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A B S T R A C T   

Convection-diffusion-reaction-source (CDRS) equation has been used to model a variety of transport phenomena. 
While several numerical methods for solving the CDRS equation exist, there is a relative lack of analytical so-
lutions for the CDRS problem for an arbitrary source term. This work presents a Green’s function based analytical 
solution to a one-dimensional, transient CDRS equation with an independent source/sink that can be a general 
function of space and time. Results compare well with past work as well as an independent numerical simulation. 
The model presented here is simple, computationally fast, and does not suffer from stability problems commonly 
encountered in numerical solutions of the CDRS equation. Furthermore, the model is used to solve a represen-
tative CDRS problem. The model presented here may help analyze transport problems in various engineering 
applications, such as drug delivery, heat transfer in reacting systems, and air pollution dispersion. The analytical 
solution may also serve as a building block for solving more complicated problems such as transport in a 
multilayer body, as well as for verifying numerical simulation tools.   

1. Introduction 

Conservation equations involving diffusion, convection, and reac-
tion, commonly known as CDR equations, have been used to model a 
variety of engineering problems, including drug delivery in drug-eluting 
stents [1], mass transfer through porous media [2,3], chemicals 
dispersion in reactors [4], trickle beds [5], contaminant transport, 
pollution, and environmental applications [6–8]. A large number of 
analytical solutions have been presented for CDR equations in single- 
layer and multi-layer bodies. However, there are relatively fewer 
available analytical solutions for a convection-diffusion-reaction equa-
tion involving an independent source or sink term, known as a CDRS 
equation. Past papers have suggested that an analytical solution of the 
CDRS equation is, in general, difficult to obtain [9,10]. 

Analytical solutions have been derived for special cases such as 
convection-diffusion equation with a constant source term to model 
contaminant transport in streams and rivers [7], or diffusion-source 
equation without the effect of convective transport [11]. A few studies 
have derived analytical solutions to CDRS problems with more general 
source terms. For example, a generalized integral transform technique 
(GITT) was used to develop an exact solution for a CDRS problem with a 

space-dependent source term and coefficients [12] and a general source 
term and constant boundary conditions [13]. A combination of Laplace 
transform with the GITT was used to obtain an analytical solution to the 
CDRS problem in a semi-infinite domain with a time-dependent 
boundary condition. However, the source term in this study was a 
product of a space-dependent and a time-dependent function [14]. 
Laplace transform was used to derive analytical solutions for the CDRS 
problem involving uniform varying pulse input point sources [3]. The 
eigenfunction expansion method was used to derive an analytical solu-
tion for the CDRS problem involving a general source term, time- 
dependent temperature boundary conditions, and spatially varying 
diffusivity and velocity [8]. Green’s function method was used to obtain 
analytical solution of the infinite domain CDRS problem to study solute 
transport in groundwater [15]. A one-sided Laplace transform was used 
to derive an analytical solution to the general CDRS equation [9]. A 
transfer function analysis of generalized diffusion equations using 
Green’s functions has been presented for infinite [16] and semi-infinite 
media [17]. Unlike the limited number of available analytical solutions, 
a significant amount of past literature is available on numerical and 
approximate analytical solutions of the CDRS equation. Early work by 
Codina [18] presented a comparison between a number of finite- 
element methods for solving the CDRS equation. A numerical solution 
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to the CDRS equation based on an improved spectral Galerkin method 
was recently presented [10]. A Lattice Boltzmann method based nu-
merical solution of the convection-diffusion equation with a general 
source term has been presented [19]. A semi-analytical solution for the 
CDRS equation to model solute transport in a multi-layer porous media 
using Laplace transform has been presented [20]. Boundary Element 
Method (BEM), which may be seen as a numerical version of the 
analytical Green’s function technique, has been also implemented to 
solve one- and two-dimensional convection-diffusion (CD) equations 
[21–23] and two-dimensional CDR equations [24]. Compared to other 
numerical methods, BEM only requires discretization at the boundaries 
and not the entire domain, resulting in computational efficiency. 

These numerical models typically require considerable computa-
tional time or memory due to a large set of ordinary differential equa-
tions (ODEs) resulting from spatial discretization. Further, numerical 
models may suffer from instability under certain conditions [25]. These 
challenges are exacerbated in problems involving multi-layer media. 
Analytical solutions, on the other hand, offer better accuracy and 
computational speed, and provide useful insights into the fundamental 
nature of the problem. Therefore, a simple closed-form analytical solu-
tion of the CDRS equation is desirable. Such a solution for a single-layer 
body may serve as the basis for the analysis of more complicated multi- 
layered geometries. It may also help verify the accuracy of numerical 
simulation codes. 

This paper presents an analytical solution of the one-dimensional 
CDRS equation for a finite domain with an arbitrary initial condition, 
a general source/sink term, and general time-dependent boundary 
conditions using the Green’s function method. Unlike most of the pre-
vious studies that assumed constant or specific types of source/sink 
terms, the closed-form solution presented here can be used for problems 
with any general time- and space-dependent source/sink term. Despite 
the infinite-series nature of the solution, it is shown that only a few ei-
genvalues are sufficient for an accurate solution, resulting in a compu-
tationally fast model, compared to numerical methods. The analytical 
solution compares well with results from a past study as well as nu-
merical simulations. The theoretical model presented here expands the 
understanding of multi-phenomena transport processes. The model 
presented here may be helpful for analytical solutions of transport 
problems occurring in several practical applications such as drug de-
livery, heat transfer in reacting systems, dispersion of air pollution and 
porous media. 

2. Problem statement and non-dimensionalization 

Consider a one-dimensional transient problem governed by a 
convection-diffusion-reaction-source (CDRS) equation, such as shown in 
Fig. 1. While discussed here as a heat transfer problem, the treatment is 
equally applicable to other transport problems, such as species transport 
governed by diffusion, convection, and species generation/ 

consumption. 
In the present problem, heat transfer occurs within this body due to 

diffusion as well as convection due to an imposed one-dimensional fluid 
flow. In addition, heat is generated or absorbed throughout the body at a 
rate proportional to the local temperature. Finally, an arbitrary source 
term that varies in both space and time is also imposed throughout the 
body. A general time-dependent boundary condition of the third kind is 
assumed at both boundaries. This can be reduced to boundary condi-
tions of the first and second kinds by an appropriate choice of the 
convective heat transfer coefficient. Assuming temperature-independent 
properties, the governing energy conservation equation for this problem 
is 

∂T
∂t

= α ∂2T
∂x2 − U

∂T
∂x

+ βT + s(x, t) (1) 

Where T represents the temperature relative to ambient temperature. 
α and U represent thermal diffusivity and velocity, respectively. β is the 
source coefficient that models heat generation/absorption that is line-
arly dependent on the temperature field, such as in a first-order 
exothermic/endothermic chemical reaction. s(x,t) is an arbitrary 
source term that represents a non-homogeneity in the governing equa-
tion. The associated boundary conditions are taken to be 

− k
∂T
∂x

+ hAT = fA(t)at x = 0 (2)  

k
∂T
∂x

+ hBT = fB(t) at x = L (3) 

Nomenclature 

Bi Biot number 
h convective heat transfer coefficient (Wm− 2 K− 1) 
k thermal conductivity (Wm− 1 K− 1) 
L length (m) 
N eigenvalue norm 
Pe Péclet number, the non-dimensional ratio of diffusion and 

convection terms 
T temperature (relative to ambient) (K) 
T0 initial temperature (K) 
U velocity (ms− 1) 
x spatial coordinate (m) 

s source/sink term (Ks− 1) 
s non-dimensional source/sink 
t time (s) 
α diffusivity (m2s− 1) 
β generation/consumption coefficient (s− 1) 
β non-dimensional generation/consumption coefficient 
τ non-dimensional time 
θ non-dimensional temperature 
θ0 non-dimensional initial temperature 
ξ non-dimensional spatial coordinate 
λ non-dimensional eigenvalue  

Fig. 1. Schematic of the single-layer problem with diffusion, convection, re-
action and a general source term. 
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Note that Eqs. (2) and (3) can be transformed to the temperature and 
flux boundary conditions by choosing k, h, and f appropriately. Further, 
an arbitrary initial temperature distribution is assumed as follows: 

T = T0(x) at t = 0 (4) 

Eqs. (1)–(4) are non-dimensionalized using the non-dimensional 
parameters defined below: 

θ = T
Tref

, ξ = x
L, τ = α2t

L2 , Pe = UL
α , β = βL2

α , θ0 = T0
Tref

, BiA = hAL
k , BiB = hBL

k , 

s = sL2

αTref
, FA =

LfA
kTref

, FB =
LfB

kTref
. 

Here, Pe is the Péclet number that represents the ratio of diffusion 
and convection terms. 

Based on this, the non-dimensional CDRS equations are 

∂θ
∂τ =

∂2θ
∂ξ2 − Pe

∂θ
∂ξ

+ βθ + s(ξ, τ) (5)  

−
∂θ
∂ξ

+BiAθ = FA(τ)at ξ = 0 (6)  

∂θ
∂ξ

+BiBθ = FB(τ) at ξ = 1 (7)  

θ = θ0 (ξ) at τ = 0 (8) 

The general solution to a non-dimensional transport equation using 
Green’s function approach can be written as: 

ψ(ξτ) =
∫

L’
G(ξ, τ|ξ’, τ’)τ’=0ψ0(ξ’)ξ’pdξ’ 

+

∫ t

τ=0

∫

L’
G(ξ, τ|ξ’, τ’)g(ξ’, τ’)ξ’pdξ’dτ’ 

+
∑N

i=1

{∫ t

τ=0

∫

[ξ’pG(ξ, τ|ξ’, τ’) ]ξ’=ξi
Fi(τ’)dτ’

}

(9)  

where L is the domain of the 1-D region, ψ is a general transport variable, 
θ(ξ,τ) in this casee. ξ’p is the Sturm–Liouville weight function, and p = 0, 
1 or 2 represents slabs, cylinders or spheres respectively. ψ0(ξ′), g(ξ′, τ′), 
and Fi(τ′) are the non-homogeneities in the initial condition, source/ 
sink, and the boundary conditions. Thus, the first, second, and third 
terms in Eq. (9) describes the contribution of the initial condition θ0, 
source/sink s, and the boundary conditions FA and FB, respectively. G is 
the Green’s function that must be determined from the solution of the 
homogeneous CDRS equation. In the case of the first type boundary 
conditions, the third term on the right-hand side of Eq. (9) must be 
modified, as described in [26]. By defining a new variable φ(ξ, τ) =

θ(ξ, τ)exp
(

− Peξ
2

)

, the corresponding homogeneous problem can be 

written as follows: 

∂φ
∂τ =

∂2φ
∂ξ2 +

(

β −
Pe2

4

)

φ (10)  

−
∂φ
∂ξ

+Bi*Aφ = 0 at ξ = 0 (11)  

∂φ
∂ξ

+Bi*Bφ = 0 at ξ = 1 (12)  

φ = θ0(ξ)exp
(

−
Peξ

2

)

= φ0 (ξ) at τ = 0 (13)  

where Bi*A = BiA − Pe
2 and Bi*B = BiB + Pe

2 . Using separation of variables, 
the solution to the above equations can be written to be of the following 
form: 

φ(ξ, τ) =
∑∞

n=1
An

[

cos(ωnξ)+
Bi*A
ωn

sin(ωnξ)
]

exp
(
− λ2

nτ
)

(14)  

where ωn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
n + β − Pe2

4

√

. The eigenvalues and coefficients in the 
spatial term need to be chosen to satisfy the boundary conditions, 
whereas coefficients An need to be chosen in order to account for the 
initial condition. Substituting Eq. (13) into the boundary conditions 
given by Eq. (12) results in the following eigenequation: 

ωn

[

− sin(ωn)+
Bi*A
ωn

cos(ωn)

]

+Bi*B

[

cos(ωn)+
Bi*A
ωn

sin(ωn)

]

= 0 (15) 

Applying the initial condition on Eq. (14) results in the following 
expression for An: 

An =
1

Nn

∫1

0

ϕ0(ξ
′)

[

cos(ωnξ′) +
Bi*A
ωn

sin(ωnξ′)
]

dξ′ (16)  

where the norm Nn is given by 

Nn =

∫1

0

[

cos(ωnξ) +
Bi*A
ωn

sin(ωnξ)
]2

dξ (17) 

The final expression for φ(ξ,τ) can be written as: 

φ(ξ, τ) =
∑∞

n=1

∫1

0

1
Nn

exp
(
− λ2

nτ
)
[(

cos(ωnξ)+
Bi*A
ωn

sin(ωnξ)
)

(

cos(ωnξ′) +
Bi*A
ωn

sin(ωnξ′)
)]

ϕ0(ξ
′)dξ′ (18) 

Comparing Eq. (18) with Eq. (9) results in the following Green’s 
function calculated for τ′ = 0: 

G(ξ, τ|ξ′

, τ′)τ′ =0 =
∑∞

n=1

1
Nn

exp
(
− λ2

nτ
)
[(

cos(ωnξ)+
Bi*A
ωn

sin(ωnξ)
)

(

cos(ωnξ′) +
Bi*A
ωn

sin(ωnξ′)
)]

(19) 

The general expression of the Green’s function is obtained by 
replacing τ with τ − τ′in Eq. (19) as follows: 

G(ξ, τ|ξ′, τ′) =
∑∞

n=1

1
Nn

exp
(
− λ2

n(τ − τ′)
)
[(

cos(ωnξ)+
Bi*A
ωn

sin(ωnξ)
)

(

cos(ωnξ′) +
Bi*A
ωn

sin(ωnξ′)
)]

(20) 

Finally, the complete solution for φ is obtained by substituting Eq. 
(20) into the general form of the solution given by Eq. (9). The tem-

perature field is then obtained by using θ(ξ, τ) = φ(ξ, τ)exp
(

Peξ
2

)

. 

This completes an analytical solution of the CDRS problem with an 
arbitrary source term. This solution is relatively straightforward and 
does not require computationally-intensive inverse Laplace transform. 
Note that the solution has been derived for a general boundary condition 
of the third kind. The boundary condition reduces to that of the first or 
second kind by setting the associated Biot number to infinity or zero, 
respectively. Finally, note that if both boundary conditions are adia-
batic, i.e., BiA = BiB = 0, then the λ = 0 eigenvalue must be included 
[26]. 

3. Results and discussion 

Since the analytical solution presented in the previous section con-
tains an infinite eigenvalue-based series, the accuracy of results and the 
required computational time both depend on the number of eigenvalues 
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considered in the solution. In order to examine the effect of the number 
of eigenvalues, the non-dimensional temperature is plotted as a function 
of space for different numbers of eigenvalues in Fig. 2. A case with 
convective boundary conditions at both ends – BiA = 10 and BiB = 15 – is 
considered as an example. The values of α and β are taken to be 1 and 10. 
Three different values of Pe = 1, 10, and 20 are considered for this 
problem. Further, a periodic source term s = +60sin(ξτ) is considered in 
this case. Fig. 2(a), (b), and (c) show the temperature distribution as a 
function of space for Pe = 1, 10, and 20, respectively. Fig. 2 shows that 
the temperature distribution changes as the number of eigenvalues in-
creases and converges to the final distribution for all the Pe values. As 
shown, the number of eigenvalues required for convergence increases as 
the Péclet number increases. However, even for a very large Pe = 20, the 
number of eigenvalues needed is still reasonably small. In general, for 
any given problem, it is important to independently determine the 
minimum number of eigenvalues needed for convergence, since this 
may depend on the values of specific parameters, as shown in Fig. 2. For 
this particular problem, 7, 15, and 25 eigenvalues are sufficient for 
convergence for Pe = 1, 10, and 20, respectively, resulting in a total 
computation time of around 0.4 s, 2.0 s, and 3.3 s, respectively, 
compared to 4.1 s for a discretization-based numerical technique. 

A comparison against previous work [10] is carried out in order to 
validate the analytical solution developed in the present study. Zhong 
et al. presented a numerical solution to the transient CDRS equations 
subject to an independent source/sink term based on an improved 
spectral Galerkin method [10]. Note that this past work was carried out 
in the context of mass transfer, and results were presented with 
dimensional units [10]. Fig. 3 presents a comparison of the analytical 
model with the past work. Specifically, concentration is plotted as a 
function of space at three different locations in Fig. 3(a) and as a func-
tion of time at three specific locations in Fig. 3(b). The parameters used 
for comparison are α = 1, β = 1, U = 1, Pe = π, and s = e− 0.5x sin (5x), 
consistent with the ones used by Zhong et al. [10]. Results show very 
good agreement between the present analytical model and the past 

work. 
The accuracy of the analytical solution presented here is further 

established through a comparison with a numerical simulation. The 
numerical simulation is carried out using an implicit finite difference 
method. Non-dimensional governing equations (Eqs. (5)–(8)) are dis-
cretized using a central difference scheme into 1000 spatial nodes and 
1000 time steps. Comparison is carried out for two different cases. In the 
first case shown in Fig. 4(a), a constant initial condition of θ = 1 and 
isothermal boundary conditions at the two ends, θ = 0, are considered. 
The values of α and β are taken to be 1 and 10, respectively. The non- 
dimensional source term is taken to be s = 10ξτ. Fig. 4(a) shows 
excellent agreement between the temperature profile predicted by the 
analytical solution and the numerical simulation for different values of 
Pe ranging from Pe = 0 to Pe = 20. These curves clearly show the impact 
of increasing Pe. As Pe increases, the impact of convection relative to 
diffusion increases, which is the reason why the curves in Fig. 4(a) shift 
somewhat towards the right, and the peaks go down, due to increased 
heat removal by convection. For further comparison, a case with a 
different source function is considered. Boundary conditions and values 
of other parameters α, β, θ0 and Pe are taken to be the same as those in 
Fig. 4(a). A sinusoidal source term s = 60sin(ξτ) is considered. Results 
plotted in Fig. 4(b) show, similar to Fig. 4(a), excellent agreement be-
tween the analytical solution and the numerical simulation. Good 
agreement with the numerical simulation provides further confidence in 
the correctness of the analytical derivation presented here. 

To demonstrate the capability of the present model, a more sophis-
ticated source/sink function is considered next. The model is used to 
solve the CDRS equation subject to a source/sink term that combines 
sinusoidal variation in space with exponential reduction in time. A 
constant initial condition of θ = 0 and convective boundary conditions at 
the two with BiA = 0. 5 and BiB = 0.25 are considered. The values of α, β, 
and Pe are taken to be 1, 2, and 1, respectively. Fig. 5(a) and (b) present 
plots of non-dimensional temperature as a function of non-dimensional 
space at τ = 1 for two different sources – s = e− τsin(2πx) and s = e− τsin 

Fig. 2. Effect of the number of eigenvalues on the accuracy of the solution: Spatial variation in temperature θ at τ = 0.2 for s = 60sin(ξτ), BiA = 10, BiB = 15, Pe = 1, 
and β = 10 for: (a) Pe = 1, (b) Pe = 10, and (c) Pe = 20. 

Fig. 3. Comparison of present analytical model against past numerical work [10]: (a) Concentration as a function of space at three different times, and (b) Con-
centration as a function of time at three different locations. 

M. Parhizi et al.                                                                                                                                                                                                                                 



International Communications in Heat and Mass Transfer 131 (2022) 105869

5

(4πx) – respectively. The source/sink function is also shown in the inset. 
As shown in Fig. 5(a) inset, the source/sink starts from zero, becomes 
positive (heat generation), changes sign and becomes negative (heat 
consumption) at ξ = 0.5, and finally reaches zero at ξ = 1. Fig. 5(a) 
shows that the temperature profile captures the periodic nature of the 
source function, resulting in maximum temperature in the first half of 
the body due to heat generation and relatively lower temperatures in the 
second half of the body due to heat consumption. In a more complicated 
scenario, Fig. 5(b) shows multiple peaks and troughs in the computed 
temperature profile that are consistent with the underlying source/sink 
function. In both cases, in addition to the spatial variation, there is a 
gradual reduction in temperature over time due to the exponentially 
decaying nature of the heat generation term. These figures demonstrate 
the capability of the analytical model to model physical phenomena 
governed by CDRS equations involving arbitrary independent source/ 
sink term. 

4. Conclusions 

This work presents a Green’s function based analytical solution to a 
transient one-dimensional CDRS equation with any arbitrary source/ 
sink term. The analytical solution accounts for arbitrary initial condi-
tion, source-sink term, and general time-dependent boundary condi-
tions. The resulting analytical solution presented here is exact, 
computationally fast, and compares well with past work and an inde-
pendent numerical simulation. Solution of a specific CDRS problem 
presented in the previous section demonstrates the capability of the 
analytical model. In general, the model is capable of solving problems 
with arbitrary source/sink term without the need for computationally 
intensive steps such as inverse Laplace transform. In addition to 
improving the understanding of multi-phenomena transport processes, 
this work may also help solve practically relevant transport problems in 
a variety of applications. 
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