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A B S T R A C T   

Heat transfer problems involving solid-liquid phase change occur in a wide variety of engineering applications. 
Most phase change heat transfer problems do not admit an exact analytical solution, and therefore, development 
of approximate analytical methods is of much interest. This work analyzes a one-dimensional phase change heat 
transfer problem in the presence of advection due to fluid flow. An approximate, eigenfunction-based solution for 
the temperature distribution and propagation of the phase change front with time is derived, which may be 
interpreted as a generalization of the classical quasistationary method. It is shown that even a single term of this 
series offers improved accuracy compared to the classical quasistationary solution. The method is shown to retain 
good accuracy even at large values of the Stefan number where approximate analytical methods usually lose 
accuracy. Results are shown to be in good agreement with numerical simulation results. As expected, in the 
absence of advection, results are shown to reduce to well-known Neumann and Stefan solutions. The impact of 
various problem parameters, including Stefan and Peclet numbers on the rate of phase change front propagation 
is investigated. The theoretical treatment presented here can also be used to solve similar mass transfer problems 
with a chemical reaction front where species advection may play a key role. This work improves the theoretical 
understanding of phase change heat transfer in the presence of advection, and may find applications in the design 
and optimization of engineering processes and systems involving phase change.   

1. Introduction 

Melting and solidification are important heat transfer processes that 
occur in a large variety of scientific and engineering applications, 
including metallurgy [1], thermal management [2], energy storage [3] 
and desalination [4]. Mass transfer processes involving chemical re-
actions, such as growth of oxidation film [5] and the formation of Solid 
Electrolyte Interface (SEI) in a Li-ion cell [6] are also often mathemat-
ically described by similar equations. These heat and mass transfer 
processes are characterized by a moving phase change and reaction 
front, respectively. The foremost interest is often in determining how the 
phase change front evolves with time, and how various problem pa-
rameters influence the phase change front propagation [7]. Such moving 
boundary problems have been widely studied both experimentally and 
theoretically for several decades [7–10]. Despite the vast research 
literature available [11], development of mathematical models for such 
problems continues to be of much interest due to the practical relevance 
of such problems. 

Phase change heat transfer problems are, in general, non-linear in 

nature [7]. Phase change in a semi-infinite one-dimensional body driven 
by an imposed temperature at one end is one of the simplest phase 
change heat transfer problems. Referring to the melting process as 
shown in Fig. 1, for a constant imposed temperature on the left 
boundary, a self-similarity based analytical solution exists. Stefan [12] 
showed that if the solid is initially at the melting temperature, the 
temperature field is a function of a self-similarity variable, η = x/

̅̅̅̅̅̅̅
αLt

√

and the phase change front location is proportional to 
̅̅̅̅̅̅̅
αLt

√
, where αL is 

the thermal diffusivity of the liquid. Neumann derived a similar result 
for the more general case of an initially subcooled solid [13]. The ratio of 
sensible heat to latent heat, referred to as the Stefan number, Ste is an 
important non-dimensional parameter in phase change problems [7,9]. 

Unfortunately, most phase change heat transfer problems beyond the 
simplest Stefan and Neumann problems do not admit an exact analytical 
solution. Therefore, much research has been carried out to develop 
approximate analytical solutions as well as numerical simulation tech-
niques. Approximate techniques often assume a certain form of tem-
perature distribution in the newly formed phase, based on which, 
expressions are derived for the phase change front location as a function 
of time. For example, in the quasi-stationary technique, a steady-state 
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temperature distribution is assumed by neglecting the transient term in 
the energy equation [7]. The resulting expression is valid only for small 
values of Ste [7]. Perturbation methods that express the temperature 
distribution as a power series expansion about Ste have also been used 
widely [14,15]. Such a solution is also valid only for small values of Ste. 
The integral method, based on assuming a polynomial temperature 
profile has also been used to develop approximate analytical solutions to 
heat transfer problems involving phase change [16]. In addition, a 
number of numerical techniques have also been developed for phase 
change processes, such as fixed grid, variable grid and front-fixing 
methods [17]. These methods can be categorized into three main 
types – enthalpy method (EM) [18], effective heat capacity method 
(EHCM) [19], and heat source term method (HSTM) [20,21]. In the 
enthalpy method, the primary dependent variable is the total enthalpy 
which is a combination of sensible and latent heat [22]. In effective heat 
capacity method, temperature is the primary dependent variable and an 
effective heat capacity, representing both sensible and latent heats, is 
used instead of the enthalpy [22]. In HSTM method, however, the 
enthalpy is divided into sensible and latent terms, resulting in a heat 
source term in the governing equation [22]. 

A wide variety of more complicated phase change problems of 
practical relevance beyond the simple Stefan/Neumann problems have 
also been analyzed, using analytical and numerical techniques, such as 
those listed above. A few examples include problems with time- 
dependent boundary conditions [14], multi-dimensional phase change 
[23], phase change in binary alloys [9], phase change with 

temperature-dependent thermal properties [24], phase change problems 
involving heat generation [25,26], phase change problems with multi-
ple moving boundaries [27], embedded and encapsulated PCMs [28, 
29], and inverse Stefan problems [30,31]. 

While most phase change heat transfer problems are governed by 
thermal diffusion in the solid and liquid phases, advection-based 
transport due to fluid flow may also be relevant in some problems. 
Heat may be transported to/from the phase change front due to a flow 
field in the liquid phase. In addition, a flow field may also exist in a 
porous solid. Advection may also be important to consider in the anal-
ysis of mass transport problems involving a chemical reaction front in 
order to accurately predict the location of the reaction front. The Stefan 
problem with convection has been described by the Navier–Stokes 
equations with no-slip boundary conditions and has been formulated 
based on the enthalpy porosity method [32]. Weak solutions has been 
presented for both steady state and transient Stefan problem with con-
vection [33–35]. Numerical investigation of a transient convective 
melting of a paraffin wax inside a closed region has been developed 
[36]. Recently, the Immersed Boundary Smooth Extension method has 
been used to solve the Stefan problem coupled with natural convection 
[37]. Solution for the Stefan problem with convection has been pre-
sented for two cases of a fixed convection velocity and a convection 
velocity governed by the Navier-Stokes equation [38]. Similarity solu-
tion has been derived for a one-phase Stefan problem with convection 
subject to Dirichlet, Neumann, Robin or radiative–convective boundary 
conditions. In this study, the velocity of the convective term of the was 
assumed to depend on temperature and time [39]. The solution of a 
non-classical moving boundary problem with convection subject to a 
generalized boundary condition has been developed using the Legendre 
wavelet Galerkin computational method [40]. Enthalpy-based lattice 
Boltzmann method was used to solve a melting problem with natural 
convention [41]. A solution for a problem with convection and 
temperature-dependent thermal conductivity has been presented [21]. 
A similar problem has been solved using reciprocal transformation [22]. 
Finite-element based numerical computation of a phase change problem 
with advection has also been presented [23]. 

Most of the literature on Stefan problems with advection cited above 
relies on numerically solving the phase change problem coupled with 
equations governing the flow field, such as the Navier-Stokes equation. 
In contrast, it may be of interest to derive analytical solutions for phase 
change problems with simplified advection, such as constant velocity. 
Even if such analytical solutions may be approximate, as is the case with 
most phase change problems, such solutions may help better understand 
the fundamentals of phase change in such systems, as well as the para-
metric dependence of the phase change process. 

This paper derives an approximate eigenfunction-based solution for 

Nomenclature 

C heat capacity (Jkg− 1K− 1) 
ΔHLS latent heat of phase change (Jkg− 1) 
k thermal conductivity (Wm− 1K− 1) 
L lengthscale (m) 
Pe Peclet number, Pe = UL

αL 

Ste Stefan number, Ste = CL(Tref − Tm)/ΔHLS 
T temperature (K) 
V flow velocity (ms− 1) 
x spatial coordinate (m) 
t time (s) 
α diffusivity (m2s− 1) 
β2 ratio of thermal diffusivities, β2 = αL

αS 

γ2 ratio of thermal conductivities, γ2 = kL
kS 

ρ density (kgm− 3) 
τ non-dimensional time, τ = αLt

L2 

θ non-dimensional temperature, θi =
Ti − Tm

Tref − Tm 
, i = L, S 

ξ non-dimensional spatial coordinate, ξ = x
L 

λ non-dimensional eigenvalue 

Subscripts 
in initial temperature 
L liquid phase 
LS phase change front 
m phase change temperature 
ref reference 
S solid phase 
0 imposed temperature  

Fig. 1. Schematic of the geometry with diffusion and advection in a one- 
dimensional semi-infinite solid slab undergoing phase change to liquid due to 
an imposed temperature on the boundary and uniform fluid flow in the newly 
formed phase. The case of freezing of a liquid and mass transfer problems can 
be similarly analyzed. 
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a one-dimensional phase change heat transfer problem with advection in 
the liquid phase. The technique, presented here for melting of a semi- 
infinite solid can also be used for solidification problems, as well as 
equivalent mass transfer problems. Transient temperature distribution 
in the newly formed phase is written in the form of an eigenfunction- 
based infinite series. This is shown to result in an ordinary differential 
equation (ODE) for the phase change location as a function of time that 
accounts for both diffusion and advection. While such an eigenfunction- 
based approach has been used in the past for simpler phase change 
problems [42,43], it does not appear to have been used for solving 
diffusion-advection problems. It is shown that even a single term in the 
infinite series provides sufficient engineering accuracy for most prob-
lems, and that the resulting solution may be interpreted as a refinement 
of the quasistationary method, offering greater accuracy, particularly at 
large Ste. Results are found to be in excellent agreement with numerical 
simulations, as well as self-similarity solutions for special cases. Results 
discussed in this paper expand the fundamental understanding of phase 
change heat transfer problems, and may help develop tools for opti-
mizing phase change in several important engineering applications, 
such as phase change in porous media. 

2. Problem definition 

Consider solid-to-liquid phase change heat transfer in a one- 
dimensional semi-infinite solid slab as shown schematically in Fig. 1. 
Prior to the start of the phase change process at t = 0, the slab is solid at a 
temperature Tin ≤ Tm, where Tm is the melting temperature of the ma-
terial. While this work is presented in the context of melting, the 
opposite process – solidification of a liquid into a solid – can also be 
analyzed using the same treatment. In the present work, phase change is 
driven by a constant temperature T0>Tm maintained on the left face, due 
to which, the solid slowly melts into liquid, and the phase change front 
propagates towards the right. A uniform and constant fluid velocity U is 
assumed in the newly formed liquid phase. In the case of a porous solid, 
a fluid velocity may also exist in the solid phase, but is not considered 
here. It is of interest to determine the impact of heat transfer due to 
advection on the phase change process. As is common with phase change 
heat transfer processes, the primary interest is in determining the loca-
tion of the phase change front as a function of time. Thermal conduc-
tivity, heat capacity, density and diffusivity are denoted as k, C, ρ and α, 
respectively, and subscripts L and S are used to denote the liquid and 
solid phases, respectively. The latent heat of phase change is denoted as 
ΔHLS. Phase change is assumed to occur at a fixed temperature Tm. All 
properties are assumed to be independent of temperature. Natural 
convection in the liquid phase is neglected. 

When the solid slab is initially at a subcooled temperature Tin < Tm, a 
temperature gradient exists in both solid and liquid phases. This is often 
referred to as the two-phase problem. As a special case, if Tin = Tm, i.e., 
the solid is initially at the melting temperature, heat transfer occurs only 
in the liquid phase and there is no temperature gradient in the solid. This 
problem is often referred to as the one-phase problem. In the absence of 
advection, the one-phase and two-phase problem have exact solutions, 
derived first by Stefan [12] and Neumann [13], respectively. A 
self-similarity-based solution, however, is not expected to exist in the 
presence of advection. 

3. Derivation of solution for two-phase heat transfer problem 
with advection 

Under the assumptions listed above, the governing energy conser-
vation equations for the solid and liquid phases are given by 

∂2TL

∂x2 −
V
αL

∂TL

∂x
=

1
αL

∂TL

∂t
(1)  

∂2TS

∂x2 =
1
αS

∂TS

∂t
(2)  

where the second term in equation (1) represents advection in the liquid 
phase due to an imposed uniform flow velocity V. Heat transfer in the 
solid phase is assumed to occur only due to diffusion. When considering 
a porous solid, the treatment presented here can be easily extended to 
account for advection due to fluid flow through the porous solid. 
Boundary conditions associated with equations (1) and (2) are 

TL = T0 at x = 0 (3)  

TL = TS = Tm at x = xLS(t) (4)  

TS =Tin as x→∞ (5) 

In addition, conservation of energy at the interface requires that net 
heat flow into the interface be balanced by the rate of heat consumption 
due to phase change at the interface [7], i.e., 

− kL

[
∂TL

∂x

]

x=xLS

+ kS

[
∂TS

∂x

]

x=xLS

= ρLΔHLS
dxLS

dt
(6) 

The initial condition is 

TS =Tin at t = 0 (7) 

This problem is first non-dimensionalized to ensure generality of the 
solution. The following non-dimensional variables are introduced: θL =
TL − Tm
Tref − Tm

, θS = TS − Tm
Tref − Tm 

ξ = x
L, τ = αLt

L2 , where L is an arbitrary reference length, 
and Tref is a reference temperature, which is taken to be equal to T0 in 
this work. This results in the following set of non-dimensional equations 

∂2θL

∂ξ2 − Pe
∂θL

∂ξ
=

∂θL

∂τ (8)  

∂2θS

∂ξ2 = β2∂θS

∂τ (9)  

where Pe = VL
αL 

is the Peclet number that represents the ratio of advection 
and diffusion. β2 = αL

αS 
is the ratio of thermal diffusivities. 

The non-dimensional boundary conditions are 

θL = 1 at ξ = 0 (10)  

θL = θS = 0 at ξ = ξLS(τ) (11)  

θS = θin as ξ→∞ (12)  

where θin = Tin − Tm
Tref − Tm

. Note that by definition, θin is negative since the solid 
is initially subcooled below melting temperature. Also, ξLS = xLS

L is the 
non-dimensional location of the phase change front, which is a quantity 
of much practical interest. 

The non-dimensional initial condition is 

θS = θin at t = 0 (13) 

Finally, the non-dimensional equation representing conservation of 
energy at the interface is given by 

−

[
∂θL

∂ξ

]

ξ=ξLS

+
1
γ2

[
∂θS

∂ξ

]

ξ=ξLS

=
1

Ste
dξLS

dτ (14)  

where Ste =
CL(Tref − Tm)

ΔHLS 
is the Stefan number and γ2 = kL

kS 
is the ratio of 

thermal conductivities. 
In the absence of advection, i.e. Pe = 0, the problem defined above is 

the standard Neumann problem, which admits a self-similarity solution 
[7]. In this work, this problem is solved in the presence of advection. The 
most general problem of an initially subcooled solid, resulting in heat 

M. Parhizi and A. Jain                                                                                                                                                                                                                        



International Journal of Thermal Sciences 172 (2022) 107262

4

transfer in both phases, is considered first. Results for the special case of 
the solid initially at Tm is easily obtained from the general solution. The 
general methodology followed here is to treat the heat transfer problem 
in the liquid as a transient problem in a wall of thickness ξLS, followed by 
the use of energy conservation at the interface, equation (14) to derive 
an ordinary differential equation for ξLS as a function of time. 

The solid phase problem is considered first. Since no advection is 
considered in the solid, this is a problem of thermal diffusion into a semi- 
infinite body. A self-similarity based solution of equation (9) subject to 
boundary and initial conditions given by equations (11)–(13) can be 
written as follows [17] 

θS(ξ, τ)= θin

⎡

⎢
⎢
⎢
⎣

erf

(

βξ
2
̅̅
τ

√

)

− erf

(

βξLS
2
̅̅
τ

√

)

1 − erf

(

βξLS
2
̅̅
τ

√

)

⎤

⎥
⎥
⎥
⎦

(15) 

On the other hand, the liquid phase problem does not admit a self- 
similarity based solution due to the finite size of the liquid domain as 
well as the presence of advection. While the advective term can be 
removed through an appropriate transformation [17] to lead to a 
pure-diffusion equation, doing so results in time-dependent terms in the 
boundary conditions, which also rules out a self-similarity based solu-
tion. Instead, the method of separation of variables is used to derive a 
solution of the liquid phase problem, particularly equation (8), along 
with a zero temperature initial condition. This represents a problem of 
transient diffusion from a high temperature boundary into a 
one-dimensional body of fixed size ξLS. This is in contrast with the 
quasi-stationary method, which completely ignores the transient term 
and effectively considers only the steady-state portion of the transient 

temperature distribution derived here. Since the phase change front it-
self is dynamic, this technique is not expected to result in an exact so-
lution. However, for pure-diffusion problems, this method has been 
shown to be more accurate than the quasistationary technique [43]. The 
accuracy of this technique in the presence of advection and limits on its 
validity is investigated in Section 4. 

Since one of the boundary conditions associated with equation (8) is 
non-homogeneous, the solution is split into two parts as follows [17]. 

θL(ξ, τ)=w(ξ, τ) + s(ξ) (16)  

where s(ξ) accounts for the non-homogeneity in the boundary condition, 
and w(ξ, τ) can be used to solve the remainder of problem. A solution for 
s(ξ) may be written as 

s(ξ)=
exp(Peξ) − exp(PeξLS)

1 − exp(PeξLS)
(17) 

On the other hand, w(ξ, τ) satisfies the following convection- 
diffusion equation 

∂2w
∂ξ2 − Pe

∂w
∂ξ

=
∂w
∂τ (18) 

w(ξ, τ) must satisfy homogeneous boundary conditions. A solution 
for equation (18) can be written as follows [17]: 

w(ξ, τ)=
∑∞

n=1
An sin(ωnξ)exp

(

Pe
ξ
2
− λ2

nτ
)

(19)  

where only the sine eigenfunction is considered due to the nature of the 
boundary conditions. Further, the eigenvalue ωn is given by ωn = nπ

ξLS 
due 

to the homogeneous boundary conditions. Finally, substituting equation 
(19) in the governing equation for w(ξ,τ), given by equation (18) results 
in the following relationship between λn and ωn: 

λ2
n =ω2

n +
Pe2

4
(20) 

Finally, the unknown coefficients An are determined using the initial 
condition and the principle of orthogonality of eigenfunctions. This re-
sults in 

An =

∫ ξLS
0 − s(ξ*)exp

(

− Pe ξ*

2

)

sin(ωnξ*)dξ*

∫ ξLS
0 sin 2(ωnξ*)dξ*

(21) 

This completes the solution for temperature distribution in the liquid 
phase, given by equation (16). Note that the phase change location ξLS(τ)
that appears in the solid and liquid phase temperature distributions is 
yet unknown. ξLS(τ) is usually the quantity of most practical interest, as 
it represents the propagation of the phase change front over time. In 
order to determine ξLS(τ), equations (15) and (16) are substituted into 
equation (14) that represents conservation of energy at the interface. 
With some mathematical simplification, this results in the following 
ordinary differential equation for ξLS(τ)

An initial condition for equation (22) is simply that ξLS = 0 at τ = 0. 
Equation (22) is a complicated non-linear ordinary differential equation, 
from which, determining an expression for ξLS(τ) may be difficult. 
However, equation (22) provides an explicit expression for dξLS

dτ , and 
therefore, ξLS(τ) can be easily obtained by straightforward numerical 
integration. Numerical integration of an explicit ordinary differential 
equation such as equation (22) can be carried out using several available 
algorithms with high accuracy and speed, and is not expected to 
contribute significantly to error for this method. 

This completes the derivation of the solution for both the phase 
change propagation front as well as the temperature distribution. Note 
that the first term on the left-hand side represents the well-known quasi- 
stationary solution that accounts for advection, whereas the infinite 
series in the second term may be interpreted as a correction factor that is 
shown in Section 4 to improve the accuracy of the method. Accordingly, 
the eigenfunction expansion based solution of the diffusion-advection 
problem is a generalization of the quasistationary technique, with 
improved accuracy. 

A practical challenge related to this solution is encountered at the 
first timestep of the numerical integration, at which, ξLS = 0, and 
therefore, dξLS

dτ is infinite. This is because theoretically, the phase change 
process is infinitely fast at τ = 0 due to the sudden jump in temperature 
from θ = 0 to θ = 1 at the left face of the body, ξ = 0. In order to 
overcome this difficulty, advection is ignored for the first timestep, and 

dξLS

dτ = − Ste

⎡

⎢
⎢
⎢
⎣

Pe
exp(PeξLS)

1 − exp(PeξLS)
+
∑∞

n=1

[

An
nπ
ξLS

cos(nπ)exp
(

Pe
ξLS

2
− λ2

nτ
)]

−
θin

γ2
β̅̅
̅̅̅

πτ
√

exp

(

−

(

βξLS
2
̅̅
τ

√

)2)

1 − erf

(

βξLS
2
̅̅
τ

√

)

⎤

⎥
⎥
⎥
⎦

(22)   
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the Neumann solution is used to determine the location of the phase 
change front at the end of the first timestep. Equation (22) is then used 
for all subsequent timesteps. Provided that the time step is reasonably 
small, this does not incur significant error. 

Note that a key advantage of the present work is that ξLS(τ) – the 
quantity of interest in most applications – can be obtained directly from 

equation (22) without the need for computing the temperature distri-
bution. In contrast, a typical numerical computation technique requires 
discretization of the entire geometry, followed by computation of the 
temperature at each node, which can be time-consuming. Further, as 
shown in the next Section, the solution presented here can be computed 
with only a few number of eigenvalues, which also contributes towards 
the advantage of this technique compared to numerical computation 
tools. For a typical Stefan problem with advection, it is found that the 
present technique computes ξLS(τ) in less than 1.0 s on a 2.80 GHz 
personal computer, compared to around 5.0 s for a finite-difference 
based numerical code on the same computer. 

4. Results and discussion 

4.1. Special cases 

If the semi-infinite solid is initially at the melting temperature, no 
heat transfer will occur in the solid, and the problem reduces to a one- 
phase Stefan problem with advection. In this case, θin = 0, and there-
fore, θs = 0 at all ξ and τ. The phase change front in such a case is given 
by the following simplified equation 

dξLS

dτ =

− Ste

[

Pe
exp(PeξLS)

1− exp(PeξLS)
+
∑∞

n=1
An

[
nπ
ξLS

cos(nπ)+Pe
2

sin(nπ)
]

exp
(

Pe
ξLS

2
− λ2

nτ
)]

(23) 

Further, for a pure diffusion problem, the following limits apply 

lim
Pe→0

exp(Peξ) − exp(PeξLS)

1 − exp(PeξLS)
= 1 −

ξ
ξLS

(24)  

and 

lim
Pe→0

Pe⋅exp(PeξLS)

1 − exp(PeξLS)
= −

1
ξLS

(25) 

Therefore, the phase change front for this special case is given by  

which is identical to the solution for the pure-diffusion Neumann 
problem derived using the separation of variables approach. While the 
exact solution for this problem is based on self-similarity [7], the solu-
tion obtained from equation (26) has reasonable accuracy, particularly 
for small Ste. The first term on the left-hand side represents the quasis-
tationary solution, which, in the absence of advection, predicts a 

̅̅
t

√

dependence of the phase change front. 

4.2. Verification 

The eigenfunction-based solution presented in Sections 2 and 3 is 
compared against standard solutions for special cases for verification. In 
addition, results from the present work are also compared with a nu-
merical simulation. 

The special case of pure diffusion (Pe = 0) is considered first, in 
which, diffusion through the liquid phase drives the propagation of the 
phase change front. Self-similarity based exact solutions for this problem 
are available, for both one-phase [7,12] and two-phase [7,13] problems. 
Fig. 2(a) and (b) present a comparison of results from the present work 
with these exact solutions. The location of the phase change front is 
plotted as a function of time for four different values of Ste for a 
two-phase problem in Fig. 2(a). In addition, temperature distributions in 
both phases are plotted at three different times for a fixed value of Ste =

0.24 in Fig. 2(b). Non-dimensional problem parameters are θin = − 1.5, 
β = 1, γ = 1. In order to be able to compare with exact solutions, Pe = 0 
is assumed for both Figures. Fig. 2(a) shows, as expected, rapid phase 
change front propagation at early times, followed by a slow down. The 
larger the value of Ste, which represents the temperature difference that 
drives the phase change process, the faster is the rate of propagation of 
the phase change front, as expected. In each case, there is good agree-
ment between the present work and the exact solution. The agreement is 

Fig. 2. Comparison of present work with self-similarity based Neumann solution for zero advection: (a) Phase change front ξLS as a function of τ for four different 
values of Ste; (b) Temperature distribution in both phases at three different times for a fixed value of Ste. Other problem parameters are θin = − 1.5; β = 1; γ = 1. 

dξLS

dτ = − Ste

⎡

⎢
⎢
⎢
⎣
−

1
ξLS

−
∑∞

n=1

[
2

ξLS
cos(nπ)exp

(
− λ2

nτ
)
]

−
θin

γ2
β̅̅
̅̅̅

πτ
√
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(

−

(

βξLS
2
̅̅
τ

√

)2)

1 − erf

(

βξLS
2
̅̅
τ

√

)

⎤

⎥
⎥
⎥
⎦

(26)   
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not exact because of the approximation involved in the present work by 
modeling the heat transfer problem in the liquid with a transient thermal 
model for a body of fixed size. Nevertheless, the agreement in Fig. 2(a) 
even for a reasonably high value of Ste = 1.0 is within 5%, which is quite 
low. The key source for this error is the approximation of treating the 
phase change interface to be constant at each time in deriving an 
eigenfunction-based solution for the temperature distribution. It is also 
shown later that unlike other approximate analytical methods, this 
method offers reasonable accuracy even at large Ste. 

The temperature distribution plotted in Fig. 2(b) shows, as expected, 
a value of 1 at ξ = 0, and a value of 0 at ξ = ξLS at each time. Since this is 
a two-phase problem, there is a temperature field in the solid phase as 
well, and the temperature curves are seen to approach the initial value of 
θin = − 1.5 at large values of ξ. There is excellent agreement between the 
temperature distributions predicted by the present model and the exact 
solution. 

A similar comparison with the exact solution available for the one- 
phase Stefan problem without advection is presented in Fig. 3. Similar 
to Fig. 2(a), a 

̅̅̅
τ

√
dependence of the phase change front location is seen 

in Fig. 3(a), with good agreement between the present work and the 
exact Stefan solution. There is also excellent agreement for the predicted 
temperature distributions at multiple times, as shown in Fig. 3(b) for 
Ste = 0.24. Note that since the original solid phase is initially at the 
melting temperature, there is no temperature field in the solid phase at 
any time during the phase change propagation process. 

Based on Figs. 2 and 3, in order for the error to remain less than 10% 
for the zero advection case, an upper bound for Ste is found to be around 
0.6 for the Stefan problem, whereas, for the Neumann problem, the error 
remains less than 10% even for very large Ste. 

The comparisons presented in Figs. 2 and 3 are for the special case of 
zero advection, for which exact solutions are available. For further 

verification of the theoretical model presented in this work, comparison 
with a numerical simulation is also carried out in the presence of 
advection, i.e., non-zero Pe. Results are presented in Fig. 4(a) and (b) in 
the form of phase change front as a function of time, and temperature 
distributions at a given time, respectively. Two different values of Pe are 
considered in both cases. The numerical simulation is carried out using a 
fully implicit variable time-step method [17]. In this method, the space 
domain is divided into equal intervals, Δx. However, the grid size of the 
time domain, Δt, varies and is determined in such a way that during this 
time interval, the phase change front location moves a distance Δx. This 
ensures that the location of the phase change front always remains at a 
grid point. In these simulations, the space domain is divided into 1000 
nodes and the timestep is calculated in an iterative fashion with a 
convergence error less than 0.01%. Accuracy of the numerical compu-
tation is further ensured by verifying grid independence, and good 
agreement with self-similarity solutions for standard problems. In light 
of the absence of an exact solution for the problem with advection, the 
numerical simulation data are used for comparison with the method 
developed in this work. Fig. 4 shows good agreement between the pre-
sent work and the numerical simulation for each value of Pe considered 
here. The agreement is not exact because of the approximations involved 
in seeking an eigenvalue-based solution, and also possibly in the nu-
merical calculations. The error is somewhat greater for the Pe = 2000 
case than the Pe = 500 case, although the worst-case error is still less 
than 4.5%, which is reasonably low. The present work appears to 
slightly overpredict the growth of the phase change front compared to 
numerical simulations. 

Since the solution derived in Section 2 is in the form of an infinite 
eigenfunction series, it is important to understand the number of terms 
needed for accurate computation. The effect of number of eigenvalues 
considered in the solution is presented in Fig. 5. Computed location of 

Fig. 3. Comparison of present work with self-similarity based Stefan solution for zero advection: (a) Phase change front ξLS as a function of τ for three different values 
of Ste; (b) Temperature distribution in liquid phases at three different times for a fixed value of Ste. 

Fig. 4. Comparison of results from present work with finite-difference simulations for a one-phase problem with advection: (a) Phase change front ξLS as a function of 
τ; (b) Temperature distribution in liquid phases at τ = 1.4× 10− 6. For both plots, Ste = 0.13. 
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the phase change front is plotted as a function of time for two different 
values of Pe in Fig. 5(a) and (b), respectively. In each case, curves are 
presented for zero, one and two eigenvalues in the infinite series. It is 
found that in both cases, considering a single eigenvalue is sufficient for 
convergence of results – the contribution of subsequent terms in the 
infinite series is negligible. This is because the transient exponential 
term in equation (19) decays very rapidly. Based on the definition of the 
eigenvalue λn, rapid convergence is expected unless Pe is small and/or 
ξLS is large. For most practical values of ξLS and the non-dimensional 
time, it is found that considering only one eigenvalue is sufficient for 
engineering accuracy. The accuracy in terms of percentage deviation in 
the predicted ξLS at τ = 1.4 × 10− 6 compared to a solution with 100 
eigenvalues is found to be 14.2%, 0.01% and practically zero for 0, 1 and 
2 eigenvalues, respectively. Based on this, for most practical applica-
tions, the infinite series in equations (19), (22) and (23) may be replaced 
only with the n = 1 term without significant loss of accuracy. The ability 
to use a single eigenvalue is particularly helpful for computational 
optimization in the present problem because the eigenvalues need to be 
re-computed at each time due to the changing location of phase change 
front. 

Note that neglecting the infinite series completely is equivalent to the 
commonly-used quasi-stationary method, in which the temperature 
distribution in the liquid phase is assumed to be given by the steady- 
state solution of the energy conservation equation, which is valid only 
for small Ste. The infinite series may, therefore, be interpreted as a 

correction term for the quasi-stationary solution that helps achieve ac-
curacy beyond that of the quasi-stationary method. The zero eigenvalue 
curve shown in Fig. 5 corresponds to the quasistationary solution of this 
problem. 

In order to further quantify the impact of the key non-dimensional 
parameters on error, the deviation between the present work and nu-
merical simulations is calculated in terms of the predicted phase change 
front location at τ = 1.4× 10− 6. A colorplot of this percentage deviation 
is plotted as a function of Pe and Ste in Fig. 6. This plot shows that the 
error is reasonably small over a very broad range of Pe and Ste. At a fixed 
Pe, as Ste increases, the error reaches a maxima and then actually re-
duces at higher Ste. In comparison, the error involved in a similar phase 
change calculation with a quasistationary method is much larger, 
especially at large Ste. A comparison of errors associated with the pre-
sent work and quasistationary method is presented as Figure S1 in 
Supplementary Information. Fig. 7 presents the error characteristics in 
the form of error curves as functions of Ste for two different values of Pe 
in Fig. 7(a), and as functions of Pe for two different values of Ste in Fig. 7 
(b). For comparison, curves are also plotted for the quasistationary 
method. Fig. 7(a) shows that for small Ste, the error incurred in the 
present method is similar to the quasistationary method. However, as Ste 
increases, the error for the quasistationary method increases rapidly, 
whereas the error for the present work does not rise as rapidly, and 
actually plateaus out at large values of Ste. This is particularly remark-
able and attractive because most approximate analytical methods for 
phase change heat transfer perform poorly at large Ste, whereas the 
eigenfunction based method described here retains reasonable accuracy. 
For both the present work as well as quasistationary method, error is 
greater at larger Pe. When comparing the two methods in terms of error 
as a function of Pe, it is found, as shown in Fig. 7(b), that at small Ste, 
both methods have similar errors as functions of Pe. However, at Ste =

2.0, the two methods behave very differently, with a much larger error 
for the quasistationary method compared to the present work. In this 
case, as Pe increases, the error associated with the quasistationary 
method increases dramatically, whereas the present method does not 
deteriorate as rapidly. In summary, the present method offers much 
greater accuracy compared to the traditional quasistationary method, 
and the accuracy of the method does not deteriorate dramatically at 
large values of Ste and/or Pe. The good performance at large Ste is 
particularly helpful in light of poor performance of other approximate 
analytical methods in that regime. 

The effect of β, γ and θin on the deviation between the present work 
and numerical simulations is also investigated. By keeping other pa-
rameters constant (Ste = 0.12, Pe = 1000, θin = − 1.5, γ = 1), the 
deviation between the two in terms of ξLS at τ = 1.4 × 10− 6 is deter-
mined and plotted in Fig. 8(a) as a function of β between 0.3 and 1.7 that 
covers the expected range for most practical PCMs. Fig. 8(a) shows 
somewhat lower error when β < 1 compared to β > 1. However, in both 
cases, the error is quite small within a reasonable range of β. Similar plot 

Fig. 5. Effect of the number of eigenvalues: Phase change front ξLS as a function of τ for different number of eigenvalues considered for a one-phase problem. (a) Pe =

500; (b) Pe = 1000. Ste = 2.0 in both cases. 

Fig. 6. Colormap showing the percentage deviation in the analytical model 
compared to numerical simulations for computing ξLS at τ = 1.4× 10− 6 in the 
Ste − Pe parameter space for the Stefan problem. 
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of the deviation as a function of γ and θin are presented in Figs. 8(b) and 
9, respectively. These plots are show relatively low error within a 
reasonable range of these parameters. 

4.3. Effect of problem parameters on phase change process 

The key non-dimensional parameters that govern the phase change 
propagation process in the presence of advection include Pe and Ste. 
While Pe represents the ratio of advection and diffusion processes, Ste 
represents the ratio of sensible to latent heat storage. The larger the 
value of Ste, the greater is the temperature difference that drives the 
phase change process. The initial temperature θin, and property ratios β 
and γ are also relevant parameters for the two-phase problem. Under-
standing the impact of these non-dimensional parameters on the nature 
of the phase change process may be helpful for the design and optimi-
zation of practical phase change energy storage and thermal manage-
ment systems. Further, it is also important to understand the sensitivity 
of the phase change process to these parameters, some of which may not 
be known exactly in practical applications. 

Fig. 10 presents the effect of advection represented by Pe on the 
phase change process. Plots are presented for two-phase and one-phase 
problems in Fig. 10(a) and (b), respectively. Ste = 0.24 for both cases, 
and for the two-phase problem, θin = − 1.0, β = 1, γ = 1. In each case, 
the phase change propagation front is plotted as a function of time. Plots 
show that the greater the value of Pe, the faster is the propagation of the 
phase change front. This is expected because advection through the 
liquid front contributes towards heat transfer from the high temperature 
boundary condition to the phase change front, which drives the phase 
change process. Zero-advection curves based on self-similarity based 
exact solutions are also plotted in Fig. 10(a) and (b) for comparison. It is 
seen that the advection curves get close to the zero-advection curve as 
the value of Pe decreases. Note that based on the definition Pe = UL

α , the 
numerical value of Pe is expected to be large for practical values of the 
speed, since thermal diffusivity has a low numerical value for most 
common materials. A comparison of Fig. 10(a) and (b) shows slower 

Fig. 7. Deviation in the analytical model compared to numerical simulations for computing ξLS at τ = 1.4× 10− 6: (a) Percentage deviation as a function of Ste for a 
two fixed values of Pe; (b) Percentage deviation as a function of Pe for a two fixed values of Ste. Error curves for the quasistationary method are also shown 
for comparison. 

Fig. 8. Deviation in the analytical model compared to numerical simulations for computing ξLS at τ = 1.4 × 10− 6 as a function of (a) β with γ = 1, (b) γ with β = 1. 
Other parameters are Ste = 0.12; Pe = 1000; θin = − 1.0. 

Fig. 9. Deviation in the analytical model compared to numerical simulations 
for computing ξLS at τ = 1.4 × 10− 6 as a function of θin. Other parameters are 
Ste = 0.12; Pe = 1000; β = 1; γ = 1. 
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phase change propagation for the two-phase problem, which is because 
in that case, subcooling of the solid phase must be overcome before 
phase change may occur. 

The impact of Ste on the phase change process is investigated in 
Fig. 11. For a fixed value of Pe = 2000 and other non-dimensional pa-
rameters (θin = − 1.5, β = 1, γ = 1), Fig. 11(a) and (b) plot the prop-
agation of the phase change front with time for three different values of 

Ste for the two-phase and one-phase problems, respectively. As ex-
pected, it is found that Ste plays a key role in determining the rate of 
phase change – the greater the value of Ste, the faster does phase change 
occur. Similar to Fig. 10, at a given value of Ste, phase change occurs 
faster for the one-phase problem where the solid is initially at the 
melting temperature compared to the two-phase problem, in which the 
solid is initially subcooled. 

Fig. 12 discusses the impact of the initial sub-cooling of the solid 
phase on the rate of phase change propagation. A two-phase problem 
with Pe = 1000, Ste = 0.24, β = 1, γ = 1 is considered, and ξLS is plotted 
as a function of τ for different values of the initial temperature of the 
solid, θin. Since Tin < Tm, therefore, based on the non-dimensionalization 
scheme followed, the numerical value of θin is negative for two-phase 
problems. Fig. 12 shows that as θin decreases, i.e., the solid is more 
and more subcooled, the rate of phase change propagation reduces. This 
is along expected lines because some of the thermal energy conducted or 
advected through the liquid into the solid phase must be used to over-
come the subcooling of the solid before phase change can occur. 
Therefore, the greater the degree of subcooling, the slower would be the 
rate at which the phase change process occurs. For reference, Fig. 12 also 
plots the phase change curve for θin = 0, which corresponds to the one- 
phase problem in which the solid is initially at the melting temperature. 
Among all cases of θin, the rate of phase change is highest for this case, 
because there is no subcooling that needs to be overcome before phase 
change occurs. 

Finally, the impact of ratios of thermal properties β and γ on the 
phase change process is presented in Fig. 13. β and γ represent square 
roots of the ratios of liquid and solid thermal diffusivity and thermal 
conductivity, respectively. Keeping γ constant, Fig. 13(a) plots the phase 
change front location as a function of time for multiple values of β. Other 
problem parameters are Pe = 1000, Ste = 0.24, θin = − 1.0. This plot 

Fig. 10. Effect of Pe on the phase change process: Phase change front ξLS as a function of τ for different values of Pe for (a) two-phase problem, with Ste = 0.24, θin =

− 1.0, β = 1, γ = 1; (b) one-phase problem, with Ste = 0.24. In both cases, the exact solution for zero-advection is also shown for comparison. 

Fig. 11. Effect of Ste on the phase change process: Phase change front ξLS as a function of τ for different values of Stefor (a) two-phase problem, with Pe = 2000, 
θin = − 1.5, β = 1, γ = 1; (b) one-phase problem, with Pe = 2000. 

Fig. 12. Effect of initial sub-cooling, θin on the phase change process: Phase 
change front ξLS as a function of τ for different values of θin for a two-phase 
problem. Problem parameters are Pe = 1000, Ste = 0.24, β = 1, γ = 1. 
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shows faster phase change front propagation at lower values of β. This is 
expected because for a fixed value of the liquid thermal diffusivity, large 
β corresponds to lower thermal diffusivity of the solid, which impedes 
heat transfer into the solid the slows down the phase change process. 
Note that heat transfer into the solid is necessary for overcoming the 
subcooling of the solid in the two-phase process. 

A similar analysis for the effect of γ is presented in Fig. 13(b), in 
which β is held constant and phase change curves are plotted for mul-
tiple values of γ. Other problem parameters are the same as in Fig. 13(a). 
Unlike Fig. 13(a), this plot shows that phase change occurs faster at 
larger values of γ. This can be understood mathematically from the 
1
γ2

[
∂θS
∂ξ

]

ξ=ξLS 

term in equation (14), which contributes towards deter-

mining the rate of change of the phase change front location. Note that 
[

∂θS
∂ξ

]

ξ=ξLS

represents the slope of temperature distribution in the solid 

phase, which is clearly negative. This term reduces the rate of change of 
the phase change front location. Therefore, the larger the value of γ, the 
smaller is the negative contribution of this term, and therefore, larger is 
the rate of change of the phase change front location. Fig. 13(a) and (b) 
show that the ratios of thermal diffusivity and thermal conductivity of 
the two phases have opposing effects on phase change propagation. 
While the impact is quite uniform for β, phase change front propagation 
appears to be more sensitive to γ when γ < 1. 

5. Conclusions 

This work addresses a key gap in the phase change heat transfer 
literature by deriving a solution for phase change in the presence of 
diffusion and advection. The resulting eigenvalue-based solution can be 
interpreted as an improvement over the quasistationary method, in that 
the infinite series is a correction term resulting in reduced error. The 
infinite series is found to converge very rapidly, so that using a single 
eigenvalue is found to result in less than 0.1% error. This may be very 
helpful for rapid computation of the temperature distribution. 

It is important to be aware of key simplifying assumptions that may 
limit the applicability of the theoretical model. Heat and fluid flow is 
assumed to be one-dimensional, and natural convection in the liquid 
phase is neglected. This may be a reasonable assumption for a wide 
variety of problems, but may not be applicable for some problems such 
as solidification of metal castings. Temperature-independence of ther-
mal properties is a common assumption that is also made in the present 
work. 

While presented in the context of heat transfer, the model presented 
here is equally applicable for mass transfer problems involving diffusion, 
advection and growth of a chemical reaction front, such as in growth of 
oxidation layers and SEI formation in Li-ion cells. Further, the extension 
of the present work for analyzing scenarios in which advection occurs in 

both phases, or in which the original phase is not semi-infinite can be 
easily carried out. Finally, the technique described here can also be used 
for analyzing similar phase change problems with diffusion and advec-
tion in cylindrical and spherical coordinate systems. 
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