −1 

ξθm ( ξ , τ ∗) d ξd τ ∗ + 

τ∫ 
0 

γm ∫ 
γm −1 

ξφm ( ξ , τ ∗) d ξd τ ∗
]

Eq. (B.7) in 

Appendix B 

3 Amount remaining in 

m 

th layer at time τ

ρ̄m (τ ) = 

2 
1 −γ 2 

0 

γm ∫ 
γm −1 

ξθm ( ξ , τ ) dξ Eq. (B.3) in 

Appendix B 

ρ̄m (τ ) = 

2 
1 −γ 2 

0 

γm ∫ 
γm −1 

ξφm ( ξ , τ ) dξ Eq. (B.8) in 

Appendix B 

4 Amount lost from the 

perivascular surface 

up to time τ

ψ̄ out (τ ) = 

2 S h out 

1 −γ 2 
0 

τ∫ 
0 

θM ( 1 , τ ∗) d τ ∗ Eq. (B.4) in 

Appendix B 

ψ̄ out (τ ) = 

2 S h out 

1 −γ 2 
0 

[
τd ∫ 
0 

θM ( 1 , τ ∗) d τ ∗ + 

τ∫ 
0 

φM ( 1 , τ ∗) d τ ∗
]

Eq. (B.9) in 

Appendix B 

5 Amount lost from 

luminal surface up to 

time τ

ψ̄ in (τ ) = 0 Eq. (B.5) in 

Appendix B 

ψ̄ in (τ ) = 

2 γ0 S h in 
1 −γ 2 

0 

τ∫ 
0 

φ1 ( γ0 , τ ∗) d τ ∗ Eq. (B.10) in 

Appendix B 

Table 2 

Values of various problem parameters based on past work [ 13 , 15 , 16 , 26 ]. 

Symbol Definition Value Unit Source 

R 0 Lumen radius 1.5 × 10 −3 m [ 16 ] 

h in Luminal mass transfer coefficient 0 to ∞ ms −1 [ 13 ] 

h out Perivascular mass transfer coefficient 0 to ∞ ms −1 [ 16 ] 

Pe Péclet number for fluid flow 0–4 [ 13 ] 

M Number of arterial layers 3 [15] 

D 1 , D 2 , D 3 Diffusivity in arterial layers 1.67 × 10 −11 , 7 × 10 −12 , 4 × 10 −12 m 

2 s −1 [15 , 16 ] 

R 1 − R 0 , R 2 − R 1 , R 3 − R 2 Arterial layer thicknesses 10 × 10 −6 , 500 × 10 −6 , 400 × 10 −6 m [ 16 ] 

k 1 , k 2 Interfacial mass transfer conductance 9.6 × 10 −6 ms −1 [ 16 , 26 ] 

β1 , β2 , β3 Reaction coefficient in artery 0, 10 −4 , 0 s −1 [15] 

t d Duration of balloon application 60 s 
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Fig. 3. Effect of number of eigenvalues: Total drug delivered ( ̄ν) at the end of Stage 

A and total drug absorbed in media layer ( ̄χ2 ) at τ = 0 . 017 as functions of number 

of eigenvalues considered. 
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onverge slowly [27] , and yet, computing too many terms in the 

eries may lead to unnecessary computational difficulties. There- 

ore, determining the minimum number of terms needed to be 

omputed is important. In the present problem, since the two key 

erformance parameters are ν̄(τ ) , the total amount of drug deliv- 

red up to a given time and χ̄2 (τ ) , the total amount of drug ab-

orbed in the media layer up to a given time, the variation in these 

uantities with the number of eigenvalues considered is examined. 

ig. 3 plots ν̄(τ = τd ) and χ̄2 ( τ = 0 . 017 ) as functions of the num- 

er of eigenvalues considered. Fig. 3 shows that χ̄2 converges very 

uickly, within around 20 eigenvalues. However, in contrast, ν̄ con- 

erges very slowly and takes nearly 10 0 0 eigenvalues to converge. 

he calculation of such a large number of eigenvalues can be te- 

ious, but in the present case is needed to ensure accuracy. In the 

resent work, eigenvalues are computed by identifying intervals in 

he eigenfunction plot where the curve crosses the x axis, followed 

y successive application of Newton-Raphson iterations to accu- 

ately determine the root. By automating the process, it is possible 

o seamlessly compute the eigenvalues for any given set of param- 

ter values. All subsequent plots discussed in this work have been 

omputed using 10 0 0 eigenvalues. 

.2. Evolution of the concentration field for a representative problem 

The concentration field in the three-layer artery in response to 

rug delivery by a balloon over a small amount of time is com- 

uted for a representative set of parameters, as listed in Table 2 . 

he concentration distribution is plotted as a function of ξ at sev- 

ral different times during Stages A and B in Fig. 4 (a) and (b), re-

pectively. The intima-media interface location is indicated in both 

lots. 
9 
Note that Stage A is relatively short because the balloon is 

ept in place only for a short amount of time, so that the non- 

imensional duration of Stage A is only τd = 4 . 1 × 10 −5 . Fig. 4 (a)

hows that as time passes, the drug supplied by the balloon at the 

nner boundary transports farther and farther into the artery. How- 

ver, the total diffusion length into the artery is relatively short 

ue to the small time period of Stage A. Drug transport clearly 

rosses over the relatively thin intima and into the media, but does 
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Fig. 4. Plots showing evolution of concentration distribution with time during (a) Stage A; (b) Stage B. Values of other parameters are listed in Table 2 . Intima-media 

interface location is indicated in both plots. 
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ot traverse a large distance into the media layer. The total diffu- 

ion length during Stage A shown in Fig. 4 (a) is consistent with the

iffusion length scale estimate based on diffusivities of the intima 

nd media layers. As a result, the average drug concentration in the 

edia layer at the time of balloon withdrawal is relatively small. 

he dynamics of drug transport and absorption during Stage B, in 

hich the balloon has been withdrawn, are shown in Fig. 4 (b). This 

lot shows that the drug continues to transport through the artery 

nd be absorbed in the media layer during this Stage. Drug con- 

entration at ξ = 0 starts to drop during Stage B, which is because 

f drug loss at that boundary, at which, the drug-containing bal- 

oon has been replaced by a convective boundary condition that 

epresents drug loss to the luminal blood flow. As time passes dur- 

ng Stage B, drug concentration in regions close to the lumen re- 

uces and in regions close to the perivascular region increases due 

o outwards diffusion and convective transport. Over time, drug 

oss at the two boundaries as well as drug binding reactions in 

he media layer all contribute towards a gradual reduction in drug 

oncentration, which, at large times, is either lost from the bound- 

ries or bound within the media layer. 

.3. Overall mass balance during stages A and B 

The amount of drug delivered up to any time may be calcu- 

ated from knowledge of the amount of drug absorbed, still present 

nd lost from the luminal and perivascular surfaces. Section 3 and 

able 1 define and present explicit analytical expressions for each 

f these quantities. It is instructive to examine the evolution of 

hese various quantities over time. Fig. 5 (a) and (b) plot these com- 

onents as functions of time during Stages A and B, respectively. 

ince drug absorption occurs only in the media layer, χ̄1 and χ̄3 

re both zero, and therefore are not plotted. Fig. 5 (a) shows that 

uring Stage A, when the balloon is present, the amount of drug 

elivered increases over time. The increase is relatively rapid at 

arly times and slows down later, which is consistent with the na- 

ure of diffusion. The amount of drug present in the intima layer 

ises rapidly due to being next to the drug-containing balloon, be- 

ore saturating. In contrast, the amount of drug in the media layer 

ises slowly throughout the time period. Due to the short amount 

f time in Stage A and the small amount of drug available in the 

edia layer, there is no significant drug absorption in the me- 

ia layer. The amount of drug lost from the perivascular surface 

s also approximately zero, which is because not much drug has 

et reached the perivascular surface. As shown in Eq. (53) , up to 
10 
ny given time, the sum of total drug absorbed and present in all 

ayers, as well as lost from the luminal and perivascular surfaces 

ust add up to the total amount of drug delivered. This total sum 

s also plotted in Fig. 5 (a), and is shown to be very close to the

otal amount of drug delivered. The overall mass balance shown 

y this agreement is encouraging and indicates validation of the 

nalysis presented in Section 2 . 

A similar plot of evolution of drug delivered, absorbed, present 

nd lost during Stage B is presented in Fig. 5 (b). As expected, the 

otal amount of drug delivered remains flat during Stage B, be- 

ause the balloon has been withdrawn, and no more drug enters 

he artery. Drug present in the three layers of the artery at the 

tart of Stage B continues to transport over time, and can be either 

bsorbed in the media layer, or lost from the luminal and perivas- 

ular boundaries. Fig. 5 (b) clearly shows that during Stage B, the 

mount of drug present in intima and media layers reduces as time 

asses. These layers were saturated with a high drug content dur- 

ng Stage A. In contrast, not much drug transported into the outer- 

ost adventitia layer during Stage A, which is why, Fig. 5 (b) shows 

hat during Stage B, drug available in the adventitia layer first in- 

reases due to diffusion from the media layer, and then gradually 

ecreases due to drug loss at the perivascular surface. The amount 

f drug lost from the luminal and perivascular surfaces increases 

nd reaches a saturation value. Finally, the amount of drug bound 

n the media layer rises sharply at first, due to the large amount of 

rug available in the media layer, and then saturates as the amount 

f drug available for binding reduces over time. The total amount 

f drug bound in the media is a small fraction of the drug concen- 

ration in the balloon. This indicates that despite the application of 

he balloon, the amount of drug actually delivered into the media 

ayer is expected to be relatively small compared to drug concen- 

ration in the balloon. The drug loading in the balloon must there- 

ore be designed accordingly. Similar to Fig. 5 (a), the total sum of 

rug available, bound and lost is also plotted as a function of time 

n Fig. 5 (b). This sum is found to be close to the total amount of

rug delivered, which confirms overall mass balance during Stage 

. Note that the time scale over which Stage B has been computed 

approximately 3 days) is much longer compared to Stage A (60 s, 

hich is the typical period after which the balloon is withdrawn). 

In addition to providing validation of the analytical expressions 

erived in Section 2 , Fig. 5 (a) and (b) highlight the interesting dy- 

amics between drug diffusion, advection, absorption and bound- 

ry loss. These plots provide practical insights into the design of 

alloon based drug delivery systems. 
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Fig. 5. Overall mass balance plots: amount of drug delivered, lost from the two boundaries, remaining in each of the three layers and absorbed in media layer as functions 

of time for (a) Stage A, (b) Stage B. Total sum of drug lost, absorbed and remaining is also shown to demonstrate overall mass balance. Values of other parameters are listed 

in Table 2 . For interpretation of curves in (a), please refer to legend in (b). 

Fig. 6. Effect of reaction coefficient in media layer: (a) drug content in artery as a function of time during Stage A, and (a) drug bound in artery as a function of time during 

Stage B, both for different values of β̄2 . Values of other parameters are listed in Table 2 . 
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.4. Impact of reaction coefficient 

The impact of reaction coefficient in the media layer, β̄2 on 

rug content and amount of drug bound in the artery is exam- 

ned next. Drug content in the artery is the total amount of drug 

resent in all layers of the artery, whether bound or not, and is 

n important indicator of the safety of the drug delivery process 

22] . Fig. 6 (a) plots the drug content in the artery as a function

f time during Stage A for four different values of β̄2 , within the 

ange reported in the literature [15] . As expected, there is practi- 

ally no influence of β̄2 on the amount of drug delivered. This is 

ecause the amount of drug delivered, and thus contained in the 

rtery mainly depends on the nature of the boundary conditions, 

s well as diffusion properties of the inner-most arterial layer. This 

rocess is largely unrelated to the reaction coefficient in the media 

ayer, especially since only a small amount of drug diffuses into the 

edia layer during the short time period of Stage A. 

In contrast, Fig. 6 (b) plots the drug bound in the artery as a

unction of time during Stage B, when most of the drug binding 

rocess occurs within the media layer. During this Stage, Fig. 6 (b) 

hows that the larger the value of β̄2 , the faster is the drug ab-

orption process, and the larger is the amount of drug bound in 
a

11 
he artery. This is because a small value of β̄2 results in lesser drug 

inding, and therefore, a greater amount of drug available to dif- 

use to the boundaries and be lost into the luminal blood flow and 

urrounding perivascular tissue. 

The total drug content in the artery is the sum of bound and 

nbound drug available in the artery. The impact of the reaction 

oefficient β̄2 on the relative amounts of bound and unbound drug 

s of interest, and is examined in Supplementary Fig. 1. These two 

omponents as well as the total drug content are plotted as func- 

ions of β̄2 at τ = 0 . 18 . This plots shows that most of the drug is

n the bound state: since τ = 0 . 18 corresponds to a relatively long 

ime, much of the drug delivered by the balloon has been con- 

umed in binding reactions. Supplementary Fig. 1 shows that for 

ery small values of β̄2 , there may be some unbound drug still re- 

aining at this time. 

.5. Impact of luminal and perivascular boundary conditions 

The impact of convective boundary conditions on the lumi- 

al and perivascular boundaries, as expressed mathematically by 

qs. (2) and (3) is investigated next. These boundary conditions 

re represented by Sherwood numbers, S h and S h out , respectively. 
in 
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Fig. 7. Impact of luminal and perivascular boundary conditions: Drug lost (as a fraction of total drug delivered) as function of time at (a) luminal surface for different values 

of S h in , (b) perivascular surface for different values of S h out . 
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he specific value of the Sherwood number depends, among other 

actors, on the physical properties and functionality of the arterial 

issue at these boundaries. For example, application of the balloon 

n the luminal surface may damage the endothelial cells at that 

urface, resulting in reduced rate of convective transport at that 

urface. Further, the nature of tissue surrounding the artery may 

nfluence the value of S h out . Fig. 7 (a) and (b) plot the amount of

rug lost at the luminal and perivascular surfaces as functions of 

ime for different values of S h in and S h out , respectively. The amount 

f drug lost is expressed as a fraction of the total drug delivered. 

n both cases, as expected, the greater the Sherwood number, the 

reater is the amount of drug lost. Note that for a large value of 

 h in , up to around 80% of the drug delivered may be lost at the

uminal surface. This strong impact is because the luminal sur- 

ace is close to where most of the drug delivered by the end of 

tage A is concentrated. Comparing the dynamics of drug loss at 

he two surfaces, it is seen that while drug loss at the luminal sur- 

ace rises sharply with time, drug loss at the perivascular surface 

ags behind, which is explained by the time taken for the drug to 

ransport through the artery to the perivascular surface. In con- 

rast, drug is readily available close to the luminal surface because 

hat is where the balloon was applied in Stage A. This also explains 

hy the amount of drug lost from the luminal surface is nearly 

n order of magnitude larger than drug lost from the perivascular 

urface. Over the time period considered here, the amount of drug 

ost at the luminal surface reaches a steady value because the drug 

n the intima layer continues to transport radially outwards and 

owards the perivascular surface. This is also the reason why drug 

ost at the perivascular surface takes longer to reach a steady value. 

To investigate this further, Fig. 8 plots the amount of drug lost 

p to a certain time as a function of the Sherwood numbers. Plots 

or the luminal and perivascular surfaces are presented in Fig. 8 (a) 

nd (b), respectively. Similar to Fig. 7 , the amount of drug lost is

xpressed as a fraction of the total drug delivered. As expected, the 

mount of drug lost increases with increasing value of Sherwood 

umber. A saturation effect is observed in both cases. For example, 

eyond a value of 100 for S h out , Fig. 8 (b) shows negligible addi-

ional drug loss upon increasing S h out further, indicating that this 

alue is the threshold for reaching an infinite sink boundary con- 

ition. 

It is also important to examine the impact of the boundary con- 

itions on drug content in the artery. Supplementary Fig. 2 plots 

rug content in the artery as a function of time during Stage A 

or different values of the perivascular Sherwood number, S h out . 

s expected, S h out has negligible impact on drug content during 

m

12 
tage A. This is because in the short time duration of Stage A, drug 

ransport into the artery is limited mainly to the intima and me- 

ia layers, and therefore, the boundary condition on the perivascu- 

ar surface is relatively insignificant. In contrast, Fig. 9 (a) and (b) 

lot drug content as a function of time in Stage B for different val- 

es of luminal and perivascular Sherwood numbers, S h in and S h out , 

espectively. Fig. 9 (a) shows a very strong dependence of drug con- 

ent in the artery on S h in . For relatively large value of S h in , the

rug content drops dramatically with time. This is because the 

uminal surface, where S h in is applied, is located next to the in- 

ima, which is rich in drug delivered during Stage A. Therefore, 

 h in strongly influences drug content in the artery, and for large 

alues of S h in , there is significant drug loss from the luminal sur- 

ace. A large value of S h in may arise, for example, due to strong 

onvective mass transfer to luminal blood flow, facilitated also by 

ossible endothelial damage due to the application of the balloon. 

n contrast, the impact of S h out , which is applied on the perivas- 

ular surface, is relatively smaller, particularly in the early part of 

tage B, as shown in Fig. 9 (b). This is because the perivascular sur- 

ace is located far from the drug-rich intima, and by the time drug 

ransports to the perivascular surface, so that the impact of S h out 

egins to be felt, much of the drug is already bound in the me- 

ia layer. The five curves shown in Fig. 9 (b) are nearly identical at 

arly times, when not much drug has diffused to the perivascular 

urface, and the influence of S h out is mainly observed only after- 

ards. 

.6. Impact of diffusion coefficient of the intima 

While each layer in the artery has a distinct diffusion coeffi- 

ient, that of the intima layer is expected to play a key role in 

etermining the drug delivery and binding characteristics. This is 

ecause the intima layer is adjacent to the drug-carrying balloon. 

urther, drug diffusion during Stage A occurs mainly in the intima 

ayer, and therefore, the total amount of drug delivered before the 

alloon is withdrawn is strongly dependent on the diffusion coef- 

cient of the intima. 

Despite the short duration, Stage A is critical for determining 

he total amount of drug delivered, because the balloon is with- 

rawn at the end of Stage A, after which, there is no more drug 

ntering the artery. In order to investigate the impact of intima 

iffusion coefficient on drug delivery, Fig. 10 plots the amount of 

rug delivered as a function of time during Stage A for different 

alues of D̄ 1 . The parametric range considered here is one order of 

agnitude lower and greater than the nominal value based on past 
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Fig. 8. Impact of luminal and perivascular boundary conditions: drug lost up to τ = 0 . 18 as a fraction of total drug delivered (a) at luminal surface as a function of S h in , (a) 

at perivascular surface as a function of S h out . 

Fig. 9. Effect of luminal and perivascular boundary conditions on drug content: drug content in artery as a function of time for different values of (a) S h in , (b) S h out . 

Fig. 10. Effect of intima diffusion coefficient: drug delivered as a function of time 

during Stage A for different values of D̄ 1 . Values of other parameters are listed in 

Table 2 . 
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iterature [ 15 , 16 ]. Fig. 10 shows that the larger the value of D̄ 1 , the

reater is the amount of drug delivered. For each case considered 

ere, the drug delivery curve becomes approximately linear after a 

hort time. However, the greater the value of D̄ , the greater is the 
1 

13 
nitial slope, and thus, the greater is the total amount of drug de- 

ivered by the end of Stage A. A saturation effect is also observed, 

n that once D̄ 1 is reasonably large, further increase in D̄ 1 does 

ot significantly increase the amount of drug delivered. This may 

e because once D̄ 1 is sufficiently large, drug diffuses very rapidly 

hrough the intima, and the overall drug delivery process starts to 

ecome limited by D̄ 2 instead. Note that the intima diffusion coef- 

cient is assumed to not be influenced by the process of applying 

he balloon on the luminal surface. 

Drug content and drug bound in the media is plotted as a func- 

ion of time for different values of D̄ 1 in Fig. 11 (a) and (b), respec-

ively. During Stage B, the drug content reduces with time due to 

oss from the boundaries, whereas the amount of drug bound in- 

reases with time because of reactions that convert unbound drug 

vailable in the media to a bound state. Fig. 11 (a) shows very grad-

al reduction in the drug content over time since the definition 

f drug content includes both unbound and bound drug. The in- 

ima diffusion coefficient only influences the initial drug content 

t the start of Stage A, and not so much the extent of reduction 

ver time. On the other hand, as shown in Fig. 11 (b), the amount 

f drug bound in the media layer has a strong dependence on D̄ 1 , 

articularly in the low range of D̄ 1 . This is because the greater the 

alue of D̄ 1 , the more rapid is the rate of diffusion of the drug 
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Fig. 11. Effect of intima diffusion coefficient: (a) drug content and (b) drug absorbed as functions of time during Stage B for different values of D̄ 1 . Values of other parameters 

are listed in Table 2. 
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rom the drug-rich intima into the media, where binding reactions 

ccur. Similar to the effect observed in Fig. 10 , there is a saturation

ffect, in that beyond a threshold value of D̄ 1 , further increase in 

¯
 1 does not result in significant further increase in the amount of 

rug bound. 

.7. Impact of advection 

A key feature of drug transport in this problem is the advection 

f drug due to radially outwards plasma flow. This radial flow is 

riven by the transmural pressure difference, and the velocity has 

een shown to proportional to 1/ r , also depending on the pres- 

ure gradient and various porous flow properties [ 17 ]. The impact 

f the Péclet number, which represents the magnitude of this flow 

eld on drug delivery and binding characteristics is examined next. 

upplementary Fig. 3(a) and (b) plot the amount of drug delivered 

uring Stage A and amount of drug bound during Stage B as func- 

ions of time for several different values of Pe , including the base- 

ine value of Pe = 0 that represents the case of no advection. Note 

hat the range of Pe considered is based on estimates derived from 

xisting literature [13] . The plots show that the value of the Péclet 

umber, in the range considered here, has minimal impact on drug 

elivery and binding characteristics. In Stage B, the amount of drug 

ound in the media layer actually reduces with increasing Péclet 

umber. This is likely because as Pe increases, a greater amount 

f drug is removed from the media layer and into the adventitia 

ue to advection than is brought into the media from the intima. 

ote that there are several second-order effects that are not con- 

idered in this analysis. For example, the application of the balloon 

s likely to increase the transmural pressure gradient during Stage 

. Due to the relatively short time duration of Stage A, it is antic- 

pated that the effect on the performance indicators considered in 

his model will be small and, therefore, a constant Péclet number 

s assumed throughout the time duration considered here. Further, 

he application of the balloon may damage endothelial cells in the 

ntima layer, which may impact the nature of porous flow through 

he intima, and therefore, the Péclet number. However, the intima 

hickness is only 5% of the overall artery thickness, and therefore, 

his is also likely to be a small effect. 

.8. Results for a homogeneous artery 

In some cases, it may be acceptable to neglect the multi-layer 

ature of the artery, and instead treat it as a homogeneous body. 

he drug transport problem can be considerably simplified in such 

 case. Due to the practical importance of this special case, it is in-

tructive to explicitly write the solution for this problem. The gov- 
14 
rning equations and solution for this problem can be derived by 

etting M = 1 in Section 2 . These equations and closed-form ex- 

ressions for concentration distribution and various performance 

ndicators for this case are summarized in Supplementary Infor- 

ation. 

. Summary and conclusions 

Endovascular drug delivery involves complex interactions be- 

ween several physical and biological processes, including diffu- 

ion, advection and binding reactions, which is further complicated 

y the multilayer nature of the artery. Experimental investigation 

f drug delivery is time-consuming, expensive and may raise ethi- 

al questions where animals are used, which is why mathematical 

odels can provide valuable insights and guidance into appropri- 

te design of experiments. The general mathematical model pre- 

ented in this work may fulfill this role for arterial drug delivery 

rom a balloon. Key insights gained from this work include the im- 

ortant role of intima diffusion coefficient and media reaction rate 

n determining the amount of drug delivered and bound, respec- 

ively. The model also highlights the key role played by the nature 

f boundary conditions in this process. Such insights can be used 

o balance safety and efficacy. 

It is important to re-emphasize the key assumptions made here, 

ecessarily employed to enable a closed-form analytical solution. 

nly one linear, non-saturable binding reaction is assumed to oc- 

ur. Boundary conditions, as well as transvascular pressure, which 

nfluences the Péclet number, are assumed to not be influenced by 

alloon application or withdrawal. All properties are assumed to 

e uniform and independent of concentration. For a broad range of 

ractical scenarios, these assumptions are reasonable. Further, note 

hat while values of various properties were taken from existing 

iterature, an integrated effort to measure these properties in the 

ame arterial system, and to study possible variations in these val- 

es, may help further improve the accuracy of model predictions. 

In addition to the practical insights into the endovascular drug 

elivery problem, this work also contributes towards theoretical 

eat and mass transfer by presenting an analytical solution for the 

ultilayer cylindrical CDR problem, including the nature of quasi- 

rthogonality. 
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A al M -layer cylinder case with diffusion, convection and reaction 

eigenequations is well-known, and has been widely used for solving 

s presence of advection and reaction terms in addition to diffusion, the 

q ious. This Appendix derives an orthogonality relationship that accounts 

f

 work, the spatial component of the solution, f m,n for the m 

th layer is 

g tisfy 

(A.1) 

(A.2) 

n ξ 1 −2 μm , respectively, then subtract to obtain 

[
(A.3) 

 = 

γm 
1 −2 μm +1 

γm 
1 −2 μm 

( m = 1,2,.. M -1) and u 1 = γ1 
1 −2 μ1 . Each of the resulting 

e esult in 

−

+
 −1 ) 

)
− D̄ m 

(
f ′ m,n ( γm −1 ) f m, j ( γm −1 ) − f ′ m, j ( γm −1 ) f m,n ( γm −1 ) 

)]
=

(A.4) 

se from the boundary condition at ξ = γ0 during Stage A, f 1 ,n (γ0 ) = 

. (A.4) may be shown to be zero, based on the boundary condition at 

ξ
term within the square bracket inside the summation pertains to the 

i  in this summation can be shown to be zero as follows: From the in- 

t
 

f ′ m,n − Pe m 
γm −1 

f m,n + 

Pe m −1 
γm −1 

f m −1 ,n and D̄ m −1 f 
′ 
m −1 , j 

= D̄ m 

f ′ 
m, j 

− Pe m 
γm −1 

f m, j + 

 −1 ( f m,n − f m −1 ,n ) and D̄ m −1 f 
′ 
m −1 , j 

= 

Pe m −1 
γm −1 

f m −1 , j − k̄ m −1 ( f m, j − f m −1 , j ) . 

H onships, each term within square bracket inside the summation on 

t 1 , j f m −1 ,n − k̄ m −1 ( f m,n − f m −1 ,n ) f m −1 , j − Pe m −1 
γm −1 

f m −1 , j f m −1 ,n + ̄k m −1 ( f m,n −
lified to k̄ m −1 ( f m, j f m −1 ,n − f m,n f m −1 , j ) − ( Pe m 

γm −1 
f m,n f m, j − k̄ m −1 ( f m,n −

o. 

re, for distinct n and j , the following relationship between the spatial 

e

m

(A.5) 

gonality for pure-diffusion multilayer problems in the ξ 1 −2 μm term as 

w iving an expression for the last remaining coefficient, ˆ g n of the problem. 

ionship given by Eq. (A.5) also holds for the eigenfunctions for Stage B. 
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ppendix A: quasi-orthogonality of eigenfunctions for the gener

For pure-diffusion multilayer problems, quasi-orthogonality of 

tandard problems. In the present problem, however, due to the 

uasi-orthogonality relationship between eigenfunctions is not obv

or these transport processes. 

For the general M -layer cylindrical geometry considered in this

iven by Eq. (31) . For two distinct numbers n and j, f m,n and f m,j sa

f ′′ m,n + 

(
1 − P e m 

D̄ m 

)
f ′ m,n 

ξ
+ 

(
λ2 

n − β̄m 

)
D̄ m 

f m,n = 0 

f ′′ m, j + 

(
1 − P e m 

D̄ m 

)
f ′ 
m, j 

ξ
+ 

(
λ2 

j 
− β̄m 

)
D̄ m 

f m, j = 0 

For each m , multiply Eqs. (A.1) and ( A.2 ) by f m, j ξ
1 −2 μm and f m,

(
f ′ m,n f m, j − f ′ m, j f m,n 

)
ξ 1 −2 μm 

]′ = −
(
λ2 

n − λ2 
j 

)
D̄ m 

f m,n f m, j ξ
1 −2 μm 

Now, for each layer, m , Eq. (A.3) is divided by u m 

, where 
u m +1

u m 

quations is integrated within the respective layer, and added, to r

D̄ 1 
[ f ′ 1 ,n ( γ0 ) f 1 , j ( γ0 ) − f ′ 1 , j ( γ0 ) f 1 ,n ( γ0 ) ] 

γ1 
1 −2 μ1 

+ 

[ f ′ M,n ( 1 ) f M, j ( 1 ) − f ′ M, j ( 1 ) f M,n ( 1 ) ] 
γM−1 

1 −2 μM 

 

M ∑ 

m =2 

[
D̄ m −1 

(
f ′ m −1 ,n ( γm −1 ) f m −1 , j ( γm −1 ) − f ′ m −1 , j ( γm −1 ) f m −1 ,n ( γm

 

(
λ2 

n − λ2 
j 

) M ∑ 

( m =1 ) 

1 
u m 

∫ γm 

γm −1 
f m,n f m, j ξ

1 −2 μm dξ

The first term on the left hand side of Eq. (A.4) is zero becau

f 1 , j (γ0 ) = 0 . Similarly, the second term in the left-hand side of Eq

= 1 . 

Focusing on the remaining terms on the left hand side, each 

nterface between the ( m -1) th and m 

th layer ( m = 2,.. M ). Each term

erface condition at ξ = γm −1 given by Eq. (10) , D̄ m −1 f 
′ 
m −1 ,n 

= D̄ m

Pe m −1 
γm −1 

f m −1 , j . Further, from Eq. (11) , D̄ m −1 f 
′ 
m −1 ,n = 

Pe m −1 
γm −1 

f m −1 ,n − k̄ m

ere, all functions are evaluated at ξ = γm −1 . Using these relati

he left hand side of Eq. (A.4) can be re-arranged as 
Pe m −1 
γm −1 

f m −
f m −1 , j ) f m −1 ,n − ( f ′ m,n f m, j − f ′ 

m, j 
f m,n ) , which can be further simp

f m −1 ,n ) f m, j − Pe m 
γm −1 

f m, j f m,n − k̄ m −1 ( f m, j − f m −1 , j ) f m,n ) , which is zer

This shows that the left hand side of Eq. (A.4) is zero. Therefo

igenfunctions may be written: 

M ∑ 

 =1 

1 

u m 

γm ∫ 
γm −1 

f m,n f m, j ξ
1 −2 μm dξ = 0 n � = j 

This orthogonality relationship differs from the standard ortho

ell as the definition of u m 

. Eq. (A.5) plays an important role in der

Along similar lines, it can be shown that the orthogonality relat
15 
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rformance parameters given in Table 1 , one may derive the following 

e

ν[
  1 ,n γ0 

)
+ 

ˆ B 1 ,n Y μ1 −1 

(
ˆ ω 1 ,n γ0 

))
ˆ ω 1 ,n γ

μ1 

0 

(
1 −exp 

(
−ˆ λ2 

n τ
)

ˆ λ2 
n 

)]
(B.1) 

χ[
[
+ ,n J μm +1 

(
ˆ ω m,n γm −1 

)
+ 

ˆ B m,n Y μm +1 

(
ˆ ω m,n γm −1 

))
γ μm +1 

m −1 

]( 1 −exp 

(
−ˆ λ2 

n τ
)

ˆ λ2 
n 

)]
(B.2) 

ρ[
 −1 ) − B v ,m 

K μm +1 ( σm 

γm −1 ) 
] γ μm +1 

m −1 

σm 
+ 

 

J μm +1 

(
ˆ ω m,n γm −1 

)
+ 

ˆ B m,n Y μm +1 

(
ˆ ω m,n γm −1 

))
γ μm +1 

m −1 

]
exp 

(
−ˆ λ2 

n τ
)] (B.3) 

ψ[
 

(
ˆ ω M,n 

)]( 1 −exp 

(
−ˆ λ2 

n τ
)

ˆ λ2 
n 

)]
(B.4) 

ψ (B.5) 

ν[
ˆ  1 ,n γ0 

)
+ 

ˆ B 1 ,n Y μ1 −1 

(
ˆ ω 1 ,n γ0 

))
ˆ ω 1 ,n γ

μ1 

0 

(
1 −exp 

(
−ˆ λ2 

n τd 

)
ˆ λ2 

n 

)]
(B.6) 

χ A v ,m 

I μm +1 ( σm 

γm −1 ) − B v ,m 

K μm +1 ( σm 

γm −1 ) 
]

 

+1 −
(

ˆ A m,n J μm +1 

(
ˆ ω m,n γm −1 

)
+ 

ˆ B m,n Y μm +1 

(
ˆ ω m,n γm −1 

))
γ μm +1 

m −1 

]
(

m 

) 
)
γ μm +1 

m 

−
(

˜ A m,n J μm +1 ( ̃  ω m,n γm −1 ) + 

˜ B m,n Y μm +1 ( ̃  ω m,n γm −1 ) 
)
γ μm +1 

m −1 

]

(B.7) 

ρ[
n J μm +1 ( ̃  ω m,n γm −1 ) + 

˜ B m,n Y μm +1 ( ̃  ω m,n γm −1 ) 
)
γ μm +1 

m −1 

]
(B.8) 

ψ[
M 

(
ˆ ω M,n 

)]( 1 −exp 

(
−ˆ λ2 

n τd 

)
ˆ λ2 

n 

)

+

(B.9) 

ψ

 

1 − exp 

(
−˜ λ2 

n τ
)

˜ λ2 
n 

) ] 

(B.10) 
ppendix B: explicit expressions for parameters 

By inserting Eqs. (13) and (47) in the definitions for various pe

xplicit expressions: 

Stage A: 

¯ ( τ ) = 

−2 γ0 

1 −γ 2 
0 

×[
A v , 1 I μ1 −1 ( σ1 γ0 ) − B v , 1 K μ1 −1 ( σ1 γ0 ) 

]
σ1 γ

μ1 

0 
τ + 

∞ ∑ 

n =1 

ˆ g n 
(

ˆ A 1 ,n J μ1 −1 

(
ω̂

¯m 

( τ ) = 

2 ̄βm 

1 −γ 2 
0 

×[
A v ,m 

I μm +1 ( σm 

γm 

) − B v ,m 

K μm +1 ( σm 

γm 

) 
]

γ μm +1 
m 

σm 
τ−

A v ,m 

I μm +1 ( σm 

γm −1 ) − B v ,m 

K μm +1 ( σm 

γm −1 ) 
] γ μm +1 

m −1 

σm 
τ

 

∞ ∑ 

n =1 

ˆ g n 
ˆ ω m,n 

[(
ˆ A m,n J μm +1 

(
ˆ ω m,n γm 

)
+ 

ˆ B m,n Y μm +1 

(
ˆ ω m,n γm 

))
γ μm +1 

m 

−
(

ˆ A m

¯m 

( τ ) = 

2 
1 −γ 2 

0 

×
 [
A v ,m 

I μm +1 ( σm 

γm 

) − B v ,m 

K μm +1 ( σm 

γm 

) 
]

γ μm +1 
m 

σm 
−

[
A v ,m 

I μm +1 ( σm 

γm

∞ ∑ 

n =1 

ˆ g n 
ˆ ω m,n 

[(
ˆ A m,n J μm +1 

(
ˆ ω m,n γm 

)
+ 

ˆ B m,n Y μm +1 

(
ˆ ω m,n γm 

))
γ μm +1 

m 

−
(

ˆ A m,n

¯
 out ( τ ) = 

2 S h out 

1 −γ 2 
0 

×

[ A v ,M 

I μM ( σM 

) + B v ,M 

K μM ( σM 

) ] τ + 

∞ ∑ 

n =1 

ˆ g n 
[

ˆ A M,n J μM 

(
ˆ ω M,n 

)
+ 

ˆ B M,n Y μM

¯
 in ( τ ) = 0 

Stage B: 

¯ ( τ ) = 

−2 γ0 

1 −γ 2 
0 

×[
A v , 1 I μ1 −1 ( σ1 γ0 ) − B v , 1 K μ1 −1 ( σ1 γ0 ) 

]
σ1 γ

μ1 

0 
τd + 

∞ ∑ 

n =1 

ˆ g n 
(

ˆ A 1 ,n J μ1 −1 

(
ω

¯m 

( τ ) = 

2 ̄βm 

1 −γ 2 
0 

[ [
A v ,m 

I μm +1 ( σm 

γm 

) − B v ,m 

K μm +1 ( σm 

γm 

) 
]

γ μm +1 
m 

σm 
τd −

[
γ μm +1 

m −1 

σm 
τd + 

∞ ∑ 

n =1 

ˆ g n 
ˆ ω m,n 

[(
ˆ A m,n J μm +1 

(
ˆ ω m,n γm 

)
+ 

ˆ B m,n Y μm +1 

(
ˆ ω m,n γm 

))
γ μm

m 

1 −exp 

(
−ˆ λ2 

n τd 

)
ˆ λ2 

n 

)
+ 

∞ ∑ 

n =1 

˜ g n 
˜ ω m,n 

[(
˜ A m,n J μm +1 ( ̃  ω m,n γm 

) + 

˜ B m,n Y μm +1 ( ̃  ω m,n γ(
1 −exp ( −˜ λ2 

n τ ) 
˜ λ2 

n 

)] 

¯m 

( τ ) = 

2 
1 −γ 2 

0 

×
∞ ∑ 

n =1 

˜ g n 
˜ ω m,n 

[(
˜ A m,n J μm +1 ( ̃  ω m,n γm 

) + 

˜ B m,n Y μm +1 ( ̃  ω m,n γm 

) 
)
γ μm +1 

m 

−
(

˜ A m,

exp 

(
−˜ λ2 

n τ
)]

¯
 out ( τ ) = 

2 S h out 

1 −γ 2 
0 

×

[ A v ,M 

I μM ( σM 

) + B v ,M 

K μM ( σM 

) ] τd + 

∞ ∑ 

n =1 

ˆ g n 
[

ˆ A M,n J μM 

(
ˆ ω M,n 

)
+ 

ˆ B M,n Y μ

 

∞ ∑ 

n =1 

˜ g n 
[

˜ A M,n J μM ( ̃  ω M,n ) + 

˜ B M,n Y μM ( ̃  ω M,n ) 
]( 1 −exp ( −˜ λ2 

n τd ) 
˜ λ2 

n 

)]

¯
 in ( τ ) = 

2 γ0 S h in 

1 − γ 2 
0 

[ 

∞ ∑ 

n =1 

˜ g n 
[

˜ A 1 ,n J μ1 ( ̃  ω 1 ,n γ0 ) + 

˜ B 1 ,n Y μ1 ( ̃  ω 1 ,n γ0 ) 
]
γ0 

μ1 

(

16 
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