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a b s t r a c t 

Controlled drug delivery from a multilayer spherical capsule is used for several therapeutic applications. 

Developing a theoretical understanding of mass transfer in the multilayer capsule is critical for under- 

standing and optimizing targeted drug delivery. This paper presents an analytical solution for the mass 

transport problem in a general multilayer sphere involving diffusion as well as drug immobilization in 

various layers due to binding reactions. An eigenvalue-based solution for this multilayer diffusion-reaction 

problem is derived in terms of various non-dimensional quantities including Sherwood and Damköhler 

numbers. It is shown that unlike diffusion-reaction problems in heat transfer, the present problem does 

not admit imaginary eigenvalues. The effect of binding reactions represented by the Damköhler numbers 

and outer surface boundary condition represented by the Sherwood number on drug delivery profile is 

analyzed. It is shown that a low Sherwood number not only increases drug delivery time, but also re- 

duces the total mass of drug delivered. The mass of drug delivered is also shown to reduce with increas- 

ing Damköhler number. The impact of shell thickness is analyzed. The effect of a thin outer coating is 

accounted for by lumping the mass transfer resistance in series with convective boundary resistance, and 

a non-dimensional number involving the thickness and diffusion coefficient of the coating is shown to 

govern its impact on drug delivery characteristics. The analytical model presented here improves the un- 

derstanding of mass transfer in a multilayer spherical capsule in presence of binding reactions, and may 

help design appropriate experiments for down-selecting candidate materials and geometries for drug de- 

livery applications of interest. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Targeted release of a drug from an appropriately designed cap- 

ule is of much interest in a variety of therapeutics [1] . Compared 

o traditional mechanisms of drug delivery, targeted release from a 

apsule offers enhanced efficacy, reduced side effects and the pos- 

ibility of personalized medicine [ 2 , 3 ]. The capsule usually com- 

rises a drug-loaded core surrounded by one or more encapsulant 

ayers that provide mechanical stability, chemical protection from 

he ambient, and may also be used for controlling the rate of re- 

ease of the drug. A thin coating on the outer surface is also often 

rovided for similar reasons [ 4 , 5 ]. 
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E-mail address: jaina@uta.edu (A. Jain). 

k

d  

m

a

ttps://doi.org/10.1016/j.ijheatmasstransfer.2021.122072 

017-9310/© 2021 Elsevier Ltd. All rights reserved. 
It is important to understand the factors that govern the rate 

f drug delivery into the release medium. Experimental investiga- 

ion of targeted drug delivery, especially in vivo , is expensive and 

umbersome. Therefore, theoretical modeling of targeted drug re- 

ease may play a critical role in down selecting candidate designs 

nd materials, and in guiding the design of effective experiments. 

 comprehensive understanding of the processes that affect drug 

elivery may help design next-generation drug delivery systems, 

owards personalized medicine [ 2 , 3 ]. 

Depending on the physicochemical properties of the drug- 

oaded capsule, several different mechanisms may govern the re- 

ease rate of the drug. It is usually assumed that diffusion is the 

ey process, with the radial concentration gradient driving the 

rug release [6] . However, if the drug is loaded in a solid form, it

ay first need to undergo a dissolution process before being made 

vailable for diffusion [7] . The rate at which the drug dissolves 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.122072
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
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Nomenclature 

c concentration (mol m 

−3 ) 

D diffusion coefficient (m 

2 s −1 ) 

D non-dimensional diffusion coefficient 

h mass transfer coefficient (ms −1 ) 

i unit imaginary number, i = 

√ −1 

M number of layers 

N non-dimensional eigenfunction norm 

R radius (m) 

r radial coordinate (m) 

Sh Sherwood number 

t time (s) 

β reaction rate (s −1 ) 

β non-dimensional reaction rate 

γ non-dimensional interface location 

τ non-dimensional time 

ψ cumulative fraction of drug released 

χ cumulative fraction of drug absorbed in each layer 

ρ fraction of drug remaining in each layer 

θ non-dimensional concentration 

ξ non-dimensional radial coordinate 

λ non-dimensional eigenvalue 

σ drug partition coefficient 

Subscripts 

m layer number 

ref reference value 

in initial value 

s highly dependent on the properties of the drug and release 

edium, for example solubility, temperature and pH, among other 

actors. However, in many cases, the drug is either readily available 

n a dissolved form, or dissolves on a much faster timescale than 

hat of diffusion. In such cases, the dissolution process can reason- 

bly be neglected. As the drug diffuses outwards, some of it may 

rreversibly bind to components of the core and/or shell, resulting 

n reduction in mass of drug delivered. Such binding may be a pH- 

ependent process and has previously been approximated by first- 

rder reaction kinetics [8] . On the outer surface of the core-shell 

omposite, the drug is released into the medium with a mass flux 

hat depends on the convective boundary conditions on the outer 

urface. In some cases, for example, when the capsule is suspended 

n a large volume of biofluid, the outer boundary condition may be 

odeled as an infinite sink, i.e. a zero concentration condition. In 

ther cases, for example, when the outside medium is a tissue, a 

eneral convective boundary condition may be more appropriate. 

ey parameters that govern the overall drug release rate over time 

nclude diffusion coefficients in the core and shell, reaction rates 

ssociated with binding reactions, parameters governing transport 

t the core-shell interface and the convective mass transfer coef- 

cient on the outer boundary. Comprehensive theoretical analysis 

f the drug diffusion and delivery process is critically needed to 

nderstand the role of these parameters and optimize system per- 

ormance. 

From a mass transfer perspective, the problem of drug deliv- 

ry from a multilayer capsule may be interpreted as a diffusion- 

eaction problem [1] . In the present case, a balance between drug 

iffusion across layers, binding reactions in each layer and convec- 

ive conditions on the outer surface determines the dynamics of 

rug concentration distribution within the capsule and the rate of 

rug delivered over time. Diffusion-reaction problems have been 

nvestigated for a variety of applications, including Li-ion batter- 

es [9] , biofilm growth [10] , plasma systems [11] , reactor design 
2 
12] and biology [13] . In the field of drug delivery, the simplest 

odels are either empirical with no physical description of the 

nderlying drug release mechanism, or based upon the assump- 

ion that diffusion alone governs the drug release. Past papers and 

extbooks offer details on such models [ 14 , 15 , 16 ]. Notwithstanding,

ore comprehensive mechanistic models have been developed in 

he context of drug delivery, incorporating linear and non-linear, 

rreversible and reversible, saturable and non-saturable binding ki- 

etics, as well as descriptions of other physical processes such 

s degradation, erosion, swelling, and osmotic pumping [ 17 , 18 , 19 ].

hese models almost always require numerical solution due to 

heir complexity. Often, however, modeling all of these processes 

s unnecessary, since the slowest process ultimately determines the 

elease rate. 

While diffusion-reaction systems have been studied in detail 

or a variety of applications, there is a relative lack of stud- 

es on diffusion-reaction in a multilayer body, as is relevant for 

he present work. A recent paper presented analysis of diffusion- 

eaction in a multilayer Li-ion cell [9] . Some work also exists in 

he context of drug diffusion in a two-layer or three-layer structure 

20–24] , but these studies are focused on specific problems, do not 

resent generalized multilayer analysis and often rely on numeri- 

al analysis. On the other hand, analytical solutions may be desir- 

ble compared to numerical solutions because of the fundamental 

nsights that analytical solutions provide, as well as the potential 

mprovement in computational cost and complexity. 

Analytical solutions for pure-diffusion multilayer problems us- 

ng the separation of variables technique are well-known [ 25 , 26 ]. 

hese analytical solutions express the temperature/concentration 

n a series solution and utilize the boundary and interface con- 

itions to determine the eigenvalues. However, such standard so- 

utions do not readily apply to multilayer diffusion-reaction prob- 

ems. Extension to a general M -layer spherical diffusion-reaction 

roblem of interest here is not straightforward, since the reac- 

ion term may introduce additional complications in the analytical 

echnique. 

A key aspect of theoretical and practical interest in 

igenfunction-based series solution of multilayer diffusion-reaction 

roblems is the occurrence of imaginary eigenvalues. As shown 

ecently, imaginary eigenvalues lead to a runaway situation in the 

ystem, and may arise when reaction-driven generation dominates 

ver diffusion and removal from the boundaries [9] . While this 

as been studied in the context of heat transfer in Li-ion cells [ 9 ],

 similar diffusion-reaction mass transfer analysis in a multilayer 

apsule may be of much interest. Note that unlike previously stud- 

ed heat transfer problems, where heat may be either generated 

r absorbed due to reaction, in the present problem, only drug 

bsorption driven by binding reactions is relevant. 

This paper presents theoretical analysis of drug delivery from 

 multilayer spherical capsule. The analysis accounts for diffusion 

nd reaction in a multi-layer spherical body and includes a gen- 

ral mass transfer boundary condition on the outer surface. The 

nalysis predicts the drug release profile over time, and its depen- 

ence on various problem parameters including geometry, diffu- 

ion coefficients, reaction constants and conditions on the outer 

urface. It is shown that within the parameter space of relevance 

o common drug systems of interest, the reaction constants, along 

ith the convective boundary condition on the outer surface, play 

 key role in determining the mass of drug delivered, as well as 

he time constant of the drug delivery process. The analytical so- 

ution presented here accounts for key aspects of drug delivery 

ynamics and provides useful insights into the drug delivery pro- 

ess. Through the relationships between various non-dimensional 

arameters, it can be used to identify simple relationships or clin- 

cal indicators of biomechanical significance. 
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Fig. 1. Schematic of the geometry of the M -layer spherical diffusion-reaction prob- 

lem. 
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. Problem definition and derivation of solution 

.1. Problem definition 

Fig. 1 shows a schematic of the problem of interest here. Con- 

ider the problem of drug release from a spherical capsule, made 

f M concentric layers of inner and outer radii R m-1 and R m 

, re-

pectively, and constant diffusion coefficients D m 

( m = 1,2…., M ). 

he inner-most layer is a spherical core of radius R 1 . While the 

ost common case is that of initial drug loaded only in the core 

 m = 1), a general assumption of the drug being initially loaded in

ne or more layers is made. The capsule is assumed to erode over a 

imescale much larger than the timescale for drug delivery, so that 

he geometry may be assumed to remain invariant for the present 

nalysis. As time passes, the drug diffuses through the various lay- 

rs and eventually releases into the environment at the outer sur- 

ace of the sphere. In addition to diffusion, a chemical reaction 

ccurring in the layers results in absorption of some of the drug 

ithin the sphere. Such a reaction is undesirable as it traps the 

rug within the capsule and reduces the mass of drug released into 

he external medium. In the absence of experimental evidence, this 

eaction is assumed to be first-order, i.e., with a constant rate βm 

. 

rug release at the outer surface is assumed to be governed by 

 general mass transfer boundary condition with coefficient h . A 

imiting case of this boundary condition would be h → ∞ , corre- 

ponding to zero concentration at the boundary, i.e., the surround- 

ng medium acts as an infinite sink. The initial concentration in 

he m 

th layer is taken to be c m,in ( r ). While most drug-delivery cap-

ules are designed to be two-layer, i.e., a core surrounded by a 

hell, a general M -layer analysis is presented here first, followed 

y derivation of the results for the special case of a two-layer 

ystem. 

The problem is assumed to be axisymmetric, so that the con- 

entration field is a function only of r and t . Assuming that all

f the drug is initially dissolved (or dissolves at a timescale much 

aster than the diffusion timescale) and available for diffusion, the 

overning conservation equation for c m 

, the concentration in the 

 

th layer may be written as: 

∂c m 

∂t 
= D m 

1 

r 2 
∂ 

∂r 

(
r 2 

∂c m 

∂r 

)
− βm 

c m 

R m −1 < r < R m 

( m = 1 , 2 , 3 . . . M ) 

(1) 

hich represents a balance between diffusion, reaction and tran- 

ient terms. 

The associated boundary conditions are 

 1 is fini te as r → 0 (2) 

D M 

∂c M = hc M 

at r = R M 

(3) 

∂r 

3 
At the interfaces, the following conditions apply 

 m +1 = σm 

c m 

at r = R m 

( m = 1 , 2 . . . M − 1 ) (4) 

 m 

∂c m 

∂r 
= D m +1 

∂c m +1 

∂r 
at r = R m 

( m = 1 , 2 . . . M − 1 ) (5) 

here σm 

is the drug partition coefficient [27] , assumed to the in- 

ependent of the concentration field [28] . In general, σm 

may de- 

end on the concentration field in nonlinear reaction-diffusion sys- 

ems, where saturable binding occurs on a timescale much quicker 

han diffusion [29] , however, this is clearly not the case here, and 

ssuming a constant partition coefficient is reasonable. Note that 

m 

is a measure of how much the drug prefers to be in one layer 

ompared with the next, and depends on various factors including 

he lipophilicity of the drug. When the layer materials are similar 

n terms of interactions with the drug, σm 

= 1 , indicating continu- 

ty of concentration. 

The initial condition is given by 

 m 

= c m, in ( r ) at t = 0 ( m = 1 , 2 , 3 . . . M ) (6) 

.2. Nondimensionalization 

In order to non-dimensionalize the problem, the following vari- 

bles are introduced: 

θm 

= 

c m 

c re f 

, ξ = 

r 

R M 

, τ = 

D M 

t 

R 

2 
M 

, γm 

= 

R m 

R M 

, D̄ m 

= 

D m 

D M 

, 

¯
m 

= 

βm 

R 

2 
M 

D M 

; θm,in = 

c m,in 

c re f 

, Sh = 

h · R M 

D M 

. 

ere, c re f is a reference concentration, which may be chosen as the 

aximum concentration at the initial time, which is usually the 

oncentration in the core. Note that β̄m 

is the Damköhler number 

or the m 

th layer that represents the reaction process, and Sh is the 

herwood number that represents mass transfer at the boundary. 

Based on this, the governing equations may be re-written in 

on-dimensional form as follows: 

∂θm 

∂τ
= 

D m 

ξ 2 

∂ 

∂ξ

(
ξ 2 ∂θm 

∂ξ

)
− βm 

θm 

γm −1 < ξ < γm 

( m = 1 , 2 , 3 . . . M ) 

(7) 

ubject to 

1 is fini te as ξ → 0 (8) 

∂θM 

∂ξ
+ Sh · θM 

= 0 at ξ = 1 (9) 

m +1 = σm 

θm 

at ξ = γm 

( m = 1 , 2 . . . M − 1 ) (10) 

 m 

∂θm 

∂ξ
= D m +1 

∂θm +1 

∂ξ
at ξ = γm 

( m = 1 , 2 . . . M − 1 ) (11) 

long with the following initial condition: 

m 

= θm, in ( ξ ) at τ = 0 ( m = 1 , 2 , ..M ) (12) 

Eqs. (7) - (12) define the spherical multilayer diffusion-reaction 

roblem in non-dimensional form. 

.3. Solution methodology 

A solution for Eqs. (7) - (12) may be obtained using the separa- 

ion of variables technique in the following series form: 

m 

( ξ , τ ) = 

∞ ∑ 

n =1 

g n f m,n ( ξ ) exp 

(
−λ2 

n τ
)

(13) 
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w pendent terms, it can be shown that 

(14) 

w hat 

ω (15) 

s the drug, and therefore, β̄m 

is always positive. In contrast, the reaction 

c  be either positive or negative, depending on whether the reaction is 

e e of β̄m 

on imaginary eigenvalues in this problem are considered later 

i

11) are used to determine the unknown coefficients A m,n and B m,n , as 

w  one may obtain 

A (16) 

ω ,n sin ω M,n ] (17) 

A
 

γm 

) + B m,n sin ( ω m,n γm 

) ] m = 1 , 2 . . . M − 1 (18) 

 

ω m,n γm 

) + B m,n cos ( ω m,n γm 

) ] ] 

 m +1 ,n γm 

[ −A m +1 ,n sin ( ω m +1 ,n γm 

) + B m +1 ,n cos ( ω m +1 ,n γm 

) ] ] 

(19) 

s A m,n and B m,n ( m = 1,2.. M ). Since these equations are homogeneous, 

o  in order to ensure a non-trivial solution. It also follows that one of the 

e t results in the eigenequation needed to determine the eigenvalues λn . 

A  B m,n is presented in Appendix A , which shows that the eigenequation 

f

1 ̇ q M−1 ,n ( γM−1 ) γM−1 

 

( γM−1 ) cot ( ω M,n γM−1 ) γM−1 

(20) 

w rivative with respect to ξm . 

l condition given by Eq. (12) may be written as 

θ (21) 

of quasi-orthogonality of multi-layer eigenvalues. Specifically, for each 

l
) 
] , followed by integration within the layer. The resulting equations are 

a

g ξ (22) 

w

N (23) 

 only in the core, i.e., θm,in = 1 for m = 1 , θm,in = 0 for m = 2,3, M . This 

l

2

 released as a function of time. This may be obtained by integrating 

t lizing with respect to the initial drug loaded in the capsule. In non- 

d

ψ (24) 
here g n is a coefficient. By separating out the spatial and time-de

f m,n ( ξ ) = A m,n 
cos ( ω m,n ξ ) 

ξ
+ B m,n 

sin ( ω m,n ξ ) 

ξ

here, by inserting Eqs. (13) and (14) in Eq. (7) , it can be shown t

 m,n = 

√ 

λ2 
n − β̄m 

D̄ m 

Note that in the problem considered here, the reaction consume

oefficient in similar diffusion-reaction heat transfer problems may

ndothermic or exothermic [9] . The implications of a positive valu

n Section 4 . 

Now, the boundary and interface conditions given by Eqs. (8) - (

ell as the eigenvalues λn . By substituting Eq. (13) in Eqs. (8) - (11) ,

 1 ,n = 0 

 M,n [ −A M,n sin ω M,n + B M,n cos ω M,n ] = ( 1 − Sh ) [ A M,n cos ω M,n + B M

 m +1 ,n cos ( ω m +1 ,n γm 

) + B m +1 ,n sin ( ω m +1 ,n γm 

) = σm 

[ A m,n cos ( ω m,n

D m 

[ −A m,n cos ( ω m,n γm 

) − B m,n sin ( ω m,n γm 

) + ω m,n γm 

[ −A m,n sin (

= D m +1 [ −A m +1 ,n cos ( ω m +1 ,n γm 

) − B m +1 ,n sin ( ω m +1 ,n γm 

) + ω

m = 1 , 2 . . . M − 1 

Eqs. (16) - (19) constitute 2 M equations in 2 M unknown variable

ne must require the determinant of this set of equations to be zero

quations becomes redundant. The requirement of zero determinan

 formal derivation of the eigenequation, and coefficients A m,n and

or the general M -layer problem is given by: 

D̄ M 

σM−1 q M−1 ,n ( γM−1 ) [ ω M,n cot ( ω M,n γM−1 ) γM−1 − 1 ] − D̄ M−
D̄ M 

σM−1 q M−1 ,n ( γM−1 ) [ ω M,n γM−1 + cot ( ω M,n γM−1 ) ] + D̄ M−1 ̇ q M−1 ,n

+ 

1 − ω M,n cot ( ω M,n ) − Sh 

cot ( ω M,n ) + ω M,n − Sh · cot ( ω M,n ) 
= 0 

here q m,n (ξ ) is given in Appendix A . and over-dot denotes the de

Once the eigenvalues and coefficients are determined, the initia

m,in ( ξ ) = 

∞ ∑ 

n =1 

g n 

[
A m,n 

cos ( ω m,n ξ ) 

ξ
+ B m,n 

sin ( ω m,n ξ ) 

ξ

]
The coefficients g n may be determined by using the principle 

ayer m , Eq. (21) is multiplied by ξ 2 [ A m,n ′ 
cos ( ω 

m,n ′ ξ ) 

ξ
+ B m,n ′ 

sin ( ω 
m,n ′ ξ
ξ

dded, leading to the following expression for g n 

 n = 

1 

N n 

M ∑ 

m =1 

γm ∫ 
γm −1 

ξ 2 θm,in ( ξ ) 

[
A m,n 

cos ( ω m,n ξ ) 

ξ
+ B m,n 

sin ( ω m,n ξ ) 

ξ

]
d

here the norm N n is given by 

 n = 

M ∑ 

m =1 

γm ∫ 
γm −1 

[ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] 
2 
dξ

Note that in many practical cases, the drug is loaded uniformly

eads to significant simplification in Eq. (22) . 

.4. Drug delivery performance parameters 

A key parameter of interest is the cumulative fraction of drug

he concentration flux at the outer surface over time, and norma

imensional form, this quantity is given by 

 ( τ ) = 

∫ τ
0 

(
∂θM 

∂ξ

)
ξ=1 

dτ

M ∑ 

m =1 

∫ γm 

γm −1 
ξ 2 θm, in ( ξ ) dξ
4 
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e asymptotically at large time. In the absence of reaction ( ̄βm 

= 0) , 

ψ  multilayer sphere. However, for β̄m 

> 0 , ψ̄ (τ ) is expected to saturate 

a tion and can never be released. Further, note that in principle, complete 

r efine a release time as the time by which the drug delivered, ψ̄ (τ ) , is 

a

f drug absorption within each layer, is the total mass of drug absorbed 

d on of the initial drug loading as follows 

χ (25) 

n be expressed as a fraction of the initial drug loading as follows: 

ρ (26) 

ted to each other as follows: One may multiply the governing equation 

f  all the resulting equations. Further, integration over time followed by 

s

ψ (27) 

w n the system. 

2

f a thin coating on the outer surface of the sphere is described. A thin 

c drug release characteristics [ 4 , 5 ]. When the coating is relatively thin, it 

m er problem. Instead, one may add the mass transfer resistance offered 

b ce, in order to model the impact of the thin coating on the diffusion- 

r cient of the thin coating are l and D c , respectively, one may write the 

f  of Eq. (3) 

− (28) 

w

− (29) 

w  

l 
R M 

D M 
D c 

. Therefore, the analysis presented so far remains valid for mod- 

e

n coating results in a reduction of the effective value of the Sherwood 

n nsional parameter ḡ = 

l 
R M 

D M 
D c 

� 1 
Sh 

, i.e., when the conduction resistance 

o e boundary. This could happen when l � R M 

, i.e., a very thin coating, 

a d, when the coating is very thick, and/or poorly diffusive, one must 

e in the coating by considering it as one of the layers in the multilayer 

p  diffusivity. Therefore, whether the condition above is satisfied or not 

d

 next. 

3

al capsule, in which the drug is initially loaded uniformly in the core 

i problem by considering only diffusion [22] . Here, the effect of reaction 

w  case may be obtained by simply setting M = 2 in the previous section, 

i o-layer core-shell configuration occurs commonly. In this case, denoting 

t ns for concentration distributions are given by Eq. (7) with m = 1, 2. 

S tions (8) , Eq. (9) with M = 2, and Eqs. (10) and (11) with m = 1. The 

i . 

solution for the two-layer problem is given as follows: 

θ (30) 
Note that ψ̄ (τ ) is expected to increase with time and saturat
¯
 (τ ) → 1 at large time, i.e., all drug eventually diffuses out of the

t a value lower than 1 as some of the drug is absorbed due to reac

elease is achieved only at infinite time. Therefore, it is helpful to d

 fraction close to 1, say 0.95. 

Another parameter of interest, particularly due to the presence o

ue to reaction within each layer. This can be expressed as a fracti

m 

( τ ) = 

∫ τ
0 

∫ γm 

γm −1 
ξ 2 βm 

θm 

( ξ , t ) d ξd τ

M ∑ 

m =1 

∫ γm 

γm −1 
ξ 2 θm, in ( ξ ) dξ

Finally, the mass of drug remaining in each layer at any time ca

m 

( τ ) = 

∫ γm 

γm −1 
ξ 2 θm 

( ξ , τ ) dξ

M ∑ 

m =1 

∫ γm 

γm −1 
ξ 2 θm, in ( ξ ) dξ

The quantities ψ̄ (τ ) , χ̄m 

(τ ) and ρ̄m 

(τ ) can be shown to be rela

or each layer ( Eq. (7) ) by ξ 2 , integrate within each layer, and add

ome simplification may be shown to result in 

¯
 ( τ ) + 

M ∑ 

m =1 

χ̄m 

( τ ) + 

M ∑ 

m =1 

ρ̄m 

( τ ) = 1 

hich may be interpreted as a statement of overall mass balance i

.5. Modeling of a thin coating on the outer surface 

Finally, a resistance-based technique for modeling the impact o

oating is often provided for chemical stability and to control the 

ay not be practical to treat it as a separate layer in the multi-lay

y the thin coating to the convective resistance on the outer surfa

eaction problem. Assuming that the thickness and diffusion coeffi

ollowing modified boundary condition on the outer surface instead

D M 

(
∂ c M 

∂r 

)
r= R M 

= 

( c M 

) r= R M 
1 
h 

+ 

l 
D c 

hich, in non-dimensional form may be written as (
∂ θM 

∂ξ

)
ξ=1 

= S h 

∗( θM 

) ξ=1 

here, S h ∗ is the modified Sherwood number, given by 1 
Sh ∗ = 

1 
Sh 

+
ling the thin coating once Sh is replaced by S h ∗. 

This treatment shows that accounting for the impact of the thi

umber at the outer surface. This effect is negligible if the non-dime

f the coating is much smaller than the convective resistance at th

nd/or D c � D M 

, i.e., a highly diffusive coating. On the other han

xplicitly account for the transient concentration distribution with

roblem. Generally, the coating is quite thin, but of relatively low

epends on the specific values of parameters in the problem. 

The special case of a two-layer core-shell geometry is discussed

. Special case – two-layer core-shell capsule 

The commonly occurring case of a two-layer core-shell spheric

s considered here. Previous works have presented analysis of this 

ithin the core and shell is also included. While the results for this

t may be helpful to write these expressions explicitly, since the tw

he shell and core by 1 and 2, respectively, the governing equatio

imilarly, the boundary and interface conditions are given by equa

nitial condition for the problem is given by Eq. (12) with m = 1, 2

With some mathematical simplification, it can be shown that a 

1 ( ξ , τ ) = 

∞ ∑ 

n =1 

g n 
sin ( ω 1 ,n ξ ) 

ξ
exp 

(
−λ2 

n τ
)

5 
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θ (31) 

w

(32) 

s (33) 

a

D
1 ) 

]
(34) 

g

 ( ω 2 ,n ξ ) ) d ξ

) ] 
2 
d ξ

(35) 

rstly, in many cases, the drug is initially loaded uniformly only in the 

c  numerator in Eq. (35) can be removed. Another special case of interest 

i  ∞ ) , for which, one may obtain 

(36) 

s (37) 

eters to characterize the nature of drug delivery from the two-layer 

c  the cumulative drug released as a function of time is given by 

ψ  2 ,n ) − ( 1 + ω 2 ,n p n ) sin ( ω 2 ,n ) ) ] 

(
1 − exp 

(
−λ2 

n τ
))

λ2 
n 

(38) 

 is given by 

χ
ω 1 ,n γ1 cos ( ω 1 ,n γ1 ) 

ω 

2 
1 ,n 

](
1 − exp 

(
−λ2 

n τ
))

λ2 
n 

(39) 

χ  1 ) sin ( ω 2 ,n ) 

( ω 2 ,n γ1 − p n ) cos ( ω 2 ,n γ1 ) ] 

(
1 − exp 

(
−λ2 

n τ
))

λ2 
n 

(40) 

ny time, relative to the original drug loading is given by 

ρ
s ( ω 1 ,n γ1 ) 

]
exp 

(
−λ2 

n τ
)

(41) 

ρ ) + ( p n − ω 2 ,n ) cos ( ω 2 ,n ) 

1 ) ] exp 

(
−λ2 

n τ
)

(42) 

t at any time 

ψ (43) 
2 ( ξ , τ ) = 

∞ ∑ 

n =1 

g n s n 

[
p n 

cos ( ω 2 ,n ξ ) 

ξ
+ 

sin ( ω 2 ,n ξ ) 

ξ

]
exp 

(
−λ2 

n τ
)

here 

p n = 

−( 1 − Sh ) sin ( ω 2 ,n ) + ω 2 ,n cos ( ω 2 ,n ) 

( 1 − Sh ) cos ( ω 2 ,n ) + ω 2 ,n sin ( ω 2 ,n ) 

 n = 

σ1 sin ( ω 1 ,n γ1 ) 

p n cos ( ω 2 ,n γ1 ) + sin ( ω 2 ,n γ1 ) 

nd the eigenequation is given by 

¯
 1 

[
− 1 

γ1 

+ ω 1 ,n cot ( ω 1 ,n γ1 ) 

]
= σ1 

[
− 1 

γ1 

+ 

ω 2 ,n (−p n + cot ( ω 2 ,n γ

1 + p n cot ( ω 2 ,n γ1 ) 

Finally, the coefficients g n are obtained from 

 n = 

γ1 ∫ 
0 

ξθ1 ,in ( ξ ) sin ( ω 1 ,n ξ ) d ξ + 

1 ∫ 
γ1 

ξθ2 ,in ( ξ ) s n ( p n cos ( ω 2 ,n ξ ) + sin

γ1 ∫ 
0 

sin 

2 
( ω 1 ,n ξ ) d ξ + 

1 ∫ 
γ1 

[ s n ( p n cos ( ω 2 ,n ξ ) + sin ( ω 2 ,n ξ ) 

A few special cases of the two-layer problem are of interest. Fi

ore. In such a case, θ2 ,in = 0 , and therefore, the second term in the

s that of a zero concentration boundary at the outer surface ( Sh →
p n = − tan ( ω 2 ,n ) 

 n = 

−σ1 sin ( ω 1 ,n γ1 ) cos ( ω 2 ,n ) 

sin ( ω 2 ,n ( 1 − γ1 ) ) 

It is of interest to write explicit expressions for the key param

ore-shell capsule. For an initial uniform loading of c in in the core,

 ( τ ) = 

3 

γ 3 
1 

τ∫ 
0 

−
(

∂θ2 

∂ξ

)
ξ=1 

dτ = − 3 

γ 3 
1 

∞ ∑ 

n =1 

g n s n [ ( ω 2 ,n − p n ) ( cos ( ω

The mass of drug absorbed in the core and shell due to reaction

¯1 ( τ ) = 

3 

γ 3 
1 

τ∫ 
0 

γ1 ∫ 
0 

ξ 2 β̄1 θ1 ( ξ , τ ) d ξd τ = 

3 ̄β1 

γ 3 
1 

∞ ∑ 

n =1 

g n 

[
sin ( ω 1 ,n γ1 ) −

¯2 ( τ ) = 

3 ̄β2 

γ 3 
1 

τ∫ 
0 

1 ∫ 
γ1 

ξ 2 β̄2 θ2 ( ξ , τ ) d ξd τ = 

3 

γ 3 
1 

∑ ∞ 

n =1 

g n s n 

ω 

2 
2 ,n 

[ ( p n ω 2 ,n +

+ ( p n − ω 2 ,n ) cos ( ω 2 ,n ) − ( p n ω 2 ,n γ1 + 1 ) sin ( ω 2 ,n γ1 ) + 

Finally, the fraction of drug remaining in the core and shell at a

¯1 ( τ ) = 

3 

γ 3 
1 

γ1 ∫ 
0 

ξ 2 θ1 ( ξ , τ ) dξ = 

3 

γ 3 
1 

∞ ∑ 

n =1 

g n 

[
sin ( ω 1 ,n γ1 ) − ω 1 ,n γ1 co

ω 

2 
1 ,n 

2 ( τ ) = 

3 

γ 3 
1 

1 ∫ 
γ1 

ξ 2 θ2 ( ξ , τ ) dξ = 

3 

γ 3 
1 

∞ ∑ 

n =1 

g n s n 

ω 

2 
2 ,n 

[ ( p n ω 2 ,n + 1 ) sin ( ω 2 ,n 

−( p n ω 2 ,n γ1 + 1 ) sin ( ω 2 ,n γ1 ) + ( ω 2 ,n γ1 − p n ) cos ( ω 2 ,n γ

The overall mass balance for the two-layer problem requires tha

¯
 ( τ ) + χ̄1 ( τ ) + χ̄2 ( τ ) + ρ̄1 ( τ ) + ρ̄2 ( τ ) = 1 
6 
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Fig. 2. Eigenfunction plot in both real and imaginary spaces to illustrate the im- 

pact of Damköhler numbers on the nature of eigenvalues. Plot parameters are 

D̄ 1 = 6 ;σ1 = 1 ;γ1 = 0 . 882 ; Sh = 10 0 0 . Square markers indicate the first eigenvalue. 

Circular markers indicate the value of the eigenfunction at the transition between 

real and imaginary eigenvalues, λ2 = 0 . A case of negative Damköhler number is 

also shown for illustration of a case of imaginary eigenvalues. 
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. Imaginary eigenvalue analysis 

Previous work has shown that multilayer diffusion-reaction 

roblems may admit imaginary eigenvalues, even if the problem 

s one-dimensional [ 9 , 20 ]. Therefore, it is important to analyze 

nd understand if imaginary eigenvalues may arise in the present 

roblem. In addition to theoretical interest in imaginary eigenval- 

es, such an analysis is also practically important, because imagi- 

ary eigenvalues may be associated with divergence of the series 

olution at large time, and standard eigenvalue computation algo- 

ithms may not find an imaginary eigenvalue. While the analysis 

elow is presented for a two-layer problem for simplicity, similar 

esults apply for the general M -layer case. 

For the infinite sink boundary condition, Sh → ∞ , the following 

nalysis proves that when the Damköhler numbers β̄1 and β̄2 are 

oth positive, as is the case in the present problem, the eigenval- 

es λn must all be real. 

Consider the eigenequation for Sh → ∞ 

f 
(
λ2 

)
= D̄ 1 

[
− 1 

γ1 

+ ω 1 cot ( ω 1 γ1 ) 

]
+ σ1 

[
1 

γ1 

+ ω 2 cot ( ω 2 ( 1 − γ1 ) ) 

]
= 0 

(44) 

here ω 1 and ω 2 are given by Eq. (15) . 

In order to prove that Eq. (44) does not admit an imaginary 

oot, it is sufficient to prove that 

a) f (0) > 0 , and 

b) f ( λ2 ) increases monotonically as λ2 decreases. 

(a) and (b) together ensure that f (λ2 ) never crosses the x -axis 

or λ2 < 0 , and therefore, does not have an imaginary root. In order 

o prove (a), one may set λ2 = 0 in Eq. (44) , which results in 

f ( 0 ) = D̄ 1 

⎡ 

⎣ − 1 

γ1 

+ 

√ 

β̄1 

D̄ 1 

coth 

⎛ 

⎝ 

√ 

β̄1 

D̄ 1 

γ1 

⎞ 

⎠ 

⎤ 

⎦ 

+ σ1 

[
1 

γ1 

+ 

√ 

β̄2 coth 

(√ 

β̄2 ( 1 − γ1 ) 

)]
(45) 

Now, the second term on the right hand side of Eq. (45) is 

lways positive, since β̄2 > 0 and ( 1 − γ1 ) > 0 in the present 

roblem, and coth (x ) > 0 for real, positive x . Further, the first 

erm on the right hand side in Eq. (45) may be written as 

D̄ 1 
γ1 

[ −1 + x coth (x ) ] , where x = 

√ 

β̄1 

D̄ 1 
γ1 . Now, since β̄1 > 0 in the 

resent problem, and x coth (x ) > 1 for real, positive x , therefore,

he first term on the right hand side in Eq. (45) is also positive.

his proves that f (0) > 0 when β̄1 > 0 and β̄2 > 0 . 

In order to prove (b), Eq. (44) is re-written in terms of the 

maginary complement, ˆ λ = iλ, where i = 

√ −1 is the unit imagi- 

ary number. This results in 

f 

(
ˆ λ2 

)
= D̄ 1 

[
− 1 

γ1 

+ ˆ ω 1 coth 
(

ˆ ω 1 γ1 

)]
+ σ1 

[
1 

γ1 

+ ˆ ω 2 coth 
(

ˆ ω 2 ( 1 − γ1 ) 
)]

(46) 

here 

ˆ  1 = 

√ 

ˆ λ2 + β̄1 

D̄ 1 

; ˆ ω 2 = 

√ 

ˆ λ2 + β̄2 (47) 

In order to prove (b), it is sufficient to prove that df 

d ̂ λ
> 0 for

ˆ > 0 . Eq. (46) is differentiated to result in 
7 
df 

d ̂ λ
= 

√ 

D̄ 1 

ˆ λ2 + β̄1 

ˆ λ
∂ 

∂ ̂  ω 1 

(
ˆ ω 1 coth 

(
ˆ ω 1 γ1 

))

+ σ1 

√ 

1 

ˆ λ2 + β̄1 

ˆ λ
∂ 

∂ ̂  ω 2 

(
ˆ ω 2 coth 

(
ˆ ω 2 ( 1 − γ1 ) 

))
(48) 

Now, 

∂ 

∂ ̂  ω 1 

(
ˆ ω 1 coth 

(
ˆ ω 1 γ1 

))
= 

1 

2 

csch 

2 
(

ˆ ω 1 γ1 

)(
sinh 

(
2 ̂  ω 1 γ1 

)
− 2 ̂  ω 1 γ1 

)
= 

1 

2 

csch 

2 
(

ˆ ω 1 γ1 

)( (
2 ̂  ω 1 γ1 

)3 

3! 
+ 

(
2 ̂  ω 1 γ1 

)5 

5! 
+ .. 

) 

> 0 (49) 

This proves that df 

d ̂ λ
> 0 for ˆ λ > 0 , and therefore statement (b) 

s true. Therefore, the present problem, with β̄1 > 0 and β̄2 > 0 ad- 

its only real eigenvalues. 

In order to illustrate the mathematical proof presented above, 

ig. 2 presents plots of the eigenfunction close to λ2 = 0 . The plot 

s presented in both real ( λ2 > 0 ) and imaginary ( λ2 < 0) regions

or several positive values of β̄1 and β̄2 . The value of the eigen- 

unction at λ2 = 0 and the first eigenvalue for each case are indi- 

ated by circular and square symbols, respectively. The plot clearly 

hows, as predicted by the proof presented above, that f (λ2 = 0) > 

 in each case, including the limiting case of β̄1 = β̄2 = 0 , as shown

y circular symbols, and that f (λ2 ) is a monotonically increasing 

unction as the magnitude of λ2 increases in the imaginary region 

 λ2 < 0) . As a result, the eigenfunction curve never crosses the x 

xis in the imaginary region, and therefore, there is no possibil- 

ty of an imaginary eigenvalue. In contrast, a case of negative β̄1 

nd β̄2 corresponding to a species-generating reaction term is also 

lotted in Fig. 2 for illustration. In this case, while f (λ2 ) is still a

onotonically increasing function as the magnitude of λ2 increases 

n the imaginary region, however, f (λ2 = 0) < 0 , and therefore, the 

igenfunction must cross the negative x -axis, resulting in the exis- 

ence of an imaginary eigenvalue. 

The physical interpretation of this result is related to the ab- 

orptive nature of the reaction term when β̄1 > 0 and β̄2 > 0 . In

uch a case, the drug is absorbed by reaction throughout the do- 

ain, and there is no likelihood of a reaction-driven build-up of 

rug that may lead to divergence of the drug concentration distri- 

ution. In contrast, in a thermal diffusion-reaction problem involv- 

ng an exothermic reaction (i.e. β̄1 and β̄2 may be negative), imag- 

nary eigenvalues have been shown to exist [9] . This is because in 
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Table 1 

Reference parameter values for diffusivities, radii 

and drug partition coefficient. 

Parameter Value Reference 

D 1 30 × 10 −11 m 

2 s −1 [30] 

D 2 5 × 10 −11 m 

2 s −1 [30] 

R 1 1.5 × 10 −3 m [22] 

R 2 1.7 × 10 −3 m [22] 

σ1 1 [22] 
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uch a case, heat is generated proportional to the local tempera- 

ure, leading to temperature rise, which may further increase the 

eat generated, eventually leading to thermal runaway. In contrast, 

his is not a concern in the present problem where the reaction 

erm results in absorption, not generation of the drug. 

Note that according to Eq. (15) , ω 1 ,n and/or ω 2 ,n may become 

maginary even if λn is real, for example, when β̄1 and/or β̄2 is 

arge and positive. However, this does not present a problem. For 

xample, if ω 1 ,n is real and ω 2 ,n is imaginary, then, p n is imaginary, 

 n is imaginary and hence g n remains real, according to Eqs. (32) , 

33) and (35) , respectively. Therefore, from Eqs. (30) and (31) , the 

oncentration distributions θ1 and θ2 remain real. Similarly, for 

ach of the other three cases, it can be shown that the concen- 

ration distributions θ1 and θ2 remain real regardless of the nature 

f ω 1 ,n and ω 2 ,n . 

. Results and discussion 

This section discusses a number of results based on the ana- 

ytical model presented in Sections 2 and 3 . The values of vari- 

us parameters in the problem are taken from the literature, and 

re summarized in Table 1 . Specifically, diffusion coefficients in the 

ore and shell are taken from past measurements [30] . A represen- 

ative geometry of the core-shell structure and value of the drug 

artition coefficient is also assumed, based on previous work [22] . 

here is a relative lack of literature to estimate the values of β̄1 

nd β̄2 . Based on parameter estimation using experimental data 

nd a numerical simulation model, Pontrelli, et al. have reported 

amköhler numbers for the chemotherapeutic agent daunorubicin 

nd [Cu(TPMA) (Phenantroline)] (ClO4) 2 , a common metallodrug 

8] . Their data suggests strong pH dependence of β̄1 and β̄2 , with 

alues ranging from 0.1 to 10.9. Given the strong pH dependence, 

epresentative values within this range are chosen for the present 

nalysis. Further, Sh can, in general, vary between zero (impene- 

rable boundary) to infinity (infinite sink). A number of different 

alues of Sh are considered in the analysis presented here. 

Prior to analysis of this problem, it is important to note that 

ince the analytical solution derived here is in the form of an in- 

nite series solution, it must, in practice, be truncated to a finite 

umber of terms for computation. Therefore, the effect of number 

f terms on accuracy must be established. Fig. 3 (a) plots concen- 

ration at two specific points in the core and shell as functions of 

ime for 1, 3, 10 and 100 terms in Eqs. (30) and (31) . These plots

how good convergence with ten terms. Curves corresponding to 

en terms are nearly coincident with those corresponding to hun- 

red terms. Numerical data for concentration at two locations, and 

t four different times are listed for different number of eigenval- 

es (1, 3, 10 and 100) are summarized in Table 2 . Computed data

or 10 and 100 terms are identical up to 16 decimals. 

For the same problem, Fig. 3 (b) plots the mass of drug released 

s a function of time, as predicted by Eq. (38) with 1, 3, 10 and

00 terms. Similar to Fig. 3 (a), these plots show good convergence 

f the series solution within ten terms. Numerical data for ψ̄ (τ ) 

or different number of eigenvalues are presented in Table 3 . These 
8 
ata supplement Figs. 3 (a) and 3(b) in establishing convergence 

ith ten terms. 

Note that the error incurred by the use of only one term is 

round 10.7% at τ = 0 . 3 , which may be acceptable for some engi-

eering applications. Since the computational time involved in the 

eries terms is negligible, all plots presented in this work are com- 

uted with ten terms to ensure good accuracy. Note that eigen- 

alues are computed using an algorithm that discretizes and car- 

ies out a root search based on Newton-Raphson method in re- 

ions where the eigenequation curve crosses the x -axis. The first 

en eigenvalues determined for this problem are listed in Table 4 . 

Comparison of the theoretical model presented here with past 

ork based on numerical simulations [22] is carried out next. In 

his past work, diffusion in a two-layer spherical structure with the 

nvironment around the sphere considered as a third layer was nu- 

erically computed. No reaction was modeled and the initial drug 

oncentration was assumed to exist only in the inner-most layer. 

sing the parameters presented in this paper, concentration distri- 

utions at different times and amount of drug remaining as func- 

ion of time are computed and compared with numerical calcula- 

ions presented in the past work, as shown in Figs. 4 (a) and 4(b),

espectively. In both cases, there is very good agreement between 

he present theoretical work and the past numerical study. Note 

hat the present work is a significant generalization of the three- 

ayer geometry considered in the past work. In addition to gen- 

ralizing to an arbitrary number of layers, the present work also 

ccounts for a reaction term in each layer. Moreover, closed-form 

nalytical solutions presented in this work are preferable over nu- 

erical solutions both for theoretical elegance, as well as for prac- 

ical ease of implementation. 

The first ten eigenvalues determined for this problem are listed 

n Table 4 . 

Fig. 5 presents a plot of the various performance parameters 

f interest for a representative problem. For the parameter values 

isted in Table 1 , and with Sh = 10 , Fig. 5 plots the cumulative mass

f drug released, ψ̄ (τ ) , cumulative mass of drug absorbed in core 

nd shell, χ̄1 (τ ) and χ̄2 (τ ) , respectively, and the mass of drug re- 

aining in core and shell, ρ̄1 (τ ) and ρ̄2 (τ ) , respectively. Plots are 

resented for cases with reaction ( ̄β1 = β̄2 = 4 ) and without reac- 

ion ( ̄β1 = β̄2 = 0 ) in Figs. 5 (a) and 5(b), respectively. β̄1 and β̄2 

re assumed to be equal to each other for simplicity, although the 

odel is capable of considering different values for the two. There 

s a very short initial period, not clearly visible in Fig. 5 , where
¯
 (τ ) does not rise appreciably. This corresponds to the period 

uring which the drug is still diffusing through the core/shell. Be- 

ond this short period, both Figures show a gradual increase in the 

umulative amount of drug released, followed by plateauing out at 

arge time. The mass of drug remaining in the core, ρ̄1 (τ ) starts 

t a value of 1 at t = 0, representing all of the drug being present

n the core at t = 0. As time passes, ρ̄1 (τ ) decreases towards 0 at

arge time, which is because of drug diffusion from the core into 

he shell. On the other hand, the mass of drug remaining in the 

hell, ρ̄2 (τ ) starts at zero, rises rapidly at first, due to diffusion 

rom the core, and then gradually decays away, as drug released 

rom the outer surface of the shell outweighs drug diffusing into 

he shell from the core. The cumulative mass of drug absorbed in 

he core and shell – χ̄1 (τ ) and χ̄2 (τ ) , respectively – rises with 

ime, but as the drug concentration in the core and shell itself re- 

uces, χ̄1 (τ ) and χ̄2 (τ ) also reach a terminal value. At large times, 

ll of the initial drug has been either released into the outside or 

bsorbed in reactions in the core and shell. As expected, and as 

hown in Fig. 5 (b), when β̄1 = β̄2 = 0 , corresponding to no reac-

ion, χ̄1 (τ ) and χ̄2 (τ ) are both zero throughout, and all of the ini- 

ial drug loading is released into the release medium. In contrast, 

 non-zero value of β̄1 and β̄2 results in a reduced mass of to- 

al drug released. For both cases, however, as expected, the sum of 
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Fig. 3. Effect of number of eigenvalues on (a) Concentration distributions at ξ = γ1 / 2 (core) and ξ = (1 + γ1 ) / 2 (shell) as functions of τ ; (b) fraction of drug released, ψ̄ (τ ) 

as a function of τ . Other problem parameters are D̄ 1 = 6 ; Sh = 10 ; β̄1 = β̄2 = 4 ; σ1 = 1 ;γ1 = 0 . 882 . 

Table 2 

Computed values of concentrations at ξ = γ1 / 2 (core) and ξ = (1 + γ1 ) / 2 (shell) at four different times for 1, 3, 10 and 100 eigenvalues. Problem parameters correspond 

to Fig. 3 . 

Number of eigenvalues 

% difference between results 

with 10 and 100 eigenvalues 

τ 1 3 10 100 

0.05 0.386392505503835, 

0.221663550290146 

0.386560795345826, 

0.221557273250833 

0.386560795345171, 

0.221557273250529 

0.386560795345171, 

0.221557273250529 

0, 0 

0.10 0.160465228465379, 

0.092054819213884 

0.160465379196044, 

0.092054724085412 

0.160465379196044, 

0.092054724085412 

0.160465379196044, 

0.092054724085412 

0, 0 

0.20 0.027674859703704, 

0.015876362942666 

0.027674859703825, 

0.015876362942589 

0.027674859703825, 

0.015876362942589 

0.027674859703825, 

0.015876362942589 

0, 0 

0.30 0.004772983324453, 

0.002738139104935 

0.004772983324453, 

0.002738139104935 

0.004772983324453, 

0.002738139104935 

0.004772983324453, 

0.002738139104935 

0, 0 

Table 3 

Computed values of ψ̄ (τ ) at four different times for 1, 3, 10 and 100 eigenvalues. Problem parameters 

correspond to Fig. 3 . 

Number of eigenvalues 

τ 1 3 10 100 

0.05 0.485963075193943 0.414093980013804 0.412016046158976 0.411420906143879 

0.10 0.687779038950933 0.615885310703228 0.613807376848360 0.613212236833263 

0.20 0.806397811330161 0.734504061008142 0.732426127153275 0.731830987138177 

0.30 0.826855563549852 0.754961813227815 0.752883879372948 0.752288739357850 

Fig. 4. Comparison of the present theoretical model with past numerical model [22] for a three-layer problem: (a) concentration distribution at three different times with 

Sh = 10 0 , 0 0 0 ; (b) fraction of drug remaining in core as a function of time for two different values of Sh . Consistent with past work, the values of other parameters are 

D̄ 1 = 1 ; D̄ 2 = 0 . 167 ;σ1 = 1 ;γ1 = 0 . 05 ;γ2 = 0 . 056 . 

ψ  

i

c

w

c

p

c

c

t

m

fi

p

p

g

¯
 (τ ) , χ̄1 (τ ) , χ̄2 (τ ) , ρ̄1 (τ ) and ρ̄2 (τ ) is one at all times, in keep-

ng with conservation of mass as governed by Eq. (43) . 

Figs. 6 (a) and 6(b) plot illustrative concentration distribution 

urves at multiple times in the core-shell composite with and 

ithout reaction, respectively. Starting at t = 0 with a uniform 

oncentration of 1 and 0 in the core and shell, respectively, these 

lots show gradual decay of the concentration distribution in the 

ore. On the other hand, concentration distribution in the shell in- 
9 
reases first, as the drug diffuses into the shell from the core, and 

hen decreases once the drug begins to release into the outside 

edium. At large times, as expected, the drug concentration pro- 

les in both core and shell decay to zero. 

The Sherwood number, Sh , and Damköhler numbers, β̄1 and β̄2 

lay a key role in determining the nature of drug release in this 

roblem. The impact of Sh on the drug release process is investi- 

ated in Fig. 7 . The cumulative amount of drug released is plotted 
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Fig. 5. Drug released, remaining and absorbed as functions of time for (a) β̄1 = β̄2 = 4 ; (b) β̄1 = β̄2 = 0 (no reaction) cases. Other problem parameters are D̄ 1 = 6 ; Sh = 

10 ;σ1 = 1 ;γ1 = 0 . 882 . 

Fig. 6. Illustrative concentration distribution plots: θ1 and θ2 as functions of ξ at multiple times for (a) β̄1 = β̄2 = 4 ; (b) β̄1 = β̄2 = 0 (no reaction) cases. Other problem 

parameters are D̄ 1 = 6 ; Sh = 10 ;σ1 = 1 ;γ1 = 0 . 882 . 

Fig. 7. Effect of Sherwood number: (a) ψ̄ (τ ) as a function of τ for multiple values of Sh ; (b) time taken to deliver 95% of the eventual dose delivered as a function of Sh 

for three different values of β̄1 and β̄2 . Other problem parameters are D̄ 1 = 6 ;σ1 = 1 ;γ1 = 0 . 882 . In addition, for part (a), β̄1 = β̄2 = 4 . 
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d

r

a

F

s a function of time for four different values of Sh in Fig. 7 (a). The

owest value considered here, Sh = 1 , represents a very slow rate 

f release, which may be relevant, for example, when drug trans- 

ort/clearance within the release medium is slow. On the other 

and, as Sh increases, Fig. 7 (a) shows increasingly faster drug re- 

ease. A sufficiently high Sh essentially achieves an infinite sink 

ondition. Saturation sets in around Sh = 100 , beyond which, there 

s little change in the drug release profile with further increasing 

h . Therefore, in this case, a value of Sh = 100 or greater repre-

ents a perfect sink condition. Note that even in this case, not all 

f the drug is released because of the absorption reactions occur- 

ing within the core and shell that may entrap some of the drug 
10 
efore it can be released at the outer surface. A low value of Sh 

ot only reduces the rate at which the drug is released into the 

mbient, but also the total mass of drug released. This is because 

 low value of Sh increases the residence time of the drug inside 

he sphere before release, increasing the mass of drug available for 

eaction and thereby reducing the total mass of releasable drug. 

Fig. 7 (b) plots the time taken to release 95% of the drug as a

unction of Sh , which is representative of the release time of the 

rug. This is an important parameter to quantify the nature of drug 

elease since drug release occurs asymptotically. It is seen that 

s Sh increases, the time taken to release decreases, as expected. 

urther, Fig. 7 (b) also shows some dependence on the Damköh- 
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Fig. 8. Effect of Damköhler number: (a) ψ̄ (τ ) as a function of τ for multiple values of β̄1 and β̄2 ; (b) time taken to deliver 95% of the eventual dose delivered as a function 

of β̄1 = β̄2 for three different values of Sh . Other problem parameters are D̄ 1 = 6 ;σ1 = 1 ;γ1 = 0 . 882 . In addition, for part (a), Sh = 10 0 0 . 

Table 4 

Numerical values of first ten eigenvalues for the problems 

considered in Figs. 3 and 4 . 

λn 

n Fig. 3 Fig. 4 

1 4.192317813412143 3.141585288144737 

2 11.847320121314180 6.282950128650931 

3 17.539932046367877 9.422995368687273 

4 22.838856910943637 12.558852940305355 

5 30.244429357676854 15.684890369844636 

6 37.524913153224276 18.791471185466413 

7 42.860965183416816 21.863718979577946 

8 48.850442642322449 24.882536952030190 

9 56.394997248496004 27.835028641330229 

10 63.632628469500020 30.739295191900858 
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l

Fig. 9. Effect of Damköhler number: Total drug released at large time as a function 

of β̄1 and β̄2 for four different values of Sh . Problem parameters are same as Fig. 8 . 
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er numbers, especially at low Sh . For the same Sherwood num- 

er, a high value of the Damköhler number results in more rapid 

ompletion of the release process. This is because a high value of 

amköhler number contributes significantly towards entrapment 

f the available drug in the sphere. This effect is more prominent 

t small Sh , whereas at large Sh approaching constant concentra- 

ion conditions on the outer surface, the time taken for release is 

ot very sensitive to the Damköhler numbers. 

Fig. 8 presents additional results to illustrate the impact of the 

amköhler number on the drug release characteristics. Fig. 8 (a) 

resents the cumulative fraction of drug released as a function 

f time for multiple values of the Damköhler number, assumed 

o be the same in both layers. The limiting case of β̄1 = β̄2 = 0

s also presented. Fig. 8 (a) shows that as the Damköhler number 

ncreases, the mass of drug released steadily reduces. This is ex- 

ected because an increased rate of reaction results in greater drug 

ntrapment within the sphere. Fig. 8 (a) is plotted for a very high 

alue of Sh , for which, the total drug released decreases slightly 

ith increasing Damköhler number. 

Fig. 8 (b) plots the time taken to release 95% of the drug as a

unction of Damköhler number, which is representative of the re- 

ease time of the drug. It is seen that as the Damköhler number 

ncreases, the time taken to release decreases, as expected. The re- 

uction is particularly steep at small values of Sh . When Sh is large,

hich may happen when the release medium around the capsule 

s very large, the release time is lower and relatively independent 

f the Damköhler number. This is primarily because of faster dif- 

usion due to the infinite sink around the capsule at large Sh . 

Further, Fig. 9 plots the total drug released from the sphere at 

arge time as a function of the Damköhler number, for four dif- 
11 
erent values of Sh , ranging from a low value, corresponding to 

ery restrictive mass transfer at the boundary to a large value, cor- 

esponding to rapid mass transfer at the boundary. For large Sh , 

ig. 9 shows small reduction in the drug released with increasing 

amköhler number, consistent with Fig. 8 (a). However, when Sh 

s relatively small, there is a rapid reduction in the drug released 

ith increasing Damköhler number. This is because at small Sh , 

he drug residence time within the sphere is large, which results 

n greater absorption due to reaction, and, therefore, greater sensi- 

ivity of the total drug released to the reaction rate represented by 

he Damköhler number. 

It is of interest to investigate the impact of the shell thickness 

n drug release characteristics. For this purpose, a drug-loaded 

ore of fixed size of 1.5 mm radius is considered, and the drug 

elease curve is computed using the theoretical model presented 

ere for several different shell thicknesses, ranging from a very 

hin shell (5% of core radius) to a very thick shell (80% of core 

adius). All other parameters of the problem are held constant, in- 

luding h = 3 . 17 × 10 −5 m s −1 and β1 = β2 = 8 . 06 × 10 −5 s −1 cor-

esponding to Sh = 10 0 0 and β̄1 = β̄2 = 4 . 0 , respectively, for the

mallest-sized sphere considered here. Other parameters are taken 

rom Table 1 . Fig. 10 shows that as the shell thickness increases, 

ith core radius fixed, there is a gradual reduction both in the rate 

t which drug is released, as well as the total drug that is even- 

ually released. This is because a thicker shell increases time for 

he drug to diffuse from the core to the outer surface. Additionally, 

his makes the drug available for absorption within the sphere for 
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Fig. 10. Effect of shell thickness: ψ̄ (τ ) as a function of dimensional time for 

multiple values of shell thickness R 2 − R 1 for a fixed core radius, R 1 = 1 . 5 mm . 

Other parameters are D 1 = 30 × 10 −11 m 

2 s −1 ; D 2 = 5 × 10 −11 m 

2 s −1 ; h = 3 . 17 ×
10 −5 m s −1 ; σ1 = 1 ;β1 = β2 = 8 . 06 × 10 −5 s −1 . 

Fig. 11. Effect of thin outer coating: ψ̄ (τ ) as a function of τ for multiple values of 

l̄ . Other problem parameters are D̄ 1 = 6 ;σ1 = 1 ;γ1 = 0 . 882 ; β̄1 = β̄2 = 4 ; Sh = 10 0 0 . 
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 longer time, which reduces the total mass of drug that is even- 

ually released. Fig. 10 shows rapid release of the drug starting at 

= 0 for a thin shell. As the shell becomes thicker and thicker, 

he curve becomes flatter and flatter at early times, due to the fi- 

ite time taken for diffusion through the shell. Fig. 10 shows that 

hile a thick shell may result in more steady drug release over a 

onger time, which may be desirable for some conditions, however, 

aving a thick shell may also necessitate greater initial loading due 

o the increased propensity of absorption. 

Fig. 11 presents the impact of the thickness and diffusion co- 

fficient of the coating on drug release characteristics. The fraction 

f drug released is plotted as a function of time for multiple values 

f the non-dimensional coating parameter ḡ , including the baseline 

urve for no coating, ḡ = 0 . Fig. 11 shows negligible impact of the

oating on the drug release characteristics when ḡ is small. How- 

ver, as ḡ rises, the drug release curve slows down due to the re- 

istance offered by the coating. In addition, due to the absorption 

rocesses that occur within the core and shell, this also results in 

educed mass of drug released. Similar to the impact of Sh , this 

eans a more gradual release when ḡ is large, but the trade-off

s the reduction in the total mass of drug released. Note that the 

esistance-based model described above is likely to lose accuracy 

s the coating becomes thicker and thicker because this model in- 

erently neglects the transient concentration gradients within the 

oating. 
12 
. Conclusions 

Experimental investigation of drug release from capsules typi- 

ally involves multiple experiments involving several different de- 

ign configurations. The time and costs associated with these ex- 

eriments is often excessive. The mathematical model and analy- 

is presented here may potentially help in early stage evaluation 

nd down-selection of candidate drug delivery materials and ge- 

metries. While some existing literature is available on a two-layer 

apsule for specific applications, the present work generalizes this 

reatment by presenting a solution for an arbitrary number of lay- 

rs that accounts for binding reactions within the capsule, as well 

s general convective boundary conditions on the outside, there- 

ore accounting for multiple types of micro-environment around 

he capsule. Despite some simplifying assumptions, the model pre- 

ented here is able to provide a closed-form solution for drug 

iffusion dynamics through a multi-layer capsule. In addition to 

roviding theoretical insights into the fundamental nature of this 

roblem, the analytical solution is also expected to offer reduced 

omputational cost compared to a full-scale numerical calculation. 

It is important to recognize key assumptions and limitations of 

he present one-dimensional model. Binding reactions within the 

phere are modeled using first-order reaction kinetics. Drug dy- 

amics in the medium outside the capsule are ignored, so that the 

nteractions between the capsule and the medium are represented 

ntirely by the boundary condition. Diffusion coefficients are as- 

umed to be independent of concentration. For most practical ap- 

lications, such assumptions may be reasonable, and therefore, 

odel results may be helpful in evaluation of materials/geometries 

nd design of experiments. 

eclaration of Competing Interest 

All authors hereby declare that they do not have 

onflicts of interest as described by Elsevier’s policies 

http://www.elsevier.com/conflictsofinterest). 

cknowledgements 

Funding from the European Research Council under the 

uropean Unions Horizon 2020 Framework Programme (No. 

P/2014 \ 0552020)/ ERC Grant Agreement No. 739964 (COPMAT) 

s acknowledged. This work is also partially supported by Italian 

IUR (PRIN 2017 project: Mathematics of active materials: from 

echanobiology to smart devices, project number 2017KL4EF3. 

ppendix A. Derivation of the eigenequation and expressions 

or coefficients A m,n and B m,n 

A formal derivation of the eigenequation for the general M -layer 

ase is presented below. In short, several coefficients appearing in 

qs. (16)–(19) are systematically eliminated, and finally, the ratio of 

he coefficients for the M 

th layer is written in two different ways, 

eading to the eigenequation. 

To begin with, one may write A m,n in terms of B m,n , and B m,n in 

erms of B 1 ,n as follows: 

m,n ( λn ) = 

A m,n 

B m,n 
(A.1) 

 m,n = B 1 ,n �m 

(A.2) 

o that, from Eq. (14) , one may write 

f m,n (ξ ) = B 1 ,n �m 

q m,n (ξ ) (A.3) 

here 

1 = 1 (A.4) 
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[

m 

= 

σm −1 q m −1 ,n ( γm −1 ) 

q m,n ( γm −1 ) 
· σm −2 q m −2 ,n ( γm −2 ) 

q m −1 ,n ( γm −2 ) 

· · · σ2 q 2 ,n ( γ2 ) 

q 3 ,n ( γ2 ) 
· σ1 q 1 ,n ( γ1 ) 

q 2 ,n ( γ1 ) 
( m = 2 , 3 . . . M ) (A.5) 

ith 

 m,n ( ξ ) = ηm,n ( λn ) 
cos ( ω m,n ξ ) 

ξ
+ 

sin ( ω m,n ξ ) 

ξ
(A.6) 

Further, from Eqs. (16) and (17) , the functions η1 ,n ( λn ) and 

M,n ( λn ) are given by 

1 ,n ( λn ) = 0 (A.7) 

M,n ( λn ) = − 1 − ω M,n cot ( ω M,n ) − Sh 

cot ( ω M,n ) + ω M,n − Sh · cot ( ω M,n ) 
(A.8) 

Now, by using Eq. (13) in Eq. (11) , and using equations (A.3) and

A.5), one may write 

¯
 m ̇

 q m,n ( γm 

) = 

D̄ m +1 σm 

q m,n ( γm 

) ηm +1 ,n ( λn ) 

[ 
−ω m +1 ,n sin ( ω m +1 ,n γm ) γm −co

γ 2 
m 

ηm +1 ,n ( λn ) 
cos ( ω m +1 ,n γm ) 

γm 
+ 

sin ( ω m +1 ,n γm ) 
γm 

+ 

D̄ m +1 σm 

q m,n ( γm 

) 

[ 
ω m +1 ,n cos ( ω m +1 ,n γm ) γm −sin ( ω m +1 ,n γm )

γ 2 
m 

ηm +1 ,n ( λn ) 
cos ( ω m +1 ,n γm ) 

γm 
+ 

sin ( ω m +1 ,n γm ) 
γm 

hich, with some simplification, results in 

m +1 ,n ( λn ) 

= 

D̄ m +1 σm q m,n ( γm ) [ ω m +1 ,n cot ( ω m +1 ,n γm ) γm − 1 ] − D̄ m ̇ q m,n ( γm ) γm 

D̄ m +1 σm q m,n ( γm ) [ ω m +1 ,n γm + cot ( ω m +1 ,n γm ) ] + D̄ m ̇ q m,n ( γm ) cot ( ω m +1 ,n γm ) γm

(A.10)

Note that the over-dot denotes the derivative with respect to 

m 

. 

Equation (A.10) is valid at each interface, m = 1,2,3.. M -1. Set- 

ing m = M -1 in Eq. (A.10) and comparing with Eq. (A.8) results

n elimination of the coefficients and therefore, an equation that 

overns the eigenvalues λn . Therefore, the eigenequation for the 

eneral M -layer problem is: 

D̄ M σM−1 q M−1 ,n ( γM−1 ) [ ω M,n cot ( ω M,n γM−1 ) γM−1 − 1 ] − D̄ M−1 ̇ q M−1 ,n ( γM−1 ) γM−1 

D̄ M σM−1 q M−1 ,n ( γM−1 ) [ ω M,n γM−1 + cot ( ω M,n γM−1 ) ] + D̄ M−1 ̇ q M−1 ,n ( γM−1 ) cot ( ω M,n γM−1 ) γM−1

+ 

1 − ω M,n cot ( ω M,n ) − Sh 

cot ( ω M,n ) + ω M,n − Sh · cot ( ω M,n ) 
= 0 (A.11)

Once the eigenvalues are determined from the roots of the tran- 

cendental equation (A.11), the coefficients A m,n and B m,n may be 

etermined by assuming one of the coefficients, say, B 1,n to be 

ne, and determining all other coefficients in terms of B 1,n from 

qs. (16) - (19) . This is possible because Eqs. (16) - (19) are homoge-

eous, and, therefore, an infinite number of solutions exist, pro- 

ided that the determinant of the equations is zero, which is 

quivalent to equation (A.11) being satisfied. 

From Eq. (16) , A 1 ,n = 0 . An iterative expression for determining 

 m +1 ,n and B m +1 ,n in terms of A m,n and B m,n for each m = 1,2,3.. M - 

 is derived here. 

From Eq. (18) - (19) , the following pair of linear algebraic equa- 

ions may be written for A m +1 ,n and B m +1 ,n for each m = 1,2,3.. M -1 

 m,n A m +1 ,n + b m,n B m +1 ,n = u m,n (A.12) 
13 
1 ,n γm ) 
] 

(A.9) 

 m,n A m +1 ,n + e m,n B m +1 ,n = v m,n (A.13) 

here 

 m,n = cos ( ω m +1 ,n γm 

) ; b m,n = sin ( ω m +1 ,n γm 

) ; d m,n = −D m +1 

[ cos ( ω m +1 ,n γm 

) + ω m +1 ,n γm 

sin ( ω m +1 ,n γm 

) ] ;
e m,n = −D m +1 [ sin ( ω m +1 ,n γm 

) − ω m +1 ,n γm 

cos ( ω m +1 ,n γm 

) ] (A.14) 

 m,n = σm 

[ A m,n cos ( ω m,n γm 

) + B m,n sin ( ω m,n γm 

) ] (A.15) 

 m,n = D m 

[ −A m,n cos ( ω m,n γm 

) − B m,n sin ( ω m,n γm 

) 

+ ω m,n γm 

[ −A m,n sin ( ω m,n γm 

) + B m,n cos ( ω m,n γm 

) ] ] (A.16) 

Eqs. (A .12)-(A .13) represent a set of two linear equations in 

 m +1 ,n and B m +1 ,n , which may be solved easily to result in 

 m +1 ,n = 

e m,n u m,n − b m,n v m,n 

a m,n e m,n − b m,n d m,n 
; B m +1 ,n = 

−d m,n u m,n + a m,n v m,n 

a m,n e m,n − b m,n d m,n 

(A.17) 

Note that u m,n and v m,n are known in terms of A m,n and B m,n . 

herefore, A m +1 ,n and B m +1 ,n may be recursively determined in 

erms of A m,n and B m,n for m = 1,2.. M -1 using Eqs. (A.17) . 
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