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Mathematical modeling of ionic transport in a Li-ion cell is critical for understanding and predicting key performance parameters
such as cell voltage. Past work on solution phase limitation modeling of a Li-ion cell has assumed constant and uniform pore wall
flux, which is valid only under certain conditions. It may be more appropriate to assume, similar to chemical reactions in general,
that the pore wall flux is proportional to the local ion concentration. This paper presents a theoretical model for solution phase
limited ionic diffusion in a separator-electrode stack under the assumption of the pore wall flux being linearly proportional to the
local concentration. The resulting non-linear governing equation is linearized and solved using Laplace transformation technique.
Concentration field in the two-layer stack is calculated as a function of space and time in a parameter space of practical interest. A
comparison of results with past work based on constant, uniform reaction rate indicates that the assumed nature of concentration-
dependence of the pore wall flux plays a significant role in determining the concentration distribution. This work advances the
theoretical understanding of ionic diffusion in a Li-ion cell, and may contribute towards understanding and optimizing the
performance of Li-ion cells.
© 2021 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
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List of symbols

a Specific interfacial area (m−1)
C Concentration (mol m−3)
Co Reference concentration (mol m−3)
c Non-dimensional concentration, = /c C Co
ĉ Laplace transform of non-dimensional concentration
D Diffusion coefficient of electrolyte (m2 s−1)
Cin(x) Initial concentration distribution (mol m−3)
f(x) Non-dimensional initial concentration distribution, f(x)

= ( ) /F x Co
F Faraday’s constant (C mol-1)
I Current density (A m−2)
jn Pore wall flux (mol m-2 s−1)
J Non-dimensional pore wall flux, = − ( − )+J I t1

/L FL DCs c o
2

Ls Length of separator (m)
Lc Length of porous electrode (m)
r Electrode length to separator length ratio, = /r L Lc s
s Laplace variable
t+ Transference number
t Non-dimensional time, τ= /t D Ls

2

X Length scale (m)
x Non-dimensional length scale, = /x X Ls
ε Porosity
τ Time (s)
Subscripts
1 Separator
2 Electrode

Li-ion cells are used extensively for electrochemical energy
storage and conversion in a variety of engineering applications, such
as renewable energy storage and electric-based transportation.1,2 In
these and several other applications, maintaining high energy
conversion efficiency and reliability over a large number of cycles is
critical.3,4 Mathematical modeling of Li-ion diffusion within the cell
is critical for understanding the nature of electrochemical energy
conversion and to ultimately optimize these processes towards high
efficiency and reliability.5,6

A very comprehensive body of literature already exists on the
mathematical modeling of diffusion and electrochemical processes

in a Li-ion cell subject to different operating conditions.7,8

Mathematical modeling of Li-ion batteries involves conservation
of mass, charge, and energy equations coupled with kinetic
reactions.7,9 A robust and widely used electrochemical model is
the Pseudo-2D model (P2D) that has been developed based on the
porous electrode theory10 and the concentrated solution theory.11

Exact solutions do not exist for P2D models due to the non-linear
and coupled nature of the transport equations and Butler-Volmer
kinetics. Thus, P2D models are commonly solved using numerical
approaches that often result in a large number of equations due to
spatial discretization, and consequently take significant computa-
tional effort to solve.12 Much research has been reported on
developing fast numerical methods to solve P2D models.12,13 In
order to understand the behavior of the battery under various limiting
conditions, early work by Doyle & Newman14 proposed three major
limiting cases including solid-phase diffusion limitation, solution-
phase diffusion limitation, and an ohmically-limited cell in which
open-circuit potential depends linearly on state of charge. In the
solid-phase limitation, lithium ions in the electrolyte are assumed to
diffuse rapidly through the electrolyte, and diffusion through the
electrode material particle, modeled by a representative sphere is the
rate-limiting step. The solid-phase limitation is the basis of a
simplified model called Single Particle Model (SPM) that has been
used extensively in the past.7 SPM neglects concentration and
potential gradients in the electrolyte phase and assumes a uniform
distribution of the current density throughout the length of the
electrodes.15,16 These assumptions are valid at relatively low charge/
discharge rates and thin electrodes.17 A variety of analytical,
approximate and numerical techniques have been used to solve
SPM problems under different operating conditions. Some of these
include the separation of variables approach for single layer14 and
multi-layer electrodes under galvanostatic boundary conditions,18

Laplace transformation technique,19,20 Green’s function for single
and multi-layer electrodes under time-dependent current density21

and extended SPM accounting for effect of electrolyte concentration
and potential.22,23 On the other hand, modeling of the solution phase
limitation regime involves modeling the transport of lithium ions
through the electrolyte phase due to gradients in concentration and
potential, by solving the equations governing conservation of mass
and charge in the solution phase of a cell.14,24,25

In the solution phase limitation modeling of a separator-electrode
geometry, influx/outflow of Li ions at the separator end of the two-
layer geometry is counteracted by consumption/generation in the
electrode layer due to intercalation/deintercalation. Early work onzE-mail: jaina@uta.edu
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solution phase limitation modeling in a Li-ion cell14 has been
followed by further work specifically on two-layer24 and three-layer
geometries25 using separation of variables technique. Laplace trans-
form technique has also been used to determine the concentration
profile for the solution-phase diffusion limitation.20 Green’s function
approach has been used to solve the material balance in the
electrolyte for a constant uniform reaction rate.26 Later, analytical
solution has been presented for the case of a two-layer porous
electrode with a spatially uniform but time-dependent reaction rate
using Green’s function approach.27 Most of the literature on solution
phase limitation modeling assumes constant and uniform pore wall
flux in the electrode. According to Doyle & Newman,14 this
assumption is valid when kinetic resistances dominate ohmic
resistances. Such an assumption results in a uniform and constant
consumption/generation term in the governing conservation equa-
tions, which can be easily handled by analytical methods such as
separation of variables. At the other end of the spectrum, Doyle &
Newman14 also discussed the Stein analysis, in which, the reaction is
assumed to occur only very close to the electrode-separator inter-
face. Analytical results were derived for this extreme scenario and
compared with the uniform pore wall flux model.14

Uniform pore wall flux and Stein analysis are two extreme
scenarios, which may be valid only under certain assumptions. For
example, uniform pore wall flux is expected to be reasonably valid
when the open circuit potential of the insertion material depends
strongly on the state of charge of the system28 or when kinetic
resistances dominate ohmic resistances.14 On the other hand, Stein
analysis is representative of an ohmically-limited system or very
large rates. Between these two extremes, it may be desirable to
model the pore wall flux as being proportional to the local
concentration instead of being either uniform throughout or limited
only to a small thickness near the electrode-separator interface. In
general, the rate of any chemical reaction depends on the reactant
concentration, with a linear, first-order relationship being common
for many systems.29 Accordingly, it is of interest to model pore wall
flux as being proportional to the local concentration in solution phase
limitation modeling of a Li-ion cell. Specifically, a linear depen-
dence of pore wall flux on the local concentration may be
representative of first-order reaction kinetics.

This paper presents solution phase limitation modeling of a two-
layer cell under the general assumption of pore wall flux being
proportional to the local concentration. It is shown that modeling of
the pore wall flux as being linearly concentration-dependent results
in a non-linear integro-differential equation for the concentration
field. A semi-analytical method based on linearization over small
time steps followed by the use of Laplace transformation is shown to
result in an accurate prediction of the concentration field. Results are
found to be in good agreement with finite-difference simulation
results. A comparison of the results with past results based on the
uniform pore wall flux model is presented. The impact of this
assumption on the concentration distribution is examined. The effect
of various problem parameters on the concentration field is also
discussed.

Mathematical Modeling

Problem statement and non-dimensionalization.—Figure 1 shows
a Li-ion cell stack considered in this paper, comprising a separator and
a porous electrode, with a Li foil electrode on the left of the separator.
The porous electrode is considered to be a cathode, so that a positive
current density implies cell discharge, in which, species consumption
occurs in the porous electrode. Governing conservation equations for
the two-layer structure can be written based on a balance between
diffusion, consumption/generation and transient terms. Note that the
migration term can be neglected based on the commonly made
assumption of constant transference number t+. Also, tortuosity effects
in the separator are neglected. The tortuosity effects in the cathode are
modeled through the commonly used Bruggemann correlation and a
value of 3/2 for the Bruggemann coefficient is used in this work.

These assumptions result in the following equations for concentration
fields in the two layers, C1 and C2:
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where jn, a and t+ are the pore wall flux, specific interfacial area and
transference number, respectively. D and ε are the electrolyte
diffusivity and electrode porosity, respectively.

Associated boundary conditions are as follows:
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where F is the Faraday number and I is the applied current density.
Ls and Lc are the lengths of the separator and electrode, respectively.

An arbitrary initial concentration distribution is assumed as
follows:

τ= ( ) = [ ]C C X at 0 7in1 ,1

τ= ( ) = [ ]C C X at 0 8in2 ,2

Based on species conservation, the pore wall flux and current
density are related to each other as follows:
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Unlike past work,14,24,25 in which, a uniform pore wall flux was
assumed, the present work assumes that the pore wall flux is
proportional to a power of the local concentration. Specifically, it
is assumed that
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A
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where n is the order of proportionality. For n = 1, the pore wall flux
is linearly dependent on concentration, corresponding to first-order
kinetics. Inserting Eq. 10 in Eq. 9 results in the following expression
for A, the constant of proportionality:
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c s
in Eq. 11 may be interpreted

as the nth order mean concentration in the electrode. Using Eqs. 11
and 10 in the governing equation for C2 results in:
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Note that n= 1 corresponds to first-order reaction kinetics, in which
case, C̄2,1 is simply the average concentration in the electrode. This is
the case considered in the rest of the paper, and for convenience, C̄2,1 is
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simply written as C̄ .2 Further, note that the treatment above reduces to
the commonly-used uniform pore wall flux case for n = 0.

In order to ensure generality of results, it is useful to carry out
non-dimensionalization using the following set of parameters:
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The resulting set of non-dimensional governing equations are
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The non-dimensionalized boundary conditions are:
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Equation 15 is a non-linear partial differential equation, since the
parameter β itself depends on the concentration field, and therefore
is a function of time. Further, a spatial integral of the concentration
field appears in the β term. As a result, this set of equations cannot
be solved using standard analytical tools such as the separation of
variables method.

Solution procedure.—A timestepping-based semi-analytical
technique is used to solve the non-linear set of equations derived
in the previous sub-section. The time domain of interest is split into a
number of equal time steps, Δt. In each time step, β is approximated
to be constant, so that Eqs. 14–20 are linearized and solved within
that time step. The value of β for the first time step is determined
using the initial condition. For example, for a uniform initial
concentration, c2 = 1, β is simply given by β ε= /1 . The value of
β for any subsequent timestep is calculated by determining and
integrating the concentration field at the end of the previous time
interval. In this manner, the solution marches forward in time in a
recursive manner with a time step of Δt until the desired total time is
reached.

In order to carry out this recursive technique for solving the
problem, an analytical solution for the transient concentration field
over a time Δt with constant β is needed. A solution for this problem
using the Laplace transformation technique is discussed in the next
sub-section.

Laplace transform solution for the sub-problem.—Assuming
constant β within a certain timestep, carrying out Laplace transform
on Eqs. 14–19 results in the following set of equations in the Laplace
domain:
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sc c x 21in

2
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2

2
2 2 2 2,

Figure 1. Schematic of the composite porous electrode consisting of Li foil, separator, and positive porous electrode.
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where c1 and c2 are Laplace transforms of c cand ,1 2 s is the Laplace
variable, and ( )c xin1, and ( )c xin2, are the initial concentration
distributions at the start of the timestep, which are obtainable from
the solution of the previous timestep.

The relevant boundary and interface conditions in the Laplace
domain are as follows:
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In order to solve the ordinary differential equations given by
Eqs. 21 and 22, the initial concentration distributions ( )c xin1, and

( )c xin2, are fitted with a quadratic fit, i.e.

( ) = + + [ ]c x a x b x c 27in1, 1
2

1 1

( ) = + + [ ]c x a x b x c 28in2, 2
2

2 2

Subsequently, the solutions for c1 and c2 from Eqs. 21 and 22 are
given by
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Boundary and interface conditions given by Eqs. 23–26 can be
used to determine the four unknown coefficients in Eqs. 29–30 as
follows:
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For the initial time step, based on a uniform initial concentration, a1,
b1, a2 and b2 are set to be equal to zero, whereas c1 and c2 are set to
be equal to one.

The solution of the concentration field in the Laplace domain,
given by Eqs. 29 and 30 needs to be inverted in order to determine
concentrations in the separator and electrode as functions of space
and time. Due to the complicated nature of these expressions,
particularly the coefficients, it is unlikely that an analytical inversion
is possible. Instead, a numerical inversion technique30 based on de
Hoog’s quotient difference method31 is used to determine c1(x,t) and
c2(x,t).

Results and Discussion

Verification of the solution methodology:.—The solution meth-
odology is verified through comparison with a finite-difference
based numerical simulation. The numerical simulation is carried
out by discretizing the governing equations and solving for
concentration at each node corresponding to a time step using an
implicit scheme. The central difference formula is used to approx-
imate the spatial derivatives in the governing equations which results
in a set of coupled algebraic equations. The resulting algebraic
equations are solved using a Tri-Diagonal Matrix Algorithm
(TDMA). A total number of 1000 spatial nodes and 1000 time
intervals are found to ensure that the solution is independent of mesh
size and timestep. This comparison is presented in Fig. 2, where
concentrations at multiple points are plotted as function of time in
Fig. 2a and concentration distributions are plotted at multiple times
in Fig. 2b. The problem parameters are r = 5, J = −0.0096 and ε =
0.35. The value of the non-dimensional pore wall flux, J, is
computed using Eq. 13 and corresponding parameter values from
Table I for a current density of 80 A m−2. The values listed in
Table I are taken from past work21 except the transference number,
for which, a value of 0.4 is assumed in all Figures, unless specified
otherwise. Results from both Laplace transform based technique and
numerical simulations are plotted. In general, there is very good
agreement between the two at multiple points and at different times.
The worst-case deviation between the two is 0.4%, which can be
considered as extremely low for most engineering applications. Note
that there may be residual error due to discretization in the numerical
simulation. Further, in the Laplace transform approach, numerical
inversion of the solutions in Laplace domain using de Hoog’s
method may also result in some error. A very fine discretization of
50 is specified in order to minimize such error, with no appreciable
change in results observed upon further refinement. Finally, dis-
cretization into finite timesteps and assumptions of constant β over
each timestep are also potential sources of error. Despite such
sources of error, Fig. 2 shows excellent agreement between the
present work and numerical simulations.

The fundamental nature of the predicted concentration field is
investigated in Figs. 3 and 4. The evolution of concentration at four
locations over time, starting with the uniform initial concentration is
plotted in Fig. 3. The applied current is 80 A m−2 and values of other
problem parameters are the same as in Fig. 2. Note that unlike past
work, species consumption in the present work is linearly propor-
tional to the local concentration. Figure 3 presents the evolution of
concentration with time at various locations in the two-layer
structure. As expected, concentration at the left boundary (x = 0)
and separator-electrode interface (x = 1) increase with time, since
species influx dominates over consumption, whereas concentration
decreases with time at the center of the electrode (x = 1 + r/2) and at
the right boundary (x = 1 + r). At each location, a steady state is
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reached with roughly the same time constant. For any point in the
electrode, at steady state, species influx is balanced by concentra-
tion-dependent consumption and diffusion, resulting in no further
change in concentration with time. On the other hand, steady state in
the separator is governed by a balance between diffusion and influx
from the boundary.

Curves plotted in Fig. 4 show that, as time passes, concentration
increases in the separator and in the electrode region close to the
separator-electrode interface due to species influx from the left
boundary. Simultaneously, consumption in the remaining electrode
region results in reduction in concentration. As the local concentra-
tion at a point increases (or decreases), so does the rate of species
consumption, which counteracts the change in concentration, even-
tually leading to steady state. Interestingly, at a specific point in the
electrode, consumption and influx appear to balance each other out,
resulting in the concentration remaining close to the initial value
throughout.

It is instructive to compare results from the present approach, in
which pore wall flux is proportional to the local concentration, with
past work,21 in which a uniform pore wall flux is assumed. Figure 5
presents this comparison in terms of concentration distributions at
four different times, while Fig. 6 compares the two approaches in
terms of concentration profiles over time at four locations. A current
density of 120 A m−2 and a transference number of 0.2 is used in
order to maintain consistency with assumptions in the past work. All
other parameters remain unchanged and are identical in the two
approaches.

Figures 5a–5d show that as time increases, concentration
distribution predicted by the linear rate model considered in this
work begins to deviate from the constant rate models used in past
papers. Specifically, concentration in a region close to the electrode
boundary is greater for the linear rate model, and this region grows
as time increases. In the rest of the geometry, i.e., in the separator
and regions of the electrode close to the interface, concentration
predicted by the linear rate assumption is lower than for the constant
rate assumption. This is explained on the basis of the rate of
consumption in electrode being proportional to the local concentra-
tion. For example, Fig. 5a shows that the non-dimensional concen-
tration towards the end of the electrode drops slightly from the initial
value for both constant rate and linear rate cases. Therefore, at this
instance, the consumption rate in the linear rate case starts deviating
from the constant rate case as the consumption depends on the local
concentration. At the same instance, in case of the constant rate
case the consumption rate still remains the same as it was in the
beginning. This trend can be clearly noticed in Fig. 5b. Since there is
a continuous influx of Li ions and the consumption depends on the
local concentration for the linear rate case, consumption in the
electrode region closer to the separator for the linear rate case is

Table I. Electrochemical and physical properties used in this study.

Parameter Value Unit

D × −2.6 10 10 −m s2 1

F 96, 487 −C mol 1

t+ 0.4 —

ε 0.35 —

Ls × −25 10 6 m

Lc × −125 10 6 m

Co 1000 −mol m 3

Figure 3. Concentration as a function of time at various locations for I =
80 A m−2.

Figure 4. Concentration distribution in the separator-electrode structure at
various times for I = 80 A m−2. Values of problem parameters are the same
as for Fig. 2.

Figure 2. Comparison of Laplace transform based technique (present work) with finite-difference numerical simulation results: (a) c as a function of t at multiple
locations; (b) c as a function of x at t = 3, 15 and 30.
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always higher at every instance, when compared with the constant
rate case, which explains the reduced concentration in this region for
the linear rate model compared to the constant rate model.

Figure 6 provides further comparison of results from the linear
rate model with constant rate model. It is seen that for x = 0 and

x = 1, the predicted concentration using the linear rate model is
lower than the constant rate model. This is because in the separator
and in the electrode close to the interface, influx of ions due to the
applied current results in an increase in concentration, which, in the
linear rate model results in greater consumption in the electrode

Figure 5. Comparison between present work based on concentration-dependent reaction rate model with past work21 based on constant reaction rate assumption
for t+= 0.2 and I = 120 A m−2: c as a function of x at (a) t = 3, (b) t = 15, (c) t = 30, (d) t = 45.

Figure 6. Comparison between concentration-dependent reaction rate model with past work21 based on constant reaction rate assumption for t+= 0.2 and I =
120 A m−2: c as a function of t at (a) x = 0, (b) x = 1, (c) x = 1 + r/2, (d) x = 1 + r.
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relative to the constant rate model, which explains the results in
Figs. 6a–6b. On the other hand, at the middle of the electrode and
electrode boundary, the reduced concentration results in a lower rate
of consumption in the linear rate model compared to the constant
rate model, which is why, the linear rate curve lies above the
constant rate curve in Figs. 6c–6d. It is seen that at each point, steady
state is reached faster in the linear rate case. This is because the β
term associated with the linear rate case keeps adjusting the
consumption rate and at a certain instance, the adjustment results
in the influx of Li ions becoming equal to the consumption rate. At
this instance, the consumption rate in the constant rate case is still
not equal to the influx of Li ions.

The impact of various problem parameters on the predicted
concentration distribution under concentration-dependent pore wall
flux is examined in the next three Figures. Figure 7 plots the
concentration distribution at t = 30 for four different values of
current density. Other problem parameters are the same as for Fig. 2.
As expected, the larger the current, the greater is the rate of influx in
the separator, and therefore, the higher is the concentration distribu-
tion in the separator, as well as the electrode region close to the
separator. In addition, a larger current also results in greater pore
wall flux in the electrode, resulting in greater reduction in concen-
tration at higher current density values.

The effect of porosity is discussed in Fig. 8, where concentration
distribution is plotted at t = 30 for four different values of the
porosity. As porosity increases, the amount of Li ions entering the
electrode is higher because higher porosities would result in more
space available for the diffusion. Therefore, the concentration in the
electrode away from the interface is greater for higher porosities. At
the same time, concentration in the separator and the electrode close

to the separator decreases as porosity increases. This is because higher
porosity results in an increased diffusion of Li ions into the electrode
as pointed out above. Therefore, for lower porosities, this would result
in a greater accumulation of Li ions in the separator and electrode
close to the separator. Further, Eq. 18 indicates that a greater porosity
should result in lower slope of concentration distribution in the
electrode at the interface relative to the slope in the separator at the
interface. This is clearly seen in Fig. 9, in which, the slope at the
interface in the separator is roughly the same for each porosity, but the
slope in the electrode goes down as porosity increases.

The final parameter of interest in cell design is the ratio of
electrode length to separator length, r. Figure 9 plots concentration
as a function of time at the center of the electrode for four different
values of r. A large value of r corresponds to a relatively short
separator, which allows Li ions to rapidly diffuse into the electrode.
Therefore, this will make the influx of Li ions to be higher when
compared to the lower ratio cases. This is the reason why the
concentration profile is highest for r = 10 and lowest for r = 3. It is
interesting to note that for small values of r, the model predicts rapid
reduction in concentration with time initially, resulting in a minima,
which is followed by a gradual rise in concentration at later times.

Conclusions

Concentration-dependent pore wall flux assumed in this work
may be more appropriate than the standard assumption of constant
and uniform pore wall flux over a larger range of parameters for the
modeling of solution phase limitation in a Li-ion cell. This work
presents a general framework in which to consider concentration-
dependent pore wall flux and specifically analyzes the problem
where pore wall flux is linearly proportional to the local concentra-
tion. This case is shown to result in a non-linear integro-differential
equation, for which, an appropriate linearization technique is
discussed.

In the present paper, validation of the theoretical model is limited
to comparison with numerical simulation results, and comparison
with results from past work based on a constant reaction rate
assumption. While these are shown to provide reasonable results, in
contrast, direct experimental validation of the present work through
measurement of concentration field in the electrode stack may be
considerably difficult. The theoretical work presented here is to be
seen as an intermediate step towards ultimately predicting the
charge/discharge characteristics of the cell. It is expected that
prediction of charge/discharge characteristics of the cell based on
this work may be more easily validated through measurements.

Key limitations of the present model include the assumption of
isothermal conditions, which may break down at large discharge rates.
Further, diffusion coefficients are assumed to be independent of
concentration, and effective diffusivity in the electrode is modeled
using assumed values of the Brugemann coefficient. Finally, constant

Figure 7. Effect of current density on concentration distribution: c as a
function of x at t = 30 for multiple values of current density.

Figure 8. Effect of porosity on concentration distribution: c as a function of
x at t = 30 for multiple values of porosity.

Figure 9. Effect of geometry on concentration distribution: c as a function
of t at the center of the electrode for multiple values of r.

Journal of The Electrochemical Society, 2021 168 090511



current conditions are assumed, whereas, significant variation in
current with time may be encountered in realistic scenarios. The
time-dependence of current can, in principle, be accounted for through
analytical tools such as Green’s functions.16,21

In addition to expanding the theoretical understanding of species
transport in a Li-ion cell under solution phase limitation, the results
from this work may also contribute towards optimization of Li-ion
cell design for practical applications.
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