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Abstract 
Energy conversion and storage in a Li-ion cell involves multiple closely coupled transport processes, such as species diffu-
sion through solid and solution phases in the electrode. Mathematical modeling of these processes is critical for fully under-
standing and optimizing the performance of a Li-ion cell. While a number of analytical and numerical models have been 
presented for solution phase diffusion, most of such work is based on the assumption of a constant current density. This paper 
presents analytical modeling of solution phase diffusion in a separate–electrode composite for a generalized, time-dependent 
current density. An analytical solution for the concentration field in a separator–electrode composite in such conditions is 
derived using the method of eigenfunction expansion. Good agreement with past work as well as numerical simulations is 
shown. Results for linear, periodic and step-function boundary conditions are discussed. The theoretical analysis presented 
here may help accurately model realistic processes where the applied current changes over time, for example, cyclic charge 
and discharge in an electric vehicle, or sudden changes in the battery load. Results presented here contribute towards the 
fundamental understanding of solution phase diffusion in Li-ion cells, and provide a basis for improving electrochemical 
energy conversion and storage processes.
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Nomenclature
c	� Concentration (mol m−3)
C	� Non-dimensional concentration, C =

c

c0

c0	� Initial concentration (mol m−3)
D	� Diffusivity (m2 s−1)
F	� Faraday constant (C mol−1)
I	� Current density (A/m2)

 *	 Ankur Jain 
	 jaina@uta.edu

1	 School of Mechanical and Power Engineering, Henan 
Polytechnic University, Jiaozuo, Henan, China

2	 Mechanical and Aerospace Engineering Department, 
University of Texas at Arlington, Arlington, TX, USA

http://orcid.org/0000-0001-5573-0674
http://crossmark.crossref.org/dialog/?doi=10.1007/s10800-021-01573-x&domain=pdf


1242	 Journal of Applied Electrochemistry (2021) 51:1241–1252

1 3

J	� Non-dimensional generation/consumption term, 
J = −

I(1−t+)L2
1

FDL2c0�

L	� Layer thickness (m)
r	� Ratio of electrode and separator thicknesses, r = L2

L1

t+	� Transference number (s)
t	� Time (s)
x	� Spatial coordinate (m)
ε	� Porosity
λ	� Eigenvalue
τ	� Non-dimensional time, � =

Dt

L2
1

ξ	� Non-dimensional spatial coordinate, � =
x

L1

Subscripts
1	� Separator
2	� Electrode

1  Introduction

Li-ion cells offer excellent electrochemical performance for 
energy storage and conversion in multiple applications such 
as consumer electronics, power grid, electric vehicles, mili-
tary and space applications [1–4]. The operating mechanism 
of Li-ion batteries involves multiple transport phenomena 
triggered by different forcing functions. These processes are 
multiscale in nature, and are often coupled with each other 
[5, 6]. Modeling and optimizing these processes is critical 
to achieve favorable performance and efficiency for elec-
trochemical systems [7, 8]. Significant research has been 
reported for developing battery models for various operat-
ing conditions. These include equivalent circuit models [9], 
empirical equations [10] and electrochemical models [11].

Empirical or data-based models use past experimental 
data for real-time estimation of Li-ion batteries states [12]. 
Although empirical models are often simple and computa-
tionally fast, they do not provide insights into the physical 
processes occurring in Li-ion cells and their related param-
eters [8, 11]. Equivalent circuit-based models are simpli-
fied mathematical models which use equivalent resistive 
and capacitive components to predict the behavior of Li-ion 
batteries [13, 14]. Similar to empirical models, circuit-based 
models do not provide details on the electrochemical pro-
cesses inside Li-ion batteries.

In contrast, electrochemical or physics-based models 
predict the behavior of Li-ion cells by solving the differen-
tial equations that govern electrochemical reactions, mass, 
charge and thermal transport processes occurring in the cell 
[15]. These models often result in highly coupled partial 
differential equations for electrolyte, electrodes and sepa-
rator [16]. Early work in the modeling of Li-ion batteries 
started with porous electrode theory presented by Newman 

and Tiedemann [17]. Later, using this porous electrode 
theory in combination with concentrated solution theory, 
Doyle, et al. presented Pseudo-2D model (P2D) [18], which 
has been used extensively. P2D model involves solving for 
the concentration of Li+ ions in solid and liquid phases 
in conjunction with the solid and liquid phase potentials, 
and the Butler–Volmer equation [19]. This usually results 
in coupled, non-linear equations, for which, full analytical 
solutions are difficult to obtain [20]. Therefore, a variety of 
numerical and approximate analytical solutions have been 
developed to solve P2D model [21–26]. Numerical solutions 
are often computationally expensive due to the large number 
of equations [27] and a number of studies have been reported 
to reduce the computational time [27–29]. If the concentra-
tion gradient and potential in the solution phase is negligi-
ble, for example at low C-rates and for thin electrodes, the 
solid phase diffusion is the dominant process, and the P2D 
model can be reduced to the much simpler Single Particle 
Model [30, 31]. SPM only involves solving the solid-state 
concentration and Butler–Volmer equation, which is much 
simpler and faster solution than the P2D model [30, 31].

In contrast with numerical solutions, there is a relative 
lack of exact analytical solutions for transport problems in 
a Li-ion cell. Early work in this direction was presented by 
Doyle and Newman [32] for a few limiting cases, namely 
solid phase diffusion limitation, solution phase diffusion 
limitation and ohmically dominated cell. In the solid phase 
diffusion limitation case, the concentration gradient in the 
electrolyte can be neglected. This may occur when the 
applied current is low to moderate or when the electrodes are 
thin enough. In the solution phase diffusion limitation, the 
kinetic and solid phase diffusion are neglected and concen-
tration gradient in the electrolyte becomes dominant. Finally, 
kinetic, solid and solution phase diffusion limitations are 
neglected in the Ohmically dominated cell. Fick’s law of dif-
fusion and concentrated solution theory were used to define 
the governing equations for solid phase diffusion limitation 
and solution phase diffusion limitation, respectively [32]. An 
average value for pore wall flux was used, which eliminated 
the need for solving Butler–Volmer equation, and resulted 
in uncoupled differential equations [32]. Separation of Vari-
able technique was then used to solve for the concentration 
profiles in solid and solution phases [32].

The separation of variables (SOV) technique has also been 
used to solve for the solid phase diffusion limitation in other 
scenarios, such as a thin film electrode, spherical electrode par-
ticle and composite electrodes under constant current condition 
[33]. A solution for the solution phase diffusion limitation for a 
separator-porous electrode Li-ion cell has been also presented 
[33]. Short-time solution for Li-ion concentration has been 
derived using Laplace Transformation technique [34]. This 
method has been extended to derive both short-term and long-
term solutions for solid and solution phase diffusion limitation 
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under galvanostatic boundary condition and non-zero initial 
condition [35]. Integral transform method has been used to 
address problems with constant [36] and time-dependent [37] 
flux boundary conditions. An analytical solution for solution 
phase diffusion limitation under galvanostatic boundary condi-
tion has been presented using Green’s function method [38].

Most of the literature summarized above assumed a constant 
boundary condition that does not change with time. In practi-
cal scenarios, however, the applied current density may change 
significantly over time in response to changes in external condi-
tions. For example, this could occur in the operation of an elec-
tric vehicle, where the electrical load may change with time. In 
addition, during cyclic charge/discharge of cells, the sign of the 
applied current density may completely reverse over time. Ana-
lytical models that accounts for such time-dependent boundary 
conditions are clearly desirable for modeling practical scenar-
ios, but are rather uncommon in the literature. For example, an 
exact solution for solid phase diffusion under time-dependent 
flux boundary conditions for different cathode geometries using 
Green’s function approach has been presented [39]. An analyti-
cal solution for liquid phase diffusion in a spherical electrode 
with time-dependent boundary conditions has been presented 
[37]. In addition, approximate solutions have been developed 
for time-dependent boundary conditions [40].

This paper presents an analytical solution for Li-ion dif-
fusion in the solution phase of a composite porous electrode 
operating under time-dependent flux boundary condition, time-
dependent reaction rate and arbitrary initial conditions using 
a multilayer SOV approach. While the reaction rate distribu-
tion in general is a function of both location and time, J(x,t), it 
has been shown [32] that spatial distribution can be neglected 
in the solution phase diffusion limitation. The present work 
generalizes past models based on constant current by consid-
ering a time-dependent applied current and consequently a 
time-dependent reaction rate. The solution for concentration 
in each layer is derived in the form of an infinite series with 
well-defined coefficients and eigenvalues. Verification of the 
SOV technique by comparison against previous studies and 
numerical simulations is presented. Concentration profiles are 
determined for a variety of realistic charge/discharge condi-
tions. The theoretical model presented here may be a useful 
mathematical tool for understanding and improving the per-
formance of Li-ion cells and other related energy storage and 
conversion devices [41].

2 � Analytical modeling

2.1 � Governing equations

Consider Li ion diffusion in a cell comprising Lithium foil, 
separator and a porous positive electrode as shown in Fig. 1. 
The governing equations, initial and boundary conditions for 

solution phase diffusion limitation have been originally pre-
sented by Doyle and Newman [32] and have been used widely 
in later studies [26, 33, 38]. Here, these equations are extended 
for time-dependent flux and reaction terms, as may occur during 
cyclic charge/discharge of the cell.

Similar to past work, the transference number t+ is assumed 
to be constant, based on which, the migration term in the 
concentration conservation equation can be neglected. This 
is a reasonable assumption because ion mobilities in a Li-ion 
cell may be assumed to be independent of concentration [42]. 
A constant and uniform pore wall f lux, given by 
jn = −

I(1−t+)
F(L2−L1)

 is assumed [32]. This assumption is valid if 
kinetic resistances dominate Ohmic resistances or if the cell’s 
open-circuit potential strongly depends the state of charge of 
the system [26, 32]. Based on these assumptions, the dimen-
sional set of equations and non-dimensional process are given 
in detail in Appendix A. Using the non-dimensional scheme 
presented in the Nomenclature section, the governing equa-
tions are given in dimensionless form by the following 
equations:

(1)
𝜕C1

𝜕𝜏
=

𝜕2C1

𝜕𝜉2
; 0 < 𝜉 < 1

(2)
𝜕C2

𝜕𝜏
= 𝜀1∕2

𝜕2C2

𝜕𝜉2
; 1 < 𝜉 < 1 + r

(3a)
�C1

� �
= �rJ(�); � = 0

(3b)
�C2

� �
= 0; � = 1 + r

(3c)C1 = C2; � = 1

Fig. 1   Schematic of geometry for solution phase diffusion in a two-
layer porous electrode



1244	 Journal of Applied Electrochemistry (2021) 51:1241–1252

1 3

where

Equations  (1)–(3), as well as all subsequent equations 
involving time-dependent variables are valid for τ > 0. As 
listed in “Appendix A”, the non-dimensional time and space 
coordinates, τ and ξ are defined as � =

Dt

L2
1

 and � =
x

L 1

 . In 
addition, Ci =

ci

c0
 and r = L 2

L 1

 , where c1 and c2 are the concen-
trations in the separator and porous electrode, respectively.

Note that Eqs. (1) and (2) govern the concentration of 
electrolyte in the separator and the solution phase of the 
porous electrode, respectively. Equation 3a describes the 
relationship between the discharge rate and the mass flux at 
the Li-foil while Eq. 3b ensures that no flux leaves from the 
back of the electrode that is connected to the current collec-
tor. Equations 3c and 3d ensure the continuity of the con-
centration and flux at the separator–electrode interface. Note 
that the present analysis assumes a time-varying current.

The next section presents an analytical method to derive 
a closed form solution of Eqs. (1)-(4).

2.2 � Solution method

2.2.1 � Homogenization of boundary conditions

In order to derive a solution for the species diffusion prob-
lem defined in the previous section, the concentration dis-
tribution Ci(ξ,τ) is first split into two parts [43]

where ϕi(ξ,τ) is the unsteady-state component of the solution 
that accounts for the internal source term and homogeneous 
boundary conditions, while gi(ξ,τ) accounts for the non-
homogeneous boundary condition.

The motivation to split the solution into two parts is to absorb 
the non-homoegeneous boundary condition, Eq. (3a) into gi, so 
that the other part of the solution, ϕi(ξ,τ), can be solved using 
the separation of variables method. Note that gi does not need to 
satisfy the governing equations, as long as the governing equa-
tions for ϕi are written in such a way that the sum of gi and ϕi 
satisfies the governing equations.

Therefore, the following expression is assumed for the sec-
ond component gi(ξ,τ)

(3d)
�C1

� �
= �3∕ 2

�C2

� �
; � = 1

(4a)C1 = 1; 𝜏 = 0, 0 < 𝜉 < 1

(4b)C2 = 1; 𝜏 = 0, 1 < 𝜉 < 1 + r

(5)J(�) = −I(�)

(

1 − t+
)

L2
1

FDL2c0�

(6)Ci(�, �) = �i(�, �) + gi(�, �)

The functions Ri(τ) and Si(τ) are determined by requir-
ing gi(ξ,τ) to satisfy boundary conditions similar to 
Eqs. (3a)–(3d), given by

Note that the boundary condition in Eq. (8a) is chosen to 
absorb the non-homogeneous boundary condition. Substi-
tuting Eq. (7) into Eqs. (8a)–(8d), the following expressions 
may be obtained for Ri(τ) and Si(τ).

This results in determination of gi(ξ,τ) according to Eq. (7). 
The remainder of the solution, ϕi(ξ,τ) has homogeneous 
boundary conditions, and is solved next.

2.2.2 � Solution of the component with homogeneous 
boundary conditions

A governing partial differential equation for ϕi(ξ,τ) can be 
derived by substituting Eq. (6) into Eqs. (1) and (2) and using 
expression (7). Since gi(ξ,τ) does not necessarily satisfy the 
governing differential equation or the initial condition, the fol-
lowing equations are derived for ϕi(ξ,τ) in order to ensure that 
the sum of gi and ϕi satisfies Eqs. (1) and (2):

(7)gi(�, �) = Ri(�)�
2 + Si(�)�

(8a)
�g1

� �
= �rJ(�); � = 0

(8b)
�g2

� �
= 0; � = 1 + r

(8c)g1 = g2; � = 1

(8d)
�g1

� �
= �3∕ 2

�g2

� �
; � = 1

(9a)R1(�) = −�rJ(�)

[

1 +
1 + 2r

2
(

r�3∕ 2 − 1 − 2r
)

]

(9b)S1(�) = �rJ(�)

(9c)R2(�) =
�rJ(�)

2
(

r�3∕ 2 − 1 − 2r
)

(9d)S2(�) = −
(1 + r)�rJ(�)

r�3∕ 2 − 1 − 2r

(10)
𝜕𝜙1

𝜕𝜏
=

𝜕2𝜙1

𝜕𝜉2
+ Q1(𝜉, 𝜏); 0 < 𝜉 < 1
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where

Note that the over-dot stands for the derivative with 
respect to τ.

The functions ϕi(ξ,τ) are subject to the following 
boundary conditions

Finally, by introducing Eqs. (6) into (4), the initial con-
dition becomes

Equations (10)–(14) represent a pair of partial differ-
ential equations with homogeneous boundary conditions 
and non-homogeneous initial condition. Further note that 
each of the partial differential equations contains a non-
homogeneous source term.

In order to solve these equations, series forms are 
assumed for ϕ1(ξ,τ) and ϕ2(ξ,τ) as follows:

(11)
𝜕𝜙2

𝜕𝜏
= 𝜀1∕2

𝜕2𝜙2

𝜕𝜉2
+ Q2(𝜉, 𝜏); 1 < 𝜉 < 1 + r

(12a)Q1(𝜉, 𝜏) = 2R1(𝜏) − Ṙ1(𝜏)𝜉
2 − Ṡ1(𝜏)𝜉

(12b)Q2(𝜉, 𝜏) = J(𝜏) + 2𝜀1∕ 2R2(𝜏) − Ṙ2(𝜏)𝜉
2 − Ṡ2(𝜏)𝜉

(13a)
��1(0, �)

� �
= 0

(13b)
��2(1 + r, �)

� �
= 0

(13c)�1(1, �) = �2(1, �)

(13d)
��1(1, �)

� �
= �3∕ 2

��2(1, �)

� �

(14)�i(�, 0) = 1 − gi(�, 0)

where ψ1,n(ξ) and ψ2,n(ξ) are the eigenfunctions for the first 
and second layers separately, and q0(τ) and qn(τ) are the 
time-dependent variable functions.

By inserting the form of the solution in boundary condi-
tions, the eigenfunctions are found to be

where  �n =
1

�1∕ 4
�n, �n =

cos (�n) tan [�n(1+r)]
tan [�n(1+r)] sin (�n)+cos (�n)

 and 

�n =
cos (�n)

tan [�n(1+r)] sin (�n)+cos (�n)
.

Using boundary conditions given by Eqs. (13a)–(13d), the 
eigenvalues λn can be shown to satisfy the following transcen-
dental equation

The orthogonality relationship is

where the norm is given by

Introducing Eqs. (15) and (16) into Eqs. (10) and (11) 
results in

(15)𝜙1(𝜉, 𝜏) = q0(𝜏) +

∞
∑

n=1

𝜓1,n(𝜉)qn(𝜏); 0 < 𝜉 < 1

(16)𝜙2(𝜉, 𝜏) = q0(𝜏) +

∞
∑

n=1

𝜓2,n(𝜉)qn(𝜏); 1 < 𝜉 < 1 + r

(17a)�1,n(�) = cos
(

�n�
)

(17b)�2,n(�) = �n sin
(

�n�
)

+ �n cos
(

�n�
)

(18)tan
(

�n

)

= −�5∕ 4 tan
(

�nr
)

(19)
�

1

0

�1,m(�)�1,n(�)d� + ��
1+r

1

�2,m(�)�2,n(�)d� =

{

0 m ≠ n

Nn m = n

(20)Nn = ∫
1

0

�2

1,n
(�)d� + �∫

1+r

1

�2

2,n
(�)d�

(21)

q̇0(𝜏) +

∞
∑

n=1

𝜓1,n(𝜉)q̇n(𝜏) =

∞
∑

n=1

𝜓 ��
1,n
(𝜉)qn(𝜏) + Q1(𝜉, 𝜏); 0 < 𝜉 < 1

(22)q̇0(𝜏) +

∞
∑

n=1

𝜓2,n(𝜉)q̇n(𝜏) = 𝜀1∕2
∞
∑

n=1

𝜓 ��
2,n
(𝜉)qn(𝜏) + Q2(𝜉, 𝜏); 1 < 𝜉 < 1 + r
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where � ��
1,n
(�) and� ��

2,n
(�) are the second-order derivatives of 

functions ψ1,n(ξ) and ψ2,n(ξ) with respect to ξ.
Expanding Q1(ξ,τ) in Eq. (21) and Q2(ξ,τ) in Eq. (22) in 

series form using ψ1,n(ξ) and ψ2,n(ξ) as the basis functions, 
Eqs. (21) and (22) may be recast as

where

Note that γ0(τ) and γn(τ) are known functions, since 
the functions ψi,n(ξ) and Qi(ξ,τ) are both known from 
Eqs. (17a)–(17b) and (12a)–(12b), respectively. Because 
q̇0(𝜏) and qn(τ) are independent in Eqs. (23) and (24), for 
each n, one can let

To obtain the initial condition q0(0), one can let the series 
sum in Eqs. (15) and (16) to be equal to zero and substitute 
Eq. (15) into Eq. (14), followed by integration with respect 
to ξ from ξ = 0 to ξ = 1. Also, Eq. (16) is multiplied with ε 
and integrated with respect to ξ from ξ = 1 to ξ = 1+r. The 
two resulting expressions are then added, which results in

To obtain qn(τ), Eq. (28) is multiplied by ψ1,m(ξ) and inte-
grated with respect to ξ from ξ = 0 to ξ = 1. Equation (29) 
is multiplied by εψ2,m(ξ) and integrated with respect to ξ 
from ξ = 1 to ξ = 1+r. Finally, summing up the two resulting 

(23)

q̇0(𝜏) +

∞
∑

n=1

𝜓1,n(𝜉)q̇n(𝜏) =

∞
∑

n=1

𝜓 ��
1,n
(𝜉)q

n
(𝜏)

+

∞
∑

n=1

𝜓1,n(𝜉)𝛾n(𝜏) + 𝛾0(𝜏); 0 < 𝜉 < 1

(24)

q̇0(𝜏) +

∞
∑

n=1

𝜓2,n(𝜉)q̇n(𝜏) = 𝜀1∕2
∞
∑

n=1

𝜓 ��
2,n
(𝜉)q

n
(𝜏)

+

∞
∑

n=1

𝜓2,n(𝜉)𝛾n(𝜏) + 𝛾0(𝜏); 1 < 𝜉 < 1 + r

(25)�0(�) =
∫ 1

0
Q1(�, �)d� + � ∫ 1+r

1
Q2(�, �)d�

1 + �r

(26)

�n(�) =
∫ 1

0
�1,n(�)Q1(�, �)d� + � ∫ 1+r

1
�2,n(�)Q2(�, �)d�

Nn

(27)q̇0(𝜏) = 𝛾0(𝜏)

(28)
𝜓1,n(𝜉)q̇n(𝜏) = 𝜓 ��

1,n
(𝜉)qn(𝜏) + 𝜓1,n(𝜉)𝛾n(𝜏); 0 < 𝜉 < 1

(29)
𝜓2,n(𝜉)q̇n(𝜏) = 𝜀1∕2𝜓 ��

2,n
(𝜉)qn(𝜏) + 𝜓2,n(𝜉)𝛾n(𝜏); 1 < 𝜉 < 1 + r

(30)q0(0) =
∫ 1

0

[

1 − g1(�, 0)
]

d� + � ∫ 1+r

1

[

1 − g2(�, 0)
]

d�

1 + �r

expressions and applying the orthogonality relationship (19) 
results in a much simplified ordinary differential equation 
for qn(τ)

In order to determine the initial condition for qn(τ), 
Eqs. (15) and (16) are substituted in Eq. (14), which with 
the use of the orthogonality relationship given by Eq. (19), 
results in

The ordinary differential equations for q0(τ) and qn(τ), 
given by Eqs. (27) and (31), and subject to initial conditions 
given by Eqs. (30) and (32) have straightforward solutions, 
given by

This completes the solution. Substituting Eqs. (7), (15), 
(16), (17a) and (17b) into Eq. (6), the analytical solutions 
for the concentration distribution are given by

3 � Results and discussion

3.1 � Effect of number of eigenvalues

Similar to any infinite series solution, the solution presented 
in this paper must be truncated to a finite number of terms 
for computation. The larger the number of terms consid-
ered, the greater is the accuracy, but so is the computational 
cost. The importance of determining the minimum number 
of terms for reasonable accuracy has been recognized [32]. 
For the present model, Fig. 2 analyzes the effect of number 
of eigenvalues on the accuracy of the resulting concentra-
tion profile. Specifically, Fig. 2a and b plot concentration 

(31)𝜆2
n
qn(𝜏) + q̇n(𝜏) = 𝛾n(𝜏)

(32)

qn(0) =
∫ 1

0
�1,n(�)

[

1 − g1(�, 0)
]

d� + � ∫ 1+r

1
�2,n(�)

[

1 − g2(�, 0)
]

d�

Nn

(33)q0(�) = q0(0) + ∫
�

0

�0(�
∗)d�∗

(34)qn(�) = e−�
2
n
�

{

qn(0) + ∫
�

0

�n(�
∗)e�

2
n
�∗d�∗

}

(35)
C1(𝜉, 𝜏) = q0(𝜏) +

∞
∑

n=1

cos
(

𝜆
n
𝜉
)

q
n
(𝜏)

+ R1(𝜏)𝜉
2 + S1(𝜏)𝜉; 0 < 𝜉 < 1

(36)

C2(𝜉, 𝜏) = q0(𝜏) +

∞
∑

n=1

[

𝜂
n
sin

(

𝛽
n
𝜉
)

+ 𝜇
n
cos

(

𝛽
n
𝜉
)]

q
n
(𝜏)

+ R2(𝜏)𝜉
2 + S2(𝜏)𝜉; 1 < 𝜉 < 1 + r
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profile as a function of time at ξ = 1 and ξ = 1+r for 1, 2, 4 
and 5 eigenvalues for a linearly increasing flux density and a 
step increase in the flux density, respectively. In both cases, 
the calculated distribution changes between the N = 1, N = 2 
and N = 4 cases, but there is nearly no change between the 
N = 4 and N = 5 cases. This shows that around four to five 
eigenvalues are sufficient for accurate computation for the 
set of parameters considered in Fig. 2. All further plots in 
this paper are generated using five eigenvalues.

3.2 � Model verification and comparison 
with past work

Since the analytical model in this paper generalizes past 
work on constant flux boundary condition, it is instructive 

to compare results based on the analytical model with these 
papers for the special case of constant current. Based on val-
ues of parameters such as diffusivity and porosity assumed 
by Subramanian et al. [26], Fig. 3a and b plot concentration 
at the separator–electrode interface and at the back of the 
electrode, respectively as functions of time for three dif-
ferent, constant current densities. The scenario considered 
in this plot is that of a porous cathode during a discharge 
process. In both plots, the analytical model presented in this 
work is compared with results from Subramanian et al. [26], 
for three different values of current density. Both Figures 
show excellent agreement between the two approaches, 
showing that the present work reduces to a well-established 
model for the special case of constant flux. While the con-
centration at the separator–electrode interface rises with 

Fig. 2   Effect of number of eigenvalues: Concentration profile at ξ = 1 
and ξ = 1+r as functions of time for different number of eigenvalues, 
N, for two different current profiles: a Linear I(�) = 60

(

1 +
�

50

)

 

Am−2 and b Step function I(τ) = 30 Am−2 for 0 < τ<15 and I(τ) = 60 
Am−2 for 15 < τ < 30

Fig. 3   Comparison of the analytical model with past work [26] for 
constant current density: a Concentration at the separator–electrode 
interface, c2(1, �) , and b Concentration at the back of the electrode, 

c2(1 + r, �) as functions of τ for three different current densities. In 
each plot, curves represent the present analytical model, and symbols 
represent results by Subramanian, et al. [26]
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time due to species influx from the left, concentration at the 
end of the electrode reduces with time due to species con-
sumption in the intercalation process. The greater the current 
density, the greater is the rate of rise and fall in concen-
trations at the two locations, respectively. Note that, while 
the past studies present solution for galvanostatic (constant 
current) discharge condition, the solution presented here is 
applicable to any arbitrary time-dependent current profile 
and it reduces to the result from past studies for the special 
case of constant current.

To further validate the analytical model for more gen-
eral, time-dependent boundary conditions, results are 
compared against predictions from a numerical simula-
tion for a linearly time-dependent boundary condition. 
A finite-difference based numerical simulation code is 

utilized for comparison. Note that the numerical simu-
lation is also developed for the case of solution phase 
diffusion limitation. Thus, the same governing equations 
and boundary conditions (Eqs. (1)–(4)) solved analyti-
cally in Sect. 2 are discretized and solved numerically 
using a fully implicit approach. Each layer is discretized 
into 1000 nodes. Boundary conditions are applied at the 
two ends and continuity of concentration and flux at the 
interface of the two layers are applied to the node at the 
interface. Figure 4a presents comparison of concentration 
as a function of time at two different points in the elec-
trode between the analytical model and numerical simula-
tion for a current density of I(τ)= 60(1 + τ/50) Am−2. In 
both cases, there is excellent agreement between the two. 
Further, Fig. 4b plots the entire concentration distribution 

Fig. 4   Validation of the analytical model through comparison with 
numerical simulations: a Concentrations at the two ends of the elec-
trode as functions of time; b Concentration distribution in the separa-

tor and electrode at three different times. In each case, 
I(�) = 60

(

1 +
�

50

)

Am
−2 . Comparison between analytical model and 

numerical simulations is presented in each plot

Fig. 5   Concentration profiles for linear flux density 
I(�) = 60

(

1 +
�

�0

)

Am
−2 : a Concentration at the separator–electrode 

interface as a function of time; b Concentration distribution in the 

separator and electrode at τ  = 30. Curves are plotted for multiple val-
ues of τ0. For reference, curves for the constant current density 
I(�) = 60Am

−2 are also plotted
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in the separator and electrode at multiple times for the 
same current density. There is excellent agreement 
between the analytical model and numerical simulations 
over the entire domain at each time. These results provide 
additional confidence in the analytical model presented 
in Sect. 2.

In subsequent sub-sections, concentration distributions 
due to a variety of time-dependent current profiles are 
computed and presented.

3.3 � Concentration profiles for linear concentration 
flux

Figure 5 plots the concentration field for linearly varying 
flux, I(�) = 60

(

1 +
�

�0

)

Am
−2 for five different values of τ0. 

In addition, curves corresponding to the constant current 
I(�) = 60Am

−2 case are also shown. While Fig. 5a plots 
concentration at the separator–electrode interface as a func-
tion of time, Fig. 5b plots the spatial distribution of concen-
tration at τ  = 30. Figure 5a shows that concentration at the 
separator–electrode interface rises much faster for the linear 
flux cases than the corresponding constant flux case. This is 
because there is greater species flux in the linear cases—the 
lower the value of τ0, the greater is the overall species flux, 
and thus, the larger is the increase in concentration at the 
separator–electrode interface. This trend is also seen in 
Fig. 5b which shows that there is greater rise in concentra-
tion in the separator and greater reduction in concentration 
in the electrode as the value of τ0 reduces. In both Figures, 
the concentration curve computed using the analytical model 
approaches the constant current case as the value of τ0 
becomes very large, as expected.

3.4 � Concentration profiles for periodic 
concentration flux

Figure 6 analyzes the case where the current flux is a sinu-
soidal function of time. For two different frequencies, Fig. 6a 
plots concentrations at the separator–electrode interface and 
at the end of the electrode as functions of time. The peri-
odic variation in the computed concentration profiles is clear 
from Fig. 6a, and the periodicity matches with the frequency 
of the imposed current. Figure 6b plots the concentration 
distribution in the separator and electrode as three different 
times for a sinusoidally varying current with ω = 1/20. It 
is seen that concentration at the separator/electrode inter-
face is largest at τ  = 35, followed by τ = 40, and then τ = 20. 
This is consistent with Fig. 6a where concentration is at 
its minimum and maximum at τ = 20 and 35, respectively. 
Furthermore, the two curves at τ = 20 and 40 are very close 
to each other due to the close values of their concentration 
seen in Fig. 6a. In contrast, the back of the electrode exhibits 
the opposite behavior—concentration is largest at τ  = 20, 
followed by τ = 40, and then τ = 35. This is also consistent 
with Fig. 6a. These Figures show that the present model can 
predict the periodic and non-monotonic behavior of the con-
centration profile both as a function of time and throughout 
the composite electrode at any given time.

3.5 � Concentration profiles for step‑function 
concentration flux

Step-function changes in the current density may also be 
of interest for practical applications. This is analyzed in the 
next two Figures.

Figure 7 considers a scenario where the current den-
sity undergoes two step changes. The current starts at 25 
Am−2, then increases to 45 Am−2 at τ = 10, and to 60 Am−2 

Fig. 6   Concentration profiles for sinusoidal current density I(�) = 60[1 + sin(2���)]Am−2 : a Concentrations at the two ends of the electrode as 
a function of time for two different values of ω; b Concentration distribution in the separator and electrode at three different times for ω = 1/20
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at τ = 25. Concentrations at the separator–electrode inter-
face and at the end of the electrode are plotted as functions 
of time in Fig. 7a. There is a change in the slopes of the 
curves at each time corresponding to a step change. This is 
expected because, in this case, the current goes up at each 
step, and therefore, the rates of change of concentrations 
at the two locations must increase across the times of the 
step change. Figure 7b plots concentration distribution in the 
separator and electrode at three different times, two of which 
correspond to the step changes. As the current increases, 
concentration in the separator goes up due to added inwards 
flux, and concentration in the electrode towards the back 
goes down due to additional consumption. Concentration in 
the region in the electrode close to the separator rises due 
to greater influence of the inward flux. Such curves can be 

used to understand how the concentration distribution in the 
composite separator–electrode body changes when subjected 
to step changes in the current density.

Figure 8 considers a somewhat more complicated step-
change scenario, where the cell charges for some time, then 
switches to discharge, and finally returns to charge. The 
concentration fields computed by the analytical model in 
Sect. 2 accurately account for these sudden changes. For 
example, Fig. 8a plots concentrations at the separator–elec-
trode interface and at the end of the electrode as functions 
of time. Figure 8a clearly shows a change in direction of 
the concentration curves whenever the cell switches from 
charge to discharge, and vice versa. Concentration at the 
separator–electrode interface reduces initially while the cell 
is charging due to species outflux during charge. During the 

Fig. 7   Concentration profiles for step-function variation in current 
density, where the current density increases in two steps: a Concen-
trations at the two ends of the electrode as a function of time; b Con-

centration distribution in the separator and electrode at three different 
times. The inset shows step-variation in current density over time

Fig. 8   Concentration profiles for step-function variation in current 
density, where the cell switches from charge to discharge, and then 
back to charge: a Concentrations at the two ends of the electrode as 

a function of time; b Concentration distribution in the separator and 
electrode at three different times. The inset shows step-variation in 
current density over time
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discharge phase, concentration at the separator–electrode 
interface begins to rise because of flux into the separator 
during discharge. Finally, when the cell switches back to 
charge, the concentration begins to drop off again. The rate 
of reduction in the third phase is larger than in the first phase 
because of the larger charge current in the third phase. Fig-
ure 8b plots the spatial concentration distribution at three 
different times. At τ = 5, while the cell is in charge phase, 
concentration has a positive slope, which is consistent with 
the outflux of species during charging process. During the 
discharge period, species influx occurs into the separa-
tor, which is why, the concentration field in the separator 
increases and the slope becomes negative during the dis-
charge period. In each case, the concentration distribution 
in the electrode region is governed by the interplay between 
species influx/outflux and consumption/generation during 
periods of discharge and charge, respectively.

4 � Conclusions

It is important to account for sudden or gradual changes in 
current density that may occur in realistic energy conversion 
and storage processes in a Li-ion cell. While most previous 
studies presented analytical solutions for concentration profile 
under galvanostatic discharge operating conditions, the novelty 
of this work is to extend previous studies and present a gen-
eralized solution applicable for any arbitrary, time-dependent 
current. While the analytical model presented in this work is 
more complicated than past work on constant current density, 
the final results are not overly complicated to compute. For 
example, the use of only a few eigenvalues has been shown to 
result in reasonable accuracy. The good agreement between the 
analytical model and past work for the special case of constant 
current density, as well as with numerical simulation results 
increases confidence in the analytical model. The results dis-
cussed for step-function changes in current density are directly 
relevant for applications where the current density may sud-
denly change magnitude and sign as the cell charges and dis-
charges. Similarly, the analysis related to periodic functions 
may be helpful for analyzing applications where the current 
density as a function of time can be represented by a series 
comprising periodic functions. It is expected that the analyti-
cal model and its applications discussed here will improve 
the theoretical understanding of diffusion in a Li-ion cell, as 
well as optimization of practical energy conversion and storage 
processes using Li-ion cells.

Appendix A: Dimensional equations 
and non‑dimensionalization scheme

Based on the assumptions listed in Sect. 2, the concentration 
conservation equations for separator and electrode layers may 
be written in dimensional form as follows:

and

Note that the migration term is zero based on the common 
assumption of constant transference number [42]. The term 
−

I(t)(1−t+)
F⋅Lc

 appearing in Eq. (38) represents the pore wall flux, 
assumed to be uniform and constant [42]. The dimensional 
boundary conditions are

The initial condition is

The non-dimensional variables are defined as follows

Substituting in Eqs. (37)–(38), one may obtain the following 
non-dimensional governing equations:

(37)
�c1

�t
= D

�2c1

�x2

(38)�
�c2

�t
= D�3∕2

�2c2

�x2
−

I(t)
(

1 − t+
)

F ⋅ L2

(39)�c1

�x
= −

I(t)
(

1 − t+
)

F ⋅ D
at x = 0

(40)c1 = c2 at x = L1

(41)
�c1

�x
= �3∕2

�c2

�x
at x = L1

(42)
�c2

�x
= 0 at x = L1 + L2

(43)c1 = c2 = c0 at t = 0

(44)� =
Dt

L2
1

; � =
x

L1
; C1 =

c1

c0
; C2 =

c2

c0

(45)
�C1

��
=

�2C1

��2

(46)
�C2

��
=
√

�
�2C2

��2
+ J(�)
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where

Similarly, substituting in the boundary conditions, given by 
Eqs. (39)–(42), one may obtain

where r = L2/L1. The initial condition in non-dimensional 
form is

Equations (45)–(52) constitute the set of non-dimensional 
equations solved in this work (Eqs. (1)–(4)).
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