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An iterative analytical model for aging analysis of Li-ion cells 
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H I G H L I G H T S  

• Developed an iterative technique for aging analysis of Li-ion cells. 
• Models capacity degradation due to cycling as well as calendar aging. 
• Results shown to agree well with past work and numerical simulations. 
• Results highlight key aspects of aging and capacity degradation in Li-ion cells.  
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A B S T R A C T   

Physics-based aging models are critical for understanding capacity degradation mechanisms in Li-ion batteries. 
This paper presents a technique for aging analysis of a Li-ion cell due to growth of the solid electrolyte interphase 
(SEI) layer driven by a solvent decomposition reaction at the electrode surface. The model employs an iterative 
technique based on the analytical solutions of the underlying conservation equations. The single-particle model 
describing Li-ion intercalation and de-intercalation processes is solved analytically using Green’s function 
technique. The SEI formation problem is solved using the integral balance method. An iterative technique that 
combines these analytical solutions is shown to result in a converged result within a few iterations. The model is 
shown to agree well with results from past studies, as well as a numerical simulation. The capacity fade of Li-ion 
batteries is investigated under different operating conditions and different regimes, including both cycling and 
storage. The present model offers much faster computation time than numerical models for modeling the 
degradation of Li-ion cells. Further, the iterative technique described here may serve as a framework for semi- 
analytical solutions for other, more complicated problems. This work contributes towards improving the per
formance and reliability of electrochemical energy conversion and storage systems.   

1. Introduction 

Li-ion batteries (LIBs) play a key role in energy conversion and 
storage in several engineering devices and systems, such as electric ve
hicles (EVs), renewable energy storage systems, and aerospace compo
nents [1,2]. While offering several advantages over other secondary 
batteries, capacity degradation and aging of Li-ion batteries does occur 
due to a variety of mechanisms [3]. An extensive amount of research has 
been carried out to understand the mechanisms underlying capacity loss 
in Li-ion batteries and predict the state of health of the cell. The for
mation and growth of a passive layer, called the Solid Electrolyte 
Interphase (SEI) layer, on the anode active material surface has often 

been considered the primary degradation mechanism in Li-ion batteries 
under typical battery usage conditions [3,4]. Typically, the reduction of 
electrolyte components such as ethylene carbonate (EC) through one or 
more side reactions is responsible for SEI growth [5]. SEI formation 
during initial cycling is critical for Li-ion batteries, since it blocks elec
tron transfer and prevents further electrolyte decomposition. However, 
over a long time, continued SEI growth results in loss of active Lithium 
and, thus, capacity fade [3]. 

Since the calendar time required for experimental analysis of 
degradation and aging in Li-ion cells under real-life usage conditions 
may exceed years of storage or thousands of cycles, mathematical 
models are critical for understanding and improving the performance of 
Li-ion batteries [3]. Aging models can be broadly categorized into 
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empirical models, equivalent circuit or semi-empirical models, and 
electrochemical models [6]. Empirical models are data-driven and 
employ predictive algorithms such as artificial neural network (ANN) 
[7], Relevance Vector Machine (RVM) [8], and support vector machine 
(SVM) [9] to predict capacity fade based on past experimental data. 
Empirical models may require a substantial statistical population, and 
may not provide sufficient insights into the underlying physical phe
nomena. Equivalent circuit (EC) aging models are semi-empirical in 
nature with a certain degree of physicochemical support [6]. EC models 
employ electrical circuit components to simulate battery behavior. 
Electrochemical models on the other hand, are constructed based on the 
conservation equations that govern transport processes inside the bat
tery. The most commonly used electrochemical model is the 
Pseudo-two-dimensional (P2D) model proposed by Doyle et al. [10]. 
P2D models have been used extensively for concentration, potential, 
state of charge (SoC), and state of health (SoH) prediction [11,12]. P2D 
models solve for concentration and potential gradient in both solid and 
liquid phases. The concentration within the solid phase is governed by 
the Fick’s law of diffusion, while the concentration of Li-ions within the 
liquid-phase is governed by mass conservation [12]. 

While offering excellent accuracy, P2D models are computationally 
expensive due to the non-linear and coupled nature of the equations 
involved. Specifically, P2D models are not particularly suitable for 
modeling aging over thousands of cycles or several years of storage. 
Thus, a large number of previous studies has been devoted to reducing 
the complexity of electrochemical aging models [13,14]. A commonly 
used simplified version of the P2D model is the Single Particle (SP) 
model [15]. P2D models are reduced to SP models by neglecting con
centration and potential gradients in the solution phase. Also, the pore 
wall flux at the electrode surface is usually assumed to be uniform 
throughout the electrode. Under these assumptions, the entire electrode 
can be represented by a single spherical particle, within which, diffusion 
can be described using Fick’s second law. These assumptions are only 
valid for low to moderate charge/discharge rates or thin electrodes 
where the dynamics in the solution phase can be neglected. Despite its 
limitations, SP models have been shown to be well-suited with accept
able accuracy for aging analysis [3]. 

Although SP-based aging models are much simpler than full P2D 
models, existence of the side reactions results in coupled equations 

describing intercalation and SEI formation phenomena. The reason for 
this coupling is that while the total current density in the negative 
electrode is known, the individual intercalation and side reaction cur
rent densities are not known. These processes are difficult to model 
analytically, and therefore, only a few analytical studies of SEI forma
tion are available, with various approximations, such as neglecting side 
reaction kinetics. For example, Ploehn et al. [16] developed an analyt
ical solution for solvent diffusion through the SEI layer, followed by a 
two-electron reduction process at the carbon-SEI interface that results in 
SEI growth and capacity loss [16]. The analytical solution [16] resulted 
in a 

̅̅
t

√
evolution of the SEI thickness, similar to that in silicon oxidation 

[17] or Stefan-type phase change problems [18]. However, their model 
does not consider the kinetics of the side reaction. Pinson et al. [19] 
derived an analytical expression for the SEI growth based on a SP model. 
However, similar to the study by Ploehn et al. [16], the kinetics of the 
side reaction is neglected. Furthermore, linear solvent diffusion was 
assumed within the SEI layer [19]. Several numerical methods have 
been used to solve the SP-based aging models in previous studies. For 
example, Ramadass et al. [20] presented an aging model due to SEI 
growth during charge and discharge cycling. Solvent diffusion within 
the SEI layer was neglected in their work [20]. Ramasamy et al. [21] 
developed a capacity-fade model under open-circuit voltage (OCV) 
storage. The concentration of the solvent was considered to be constant 
at the electrode/SEI interface, and thus, the solvent diffusion within the 
SEI layer was neglected. Safari et al. developed a SP-based aging model 
for Li-ion batteries under different modes of operation for both kinetic 
and diffusion limited regimes [5]. Pang et al. developed an enhanced 
SP-based degradation model by considering SEI layer formation at the 
negative electrode [22]. Most of these models outlined above have been 
solved numerically. Numerical models require discretization in both the 
active material and the SEI film, resulting in large computational time 
and large memory required for calculation, which may not be suitable 
for field implementation. Therefore, a method capable of combining an 
analytical framework capable of capturing the underlying physics with 
efficient numerical computation is of much interest. Such a method can 
potentially offer good computational speed without loss of accuracy or 
stability problems, all within reasonable computational memory. 

This paper presents a semi-analytical SP-based aging model for Li-ion 
batteries. Intercalation and SEI formation problems are first uncoupled 

Nomenclature 

A electrode total interfacial surface area (m2) 
cEC solvent concentration within the SEI layer (mol m− 3) 
c0,EC initial solvent concentration within the SEI layer (mol 

m− 3) 
ceq solvent concentration in the bulk electrolyte (mol m− 3) 
cLi lithium concentration within the electrode particle (mol 

m− 3) 
cmax

Li maximum lithium concentration within the electrode 
particle (mol m− 3) 

C nominal capacity (Ah) 
DEC solvent diffusion coefficient within the SEI layer (m2s− 1) 
DLi lithium diffusion coefficient within the electrode particle 

(m2s− 1) 
F Faraday constant (96485 C mol− 1) 
I applied current (A) 
i current density (Am− 2) 
J molar flux (mol m− 2 s− 1) 
kint rate constant of the intercalation reaction (m s− 1) 
kf,s rate constant of the side reaction (m s− 1) 
MSEI molecular weight of SEI (kg mol− 1) 
r radial coordinate (m) 

R particle radius (m) 
RSEI SEI resistance (Ω m2) 
Ru universal gas constant (8.314 J mol− 1 K− 1) 
t time (s) 
T temperature (K) 
U open circuit potential (V) 
V total electrode volume (m3) 
β cathodic charge transfer coefficient 
δSEI SEI layer thickness (m) 
θ lithium stoichiometry in the electrode 
φ potential (V) 
κSEI ionic conductivity (S m− 1) 
ρSEI SEI density (kg m− 3) 
λ eigenvalue (m− 1) 

Subscripts 
0 initial 
int intercalation 
n anode 
p cathode 
s side reaction 
surf surface 
t total  
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by initially assuming and then iteratively refining the side reaction 
current density as a function of time. The iterative refinement is based 
on analytical solution of the underlying conservation equations. Spe
cifically, the intercalation problem is solved analytically using Green’s 
function technique, and the SEI formation problem is solved using the 
integral balance method. Both sub-problems have closed-form solutions, 
which eliminates the need for discretization. Iteratively solving the two 
sub-problems is shown to result in convergence within a few iterations, 
with even a single iteration being sufficient for engineering accuracy in 
certain scenarios. The model is validated against a purely numerical 
computation and previous studies. The model is then used to determine 
the capacity fade of Li-ion batteries under different operating conditions 
and different regimes, including both cycling and storage. A key 
advantage of the present model is the elimination of the need for space 
discretization within the electrode particle and the SEI layer, which 
results in reduced computational time compared to numerical methods. 
Results from this work may help improve the understanding of degra
dation of Li-ion cells, and contribute towards improved electrochemical 
energy conversion and storage devices and systems. 

2. Mathematical modeling 

2.1. Problem definition and governing equations 

Fig. 1(a) shows a schematic of a spherical anode particle operating 
under galvanostatic current density. The total current density in the 
negative electrode, i.e., it,n, is divided between the intercalation (iint,n) 
and the side reaction (is) current densities, shown in Fig. 1(b). During 
charge and discharge processes, lithiated graphite undergoes a surface 
reaction with electrolyte solution species. This continuous small-scale 
reaction results in SEI formation, shown in Fig. 1(b). SEI growth re
sults in an increase in electrode impedance and, consequently, an overall 
capacity loss. This section develops a novel semi-analytical aging model 
for Li-ion batteries to determine capacity loss rate under kinetic and 
diffusion-limited regimes. Kinetic-limited and diffusion-limited regimes 
are two ends of the spectrum of the aging mechanism. Depending on the 
conditions, the SEI growth within the cell may occur under either 
kinetic-limited, diffusion-limited, or somewhere in between. Whether 
the SEI growth is under kinetic- or diffusion-limited regime depends on a 
number of factors including cell chemistry, solvent diffusion coefficient 
within the SEI layer, diffusion coefficient of Li ions within the electrode 
particle, and the physical properties of the SEI product. In the kinetic- 
limited regime, solvent diffusion within the SEI layer is neglected i.e., 
the solvent is considered to be abundant at the anode/SEI interface and 
the side reaction is the rate-limiting process. In diffusion-limited regime, 
on the other hand, solvent diffusion within the SEI layer is the rate- 
limiting process. 

A few assumptions are made prior to model development. First, SEI 
layer formation is considered to be the primary side reaction responsible 

for the aging of Li-ion cells [5]. Further, similar to previous studies [5, 
23], the main component of the SEI layer is considered to be lithium 
ethylene dicarbonate (CH2OCO2Li)2, radical anion formation (EC+

e−graphite→EC− ) is considered to be the rate-determining process. SEI is 
assumed to exist in single phase, and SEI growth on the anode particle is 
assumed to be uniform. Moreover, the cell and the SEI parameters are 
assumed to be independent of concentrations and temperature. Based on 
these assumptions, current balance for the graphite anode may be 
written as follows: 

it,n = iint,n(t) + is(t) (1) 

Note that for constant rate charge/discharge, the total current den
sity is constant, whereas current densities associated with intercalation/ 
deintercalation reactions and side reaction may change with time and 
are governed by the following Butler-Volmer kinetic expressions [24]: 

iint,n(t) = Fkint,ncβ
Li,n

(
cmax

Li,n − cLi,n,surf

)1− β
[

exp
(
(1 − β)F

RuT
(
φ1n 

− Un − RSEI it,n
)
)

− exp
(

−
βF
RuT

(
φ1n − Un − RSEI it,n

)
)]

(2)  

is(t) = − Fkf ,scEC|x=0 exp
(

−
βsF
RuT

(
φ1n − RSEI it,n

)
)

(3)  

Where RSEI = δSEI
κSEI

. All variables in equations (2) and (3) are defined in the 
nomenclature section. Note that equations (1)–(3) are written for the 
negative electrode. In case of the positive electrode, is and RSEI∙it,n terms 
may be set to zero. The concentration of lithium inside the electrode 
particle is governed by Fick’s diffusion law and may be written as 
follows: 

∂cLi,j

∂t
=DLi,j

1
r2

∂
∂r

(

r2∂cLi,j

∂r

)

(4)  

where j = n,p for the negative and positive electrode, respectively. The 
initial and boundary conditions are 

cLi,j(r, t= 0)= cLi,0,j (5)  

cLi,j(r → 0, t)⇒finite (6)  

(
∂cLi,j

∂r

)

r=Rj

= −
iint,j

FDLi,j
(7) 

Equation (5) models uniform initial concentration throughout the 
electrode particle. Equation (6) represents the boundary condition at the 
center of the electrode particle, requiring finiteness at the center. 
Equation (7) represents the boundary condition at the surface of the 
electrode that relates the intercalation current density to the lithium flux 
density. Material balance in the SEI film can be written as [5]: 

Fig. 1. Schematic of the problem showing (a) a spherical anode particle and growth of the SEI layer on its surface, (b) the uncoupled intercalation and SEI 
growth problems. 
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∂cEC

∂t
=DEC

∂2cEC

∂x2 −
dδSEI

dt
∂cEC

∂x
(8) 

Note that the first and second terms on the right-hand side of 
equation (8) represent mass transfer due to diffusion and convection, 
respectively. Since the thickness of the SEI layer is much smaller than the 
electrode particle, the SEI layer may be assumed to have a planar ge
ometry [5]. As shown in Fig. 1(a), the origin for the Cartesian coordinate 
x is located at the electrode-SEI interface, i.e., at r = R. With reference to 
the Cartesian coordinate system, the initial and boundary conditions for 
the SEI layer growth process are: 

cEC(x, t= 0)= c0,EC (9)  

− DEC

(
∂cEC

∂x

)

x=0
+

dδSEI

dt
(cEC)x=0 =

is

F
(10)  

cEC(x= δSEI , t)= ceq (11) 

Equation (9) models uniform initial concentration throughout the 
initial SEI thickness. Equation (10) relates the side reaction current 
density to the lithium flux density due to diffusion and convection. 
Furthermore, equation (11) represents an equilibrium EC concentration 
at the electrolyte/SEI interface assuming the electrolyte composition 
does not change. Finally, the rate of SEI growth can be determined from 
the side reaction current density as follows [5]: 

dδSEI

dt
= −

isMSEI

2FρSEI
(12) 

Governing equations for the solid-phase diffusion (equations (4)–(7)) 
and material balance within the SEI layer (equations (8)–(12)) are 
closely coupled to each other since the intercalation/deintercalation 
current density, iint,n, and side reaction current density, is, are both 
unknown and related to each other through equation (1). In general, 
solving these equations simultaneously is challenging both theoretically 
and numerically. The next section describes an iterative, semi-analytical 
technique for solving these equations. 

2.2. Iterative semi-analytical technique 

This study presents an iterative technique to uncouple solid-phase 

diffusion and material balance in the SEI layer. This technique has 
been used previously to solve problems related to heat transfer in three- 
dimensional integrated circuits 3D ICs [25], conjugate phase change 
heat transfer [26,27], and single-phase conjugate heat transfer [28]. 
However, it does not appear to have been used to solve concentration 
diffusion problems, such as the one in this work. In this technique, the 
problem of interest is divided into two sub-problems, each with avail
able analytical solutions individually. Specific to the present work, the 
solid-phase diffusion problem is solved analytically using Green’s 
function approach - capable of accounting for time-dependent current 
density - developed in a recent study [29] and material balance in the 
SEI layer is solved using an approximate analytical technique due to the 
non-linear nature of the equations involved. 

Starting with an assumed/guessed boundary condition for both sub- 
problems, the analytical solutions are used iteratively to improve upon 
the guess based on the results, and repeat until the solution is converged. 
The algorithm for the iterative approach is shown in Fig. 2. Note that in 
each step, the variables shown in green are known, while the variables in 
red are unknown and need to be calculated. The procedure starts with an 
initial guess for the side reaction current density, is, as a function of time. 
Based on this, the intercalation/deintercalation current density, iint,n(t), 
and SEI thickness, δSEI(t), are determined from equations (1) and (12), 
respectively. With this information, the solid phase diffusion sub- 
problem is solved analytically using Green’s function approach 
described in the following subsection. Once the lithium concentration at 
the electrode’s surface is known, the cell potential, φn, is calculated 
using the Butler-Volmer kinetics represented by equation (2). Next, the 
concentration of EC at the SEI-electrode interface is determined by 
solving equations (8)–(11) using the integral method described in the 
following sub-sections. Finally, the side reaction current density, is, is re- 
calculated using equation (3) and compared with the initial guess. If the 
comparison lies within the desired tolerance, the solution is considered 
to be converged; otherwise, the newly calculated is is used as the refined 
guess, and iteration is continued until the convergence is achieved. Since 
deriving a rigorous mathematical proof to establish convergence of the 
iterative technique is likely to be extremely challenging, mainly because 
of the complexity and non-linearity of the underlying equations, the 
convergence of the method is established numerically by investigating 
multiple cases with initial guesses varying in nature and magnitude. 

While this is an iterative technique, subsequent sections in this paper 

Fig. 2. Flowchart of the iterative algorithm used in this study. Parameters shown in green and red are known in advance and to be computed, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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show that the solution converges very rapidly within a few iterations. In 
certain cases, even a single iteration is sufficient. Further, the converged 
solution is found to be insensitive to the initial guess. A key advantage of 
this technique is that the species concentration needs to be calculated 
only at the electrode-SEI interface for both Li and EC, which eliminates 
the computational burden associated with having nodes within the 
electrode and the SEI layer. 

The iterative approach described above requires solutions for two 
sub-problems i.e., solid phase diffusion and SEI formation. These solu
tions are presented in the next sub-sections. 

2.3. Analytical solution of solid phase diffusion 

Green’s function based analytical solution of lithium concentration 
profile within the electrode particle operating under a time-dependent 
current density was presented in a recent paper [29]. Assuming low 
current densities and/or thin electrodes, concentration gradient and 
potential in the solution phase is neglected. Under these assumptions, 
the concentration at the surface of the positive and negative electrode 
particles can be written as follows [29]: 

cLi,j,surf (t) = cLi,0,j −
3
Rj

∫t

τ=0

Jj(τ)dτ −
∑∞

m=1

1
Nm,j

sin 2( λm,jRj
)

∫t

τ=0

Jj(τ)exp
(
− DLi,jλ2

m,j(t − τ)
)

dτ (13)  

where the eigenvalues λm,j are the positive roots of RjXj cot
(
RjXj

)
= 1, 

and j = n,p for the negative and positive electrode, respectively. Nm,j is 
the norm, defined as: 

Nm,j =

Rj

(

λ2
m,j +

1
R2

j

)

− 1
Rj

2

(

λ2
m,j +

1
R2

j

) (14) 

The molar flux for the cathode and anode can be written as: 

Jp(t) =
I(t)
ApF

(15)  

Jn(t)= −
(I(t) − isAn)

AnF
(16) 

Note that the sign of the current, I, is considered to be negative for 
discharge and positive for charge. Details of the mathematical deriva
tion of the surface concentration can be found in a recent paper [29]. 

2.4. Closed-form solution of SEI sub-problem 

Integral method is used to solve the governing equations associated 
with the concentration of EC in the SEI layer presented in equations 
8–12. The integral method has been used for the analysis of boundary 
layer momentum and energy equations in fluid mechanics [30], thermal 
convection [31], and phase change related moving boundary problems 
[32]. In this method, the relevant conservation equation (equation (8) in 
the present work) is integrated over the appropriate transport region, 
such as thermal/momentum boundary layer or SEI thickness, (δSEI(t) in 
the present work). The quantity of interest, such as temperature, velocity 
or concentration within the evolving layer is modeled as a polynomial 
function, with coefficients chosen to satisfy the various boundary con
ditions. Finally, the assumed concentration profile is substituted back in 
the integrated conservation equation, resulting in an ordinary differ
ential equation (ODE) for the thickness of the layer of interest. Once the 
thickness is known, it is substituted back into the assumed profile to 
construct the distribution of the variable of interest, cEC in this case. 

Note that in the SEI sub-problem, the SEI layer thickness, δSEI(t) is 
known from equation (12), since the side reaction current density, is(t) is 
guessed. Instead, the concentration of EC at the electrode surface cw(t) is 
not known. Thus, a small modification to the integral method is intro
duced, which results in an ODE for cw(t) instead of δSEI(t). To begin with, 
equation (8) is integrated using Leibniz’s integral formula, resulting in: 

DLi

(
∂cEC

∂x

⃒
⃒
⃒
⃒

x=δSEI (t)
−

∂cEC

∂x

⃒
⃒
⃒
⃒

x=0

)

−
dδSEI

dt

(
cEC|x=δSEI (t) − cEC|x=0

)

=
d
dt

⎛

⎝
∫δSEI (t)

x=0

cECdx − δSEIcEC|x=δSEI

⎞

⎠ (17) 

Next, a third-degree polynomial is assumed for the concentration of 
EC in the SEI film as follows: 

cEC(x, t)= a+ b(x − δSEI(t))+ c(x − δSEI(t))2
+ d(x − δSEI(t))3 (18) 

Four boundary conditions are required to determine coefficients a, b, 
c and d. Two boundary conditions are already defined by equations (10) 
and (11). The third boundary condition is constructed based on equation 
(11), i.e., cEC(x= δSEI, t) = ceq , which implies that the total change in the 
concentration at δSEI is zero. Thus, differentiating equation (11) results 
in: 

dcEC =

[
∂cEC

∂x
dx +

∂cEC

∂t
dt
]

x=δSEI

= 0 (19) 

Equation (19) can be written as: 
[

∂cEC

∂x
dδSEI

dt
+

∂cEC

∂t

]

x=δSEI

= 0 (20) 

Comparing equation (20) and equation (8) results in the following 
third boundary condition: 
(

DEC
∂2cEC

∂x2

)

x=δSEI

= 0 (21) 

The last boundary condition is written on the basis of the concen
tration of EC at the electrode-SEI interface as follows: 

cEC(x= 0, t)= cw(t) (22) 

cw(t) is not known in advance, and is determined as a function of δSEI 
from equation (17). Next, coefficients a, b, c and d are determined from 
four boundary conditions and the assumed temperature profile, equa
tion (18) is substituted back into equation (17). After some mathemat
ical manipulation, the following ODE is derived for cw(t): 

dcw

dt
=

1
(

5δ + δ′ δ2

DEC

)

⎛

⎜
⎝12DEC

(ceq − cw
(
t
)

δ

)
− 3δ

′

(

ceq + 3cw(t)+
8ρ
M

)

−

(δ2δ′′ + 2δδ
′ 2
)

(

cw(t) + 2ρ
M

)

DEC

⎞

⎟
⎠ (23) 

Concentration of EC at the electrode-SEI interface, cw(t) appears in 
equation (3) for side reaction current density calculation. Thus, the ODE 
given by equation (23) is the only equation needed to be solved for the 
SEI sub-problem. The initial condition associated with equation (23) is 
given simply by equation (9). 

3. Results and discussion 

3.1. Convergence of the iterative technique 

This sub-section discusses convergence of the iterative technique 
outlined in Section 2. All the parameters used in this study are obtained 
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from previous study by Safari et al. [5] and summarized in Tables 1 and 
2. The 18650 Sony cell parameters presented in Table 1 are used for 
these simulations. Fig. 3(a) and (b) plot the side reaction current density, 
is as a function of time under kinetic-limited and diffusion-limited re
gimes, respectively. In each case, sub-Figure (i) presents the plot for a 

single discharge prosses and sub-Figure (ii) presents the plot for a single 
charge process. A constant current is taken as the initial guess for these 
simulations, and shown as the 0th iteration in the plots. Fig. 3(a) shows 
that the is curve converges within two iterations under kinetic-limited 
regime, beyond which, the deviation between successive iterations is 
less than 0.1%. The computational time for each iteration is around 0.3 
s. It is also seen that the side reaction current density for discharge 
processes under both regimes is extremely small, indicating minimal 
contribution of discharge process in SEI growth. 

Fig. 3(b) shows that similar to the kinetic-limited regime, the side 
reaction current density converges within two iterations. For the 
charging process shown, however, the side reaction current density 
converges within six iterations. This could be explained by the difference 
between the equations governing kinetic-limited and diffusion-limited 
regimes. In the kinetic-limited scenario, the concentration of EC is 
constant; thus, the material balance equations are not needed to be 
solved, resulting in a much simpler problem than the diffusion-limited 
regime. Even with six iterations, however, the computational cost is 
minimal compared to a fully-numerical approach that may involve 
extensive discretization. 

Since limited information is available for making the initial guess, it 
is important to determine whether the converged solution for iterative 
techniques is independent of the initial guess. In order to demonstrate 
that the method converges to the same curve independent of the 
magnitude of the initial guess, Supplementary Fig. S1 presents the 
converged side reaction current density as a function of time for initial 
guesses that are 3 and 5 orders of magnitude smaller and larger than the 
converged curve for both (a) kinetic- and (b) diffusion-limited regimes. 
It is shown that the side reaction current density converges to the same 
curve regardless of the magnitude of the initial guess. To investigate this 
further, the iterative technique is used for solving kinetic- and diffusion- 
controlled charge processes with three different initial guesses of the 
side reaction current – constant (Case A), linearly decreasing (Case B), 
and sinusoidally-varying (Case C). Fig. 4(a) shows convergence of side 
reaction current density as a function of time regardless of the nature of 
the initial guess under a kinetic-limited regime. Note that in Fig. 4(a), 
the initial guess is 5 orders of magnitude less than the converged 

Table 1 
Li-ion cell parameters used for modeling [5]. The parameters are shown for the 
anode and cathode of a Sony 18650 Li-ion cell used for cycling and OCV storage, 
and for the anode of an MP prototype prismatic cell used for constant-potential 
storage.  

Parameters Sony 18650 Cell SAFT MP Prototype (Half-Cell) 

Anode Cathode Anode 

R (μm) 2.0 2.0 1.0 
cmax

Li (mol m− 3)  30555 51555 30555 
A (m2) 4.38 4.76 21.5 
DLi (m2 s− 1) 2 × 10− 14 1 × 10− 14 2 × 10− 14 

kint (m s− 1) 2.07 × 10− 11 1.04 × 10− 11 1.04 × 10− 11 

β 0.5 0.5 0.5 
θ 0.74 

(Cycling) 
0.99 (OCV) 

0.5 (Cycling) 0.9 (Constant Potential 
Storage)  

Table 2 
Solid electrolyte interface (SEI) parameters used in the present study 
[5].  

Parameter Value 

RSEI,0 (Ω m2) 0.001 
ceq (mol m− 3) 227.05 
MSEI (kg mol− 1) 0.162 
ρSEI (kg m− 3) 1690 
δSEI,0 (nm) 5.0 
κSEI (S m− 1) 5 × 10− 6 

βs 0.5 
DEC (m2 s− 1) 6.8 × 10− 21(Cycling) 

3.7 × 10− 19(OCV Storage) 
Kf,s (m s− 1) 1.36 × 10− 12(Cycling) 

1.36 × 10− 7(OCV Storage)  

Fig. 3. Convergence of the iterative technique for cycling under (a) kinetic-limited regime and (b) diffusion-limited regime. In each case, plots are presented for side 
reaction current density as a function of time for (i) discharge process, and (ii) charge process. 
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solution, indicating that prior knowledge of the initial guess and its 
magnitude is not required for convergence. In each case, convergence is 
obtained within two iterations. Such independence of the solution from 
the initial guess is important to establish because in general, there is 
limited basis for choosing an initial guess, and therefore, the technique 
must result in accurate converged solution regardless of the choice of the 
initial guess. Fig. 4(b) plots the converged side reaction current density 
as a function of time for different initial guess functions under a 
diffusion-limited regime. In this case, the initial guess is around 5 orders 
of magnitude larger than the converged solution. Similar to the kinetic- 

limited regime, the converged current density is independent of the 
initial guess. Nevertheless, the side reaction current density is usually 
only a very small fraction (less than 1%) of the total current density. 
Therefore, an estimate of 0.1% of total current is recommended as a 
reasonable and robust initial guess with which to initiate the iterative 
computational technique. 

3.2. Model validation against numerical simulation 

A comparison of the iterative technique with fully numerical 

Fig. 4. Plots showing convergence of the iterative technique independent of the nature of initial guess under (a) kinetic-limited regime and (b) diffusion-limited 
regime: side reaction current density as a function of time for three different cases of a constant (A), linear (B), and periodic (C) initial guesses during a charge 
process for multiple initial guesses 5 orders of magnitude smaller and larger than the converged curves. 

Fig. 5. Comparison of the present work with numerical simulation for the first cycle during a kinetically-limited (a) discharge and (b) charge processes. In each case, 
plots are presented for (i) SEI growth as a function of time, (ii) side reaction current density as a function of time, (iii) voltage as a function of moved charge. 
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simulation is presented next for both kinetic-limited and diffusion- 
limited regimes. The parameters used for comparison for both the ki
netic and diffusion-limited are presented in Tables 1 and 2. Similar to the 
previous section, parameters for the 18650 Sony cell are used for these 
simulations. Numerical simulation is carried out by discretizing the 
governing equations using a finite difference method. The resulting set 
of nonlinear differential algebraic equations (DAEs) are solved using a 
robust index-1 DAE solver [33] technique in Maple 2020. Comparison 
plots for the first cycle under the kinetic-limited regime are shown in 
Fig. 5(a) and (b) during the discharge and charge process, respectively. 
In each case, plots are presented for (i) SEI thickness as a function of 
time, (ii) side reaction current density as a function of time, and (iii) 
voltage as a function of the moved charge. These figures show excellent 

agreement between the iterative technique and numerical simulations 
for each case, with a maximum error of less than 1%. Convergence is 
obtained within two iterations, with a minimal computation time of 0.6 
s. It is seen that the side reaction current density is flat and equal to zero 
at the end of the discharge and beginning of the charge process where 
the SoC is low. This is expected due to the existence of the potential in 
the exponential term in equation (3). Consequently, the SEI growth 
follows a similar trend, being zero at the end of discharge and beginning 
of the charge process. Furthermore, a comparison between the charge 
and discharge process shows that the SEI growth due to the discharge 
process is negligible compared to the charge process. 

A similar comparison for the diffusion-limited regime is shown in 
Fig. 6(a) and (b) during a discharge and charge process, respectively. For 

Fig. 6. Comparison of the present work with numerical simulation for the first cycle during a diffusion-limited (a) discharge and (b) charge process. In each case, 
plots are presented for (i) SEI growth as a function of time, (ii) side reaction current density as a function of time, (iii) solvent concentration distribution in the SEI at 
the end of the process, and (iv) voltage as a function of moved charge. 
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each case, plots of SEI thickness and sider eaction current density as 
functions of time are presented in (i) and (ii). The concentration of the 
solvent, cEC, within the SEI layer is plotted as a function of SEI thickness 
in (iii). Finally, cell voltage as a function of moved charge during the 
discharge process for the first cycle is shown in (iv). Both sets of figures 
show excellent agreement with numerical simulation in predicting the 
cell electrochemical behavior during charging and discharging. The 
convergence is achieved within two and six iterations for the discharge 
and charge process, respectively. Similar to the kinetic-limited regime, 
contribution of discharge in SEI formation is minimal, resulting in a very 
small solvent concentration gradient within the SEI layer. However, 
during the charge process, the solvent concentration gradient within the 
SEI layer is significant. 

3.3. Applications and model validation against past work 

The iterative approach is now used to model multi-mode aging 
mechanisms. The three different aging mechanisms considered in this 
section are capacity fade during charge/discharge cycling, capacity fade 
during open-circuit voltage (OCV) storage, and capacity fade during 
constant voltage storage. 

3.3.1. Aging during charge/discharge cycling 
This subsection analyzes the capacity loss of an 18650 LiCoO2 Li-ion 

cell during charge/discharge cycling under a constant current. The cell 
nominal capacity is 1.8 Ah, and different charge/discharge rate are 
considered. Similar to the previous work [5], two extreme scenarios of 

kinetic-limited and diffusion-limited SEI growth are considered here and 
shown in Fig. 7(a) and (b), respectively. The parameters used in this 
section are presented in Tables 1 and 2. For each case, (i) plots the SEI 
resistance, RSEI, as a function of the number of cycles up to 800 cycles for 
0.5C, (ii) plots the cell discharge voltage as a function of the moved 
charge for different cycle numbers for 0.5C, (iii) plots the normalized 
capacity of the cell as a function of the number of cycles. For the 
kinetic-limited regime (Fig. 7(a) (i) and (ii), results from a previous 
study by Safari et al. [5] are also shown. It is seen that the results from 
the present study are in excellent agreement with past work. It is also 
seen that SEI resistance increases linearly and consequently, the cell 
capacity decreases linearly during cycling for the kinetic-limited regime 
and the cell capacity decreases due to the SEI growth. Fig. 7(a)(iii) shows 
that the capacity loss increases as the C-rate decreases. This is consistent 
with results from previous studies [19,34]. Similar to these previous 
studies, capacity loss due to SEI layer formation has been formulated in 
the present work as the integral of side reaction current density with 
time, resulting in an increase in capacity fade with a decrease in the 
C-rate due to the increased charging/discharging time. In other words, 
lower C-rates provide more time for the side reaction to occur, while for 
high C-rates, the charge time is lower, and hence correspondingly, the 
total fade due to SEI is also lower [34]. Please note that the present study 
considers aging under low C-rates where SEI formation is the primary 
mechanism of aging. Other mechanisms that occur at high C-rates, such 
as overcharge and mechanical stress, are not considered here, and may 
increase degradation at large C-rates. 

Fig. 7(b) present similar plots to Fig. 7(a), respectively, but for a 

Fig. 7. Applications and comparison of the 
present model with previous studies and 
numerical simulations under cycling for (a) 
kinetically-limited and (b) diffusion-limited 
regimes. In both cases, plots are presented 
for (i) SEI resistance as a function of number 
of cycles for 0.5C, (ii) cell voltage as a 
function of moved charge at different cycle 
numbers for 0.5C, (iii) normalized cell ca
pacity as a function of number of cycles for 
multiple C-rates. Results are compared with 
a past work [5], and with numerical simu
lations in (a) and (b), respectively.   
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diffusion-limited regime. It is seen that under diffusion-limited regime, 
the SEI resistance grows and cell capacity decreases quadratically 
compared to the linear growth under kinetic-limited regime during 
charge/discharge cycling. Results from the fully numerical simulation 
presented in section 3.2 are also shown in these figures for comparison. 
It is seen that the semi-analytical model is in good agreement with the 
numerical simulation. The SEI resistance determined from the iterative 
approach is identical to the numerical simulation up to 500s and slightly 
diverges from the numerical simulation at higher cycles with a 
maximum error of around 5%. A possible reason behind this small error 
is the approximation involved in assuming a polynomial form for con
centration distribution within the SEI layer. The accuracy of the model 
may possibly be further improved by considering higher order poly
nomials, which, however, may require additional, appropriately devel
oped boundary conditions. Experimental data are required to determine 
the appropriate regime for the SEI growth. Furthermore, similar to Fig. 7 
(a)(iii), Fig. 7(b)(iii) shows that the capacity loss increases as the C-rate 
decreases due to the longer charge/discharge time at lower discharge 
rates. 

3.3.2. Aging during OCV storage 
This subsection analyzes the capacity loss during open-circuit po

tential storage. Li-ion cells are subject to a capacity loss and a voltage 
decrease under OCV storage. Under OCV storage, lithium ions de- 
intercalate from graphite and reacts at the surface of the particle to 
form SEI. Consequently, the SOC of the electrode decreases, resulting in 
anode potential rise. Ramasamy et al. [21] have reportedexperimental 
data for the anode potential rise of an 18650 Li-ion cell under OCV 
storage at 25 ◦C. Safari et al. [5] predicted anode potential rise under a 
diffusion-limited regime and their results were in good agreement with 
experimental data. A similar analysis is carried out using the 
semi-analytical model presented in this study. The cell and the side re
action parameters are summarized in Tables 1 and 2. Fig. 8 (a) shows the 
anode potential rise as a function of the number of days. Results from the 
numerical simulation by Safari et al. [5] and experimental data reported 
by Ramasamy et al. [21] are also shown in Fig. 8 (a). It is seen that the 
present work is in very good agreement with both past studies. 

3.3.3. Aging during constant voltage storage 
This sub-section investigates the aging of Li-ion cells due to storage 

under a constant potential. Broussely et al. [35] reported the capacity 
loss of a 5Ah prismatic MP prototype cell stored under a constant voltage 
of 3.9 V and a temperature of 30 ◦C. Safari et al. [5] presented a nu
merical physics-based aging model for the constant potential storage 
under kinetic-limited and diffusion-limited regimes. Their results indi
cated that the diffusion-limited regime was in better agreement with the 
experimental data from Broussely et al. [35]. The semi-analytical model 
presented here is used to model aging during constant potential storage. 
Similar to Safari et al. [5], a constant cell voltage of 3.9 V corresponding 
to an initial SOC of 90% is considered. Also, the analysis is carried out 
for the graphite half-cell only. The parameters for the graphite half-cell 
summarized in Tables 1 and 2 are used for modeling this aging 

mechanism. The side reaction parameters are assumed similar to those 
used for cycling except for the diffusion coefficient and the side reaction 
rate constant. Since the refined parameters for these two were not 
explicitly reported in Safari et al. [5], they were fitted in the present 
study. Fig. 8(b) plots the capacity loss as a function of the square root of 
the number of storage days. The capacity loss is calculated from 
CLoss(t) = θAnρ

MC0
δSEI , as suggested by Ploehn et al. [16]. It is seen that for 

both regimes, results are in very good agreement with past work by 
Safari et al. [5]. Also, it is seen that results from the diffusion-limited 
regime are in better agreement with past experimental data taken 
from Ploehn et al. [16]. 

3.4. Effect of the polynomial degree on the concentration profile 

Equation (18) shows the third-degree polynomial form assumed for 
the variation of solvent concentration within the SEI layer. It may be 
possible to assume an even simpler polynomial form, such as quadratic 
or linear to further reduce computation time. The impact of the poly
nomial degree on the accuracy of the converged solution is investigated 
next by comparing results for linear and quadratic forms with the third- 
degree polynomial results. Two different values of the solvent diffusion 
coefficient are considered. Supplementary Figs. S2(a) and S2(b) show 
the solvent concentration profile at the end of a discharge and charge 
process, respectively. The same range of vertical access is chosen for 
both charge and discharge plots. The solvent diffusion coefficient is 
considered to be DEC = 6.8 × 10− 21 m2s− 1. Supplementary Fig. S2(a) 
shows that the polynomial degree does not affect the predicted con
centration profile by much. The inset in Supplementary Fig. S2(a) shows 
the zoomed view of the concentration profile. Although the nature of the 
curves is different for the three profiles as shown in inset, the difference 
between the magnitudes is negligible. This occurs since the contribution 
of the discharge process in the SEI formation is negligible and often 
ignored in aging simulations. Supplementary Fig. S2(b), on the other 
hand, shows that the first-degree polynomial approximation results in a 
large error especially at the electrode-SEI interface. The second-degree 
and third-degree polynomials are shown to be closer to each other. 
Supplementary Figs. S3(a) and S3(b) present similar plots, but for an 
order of magnitude larger solvent diffusion coefficient. These plots show 
that the difference between the three profiles decreases as the diffusion 
coefficient increases, as expected. In fact, sufficiently large solvent 
diffusion coefficient may convert the diffusion-limited regime into the 
kinetic-limited regime, where diffusion within the SEI layer is ignored. 

Note that, polynomial fitting technique used in this work is expected 
to provide reasonable accuracy, since the order of polynomial used for 
fitting is limited to third-order and no extrapolation is involved – the 
spatial range is always limited to 0<x<δSEI, at the ends of which, the 
polynomial fit is designed to obey boundary conditions. 

3.5. Advantages of the present model 

The iterative technique discussed in this work, offers a few key 

Fig. 8. Applications and comparison of the present 
model with previously reported experimental data: 
(a) anode potential rise as a function of number of 
days under OCV storage for an 18650 cell; (b) Ca
pacity loss as a function of square root of number of 
days for kinetic- and diffusion-controlled regimes 
for a SAFT MP Prototype half-cell. Values of cell 
parameters for both are listed in Table 1. In both 
cases, results from the present work are presented 
along with past numerical [5] and experimental 
[16] studies.   
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advantages over numerical models and conventional iterative solvers 
used for SP-based aging modeling. Firstly, the iterative approach pre
sented here is constructed from analytical, closed-form solutions of the 
governing equations. Consequently, full spatial discretization is avoided 
and the solution is needed to be calculated only at a single node. In 
comparison, other methods generate a large number of algebraic 
equations due to spatial discretization, which is much more computa
tionally intensive. Moreover, numerical solvers may fail while trying to 
find consistent initial conditions for the algebraic variables using the 
initial conditions for the ODE variables, due to stiffness of the governing 
equations. Furthermore, the iteration is carried out on the entire time 
domain at once compared to some numerical approaches in which 
iteration for convergence is required at each timestep. The reduced 
computational time and memory needed by the iterative model 
described here may facilitate more effective parametric studies of the 
impact of various parameters on cell degradation, as well as optimized 
techniques for improving the reliability of practical energy conversion 
and storage systems. 

4. Conclusions 

An iterative semi-analytical approach is used in this work to model 
capacity loss and aging of Li-ion batteries under different operating 
conditions. The primary aging mechanism is considered to be the 
decomposition and reduction of the solvent resulting in the formation of 
the SEI layer. The intercalation of Li-ion within the electrode is 
accounted for using the SP model, and thus, solution phase concentra
tion and potential gradient is neglected. Note that this assumption is 
only valid for low to moderate C-rates. The model is developed by 
uncoupling intercalation and the SEI-formation sub-problems. The 
uncoupling is carried out by initially assuming and then iteratively 
refining the side reaction current density as a function of time. The 
intercalation problem is solved analytically using Green’s function 
technique, and the SEI formation problem is solved using the integral 
balance method. The model presented here eliminates the need for 
discretization, resulting in low computational costs. Results from this 
work may help develop better understanding of degradation of Li-ion 
cells, and eventually contribute towards improved electrochemical en
ergy conversion and storage. Furthermore, the present work may be 
used as the baseline for developing semi-analytical models for more 
complicated problems such as the full P2D framework. 
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