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a b s t r a c t 

Moving boundary problems occur in a variety of heat and mass transfer processes. While significant lit- 

erature already exists on the mathematical analysis of such problems in the presence of diffusion, there 

is a lack of general solutions for problems in which advective transport of heat/mass due to fluid flow 

also occurs. This paper presents an error function based analytical solution for a one-dimensional phase 

change problem in the presence of advection with constant velocity. While this solution is not universally 

exact, however, a mathematical condition to ensure exactness of the solution is derived. Good agreement 

with numerical simulations, as well as with past work for special cases is shown. Even outside the con- 

dition to ensure exactness, the present method is shown to offer improved accuracy compared to other 

approximate analytical methods. In particular, the method offers greater accuracy at large value of the 

Stefan number, where other approximate analytical methods usually perform poorly. The impact of Peclet 

number that represents advection on the accuracy of the method is investigated. It is shown, as expected, 

that the 
√ 

t dependence of phase change front propagation is not valid in the presence of advection in 

general. This work improves the theoretical understanding of an important phase change problem, and 

may find applications in the design and optimization of engineering processes and systems involving 

phase change. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Theoretical modeling of moving boundary problems is of much 

nterest in heat and mass transfer [ 1 , 2 ]. Such problems occur com-

only in solid-liquid phase change as well as in reacting systems, 

ith the phase change front or the reaction front constituting a 

oving boundary. Phase change heat transfer problems occur in 

arious engineering applications such as thermal energy storage 

3] , casting of metals [4] , thermal management [5] and freezing of 

ood [6] . A few examples of mass transfer problems involving a 

oving boundary include silicon oxidation in semiconductors [7] , 

nd growth of solid electrolyte interface (SEI) layer in Li-ion bat- 

eries [8] . A vast body of literature already exists on the theoretical 

nalysis of such moving boundary problems [ 1 , 2 ]. 

In general, moving boundary problems are challenging to solve 

ue to the non-linearity introduced by the unknown location of 

he phase change interface [ 1 , 9 ]. Exact solutions exist only for a

imited number of simple problems [ 1 , 10 , 11 ]. For example, Ste-

an [12] presented an exact solution for a one-dimensional phase 
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hange problem in a semi-infinite domain subject to a constant 

emperature boundary condition. The single-phase Stefan problem 

ssumes the initial phase to be at the melting temperature, so that 

eat transfer is limited only to the newly formed phase. Neumann 

13] presented an exact solution for a more general problem, re- 

erred to as the Neumann or the two-phase problem in which, the 

nitial phase is not at the melting temperature, and a temperature 

istribution exists in both phases during the phase change process. 

uch pure-diffusion problems are solved using the principle of self- 

imilarity, which shows that the location of the phase change front 

s proportional to 
√ 

αt , where α is the thermal diffusivity of the 

ewly formed phase. A key non-dimensional number in such prob- 

ems is the Stefan number, Ste , which may be interpreted as the ra- 

io of sensible heat to latent heat [1] . Ste is usually, but not always,

mall [14] . 

Due to the non-linearity of phase change problems in general, 

evelopment of approximate analytical solutions and understand- 

ng the range of validity of such solutions is of much interest. 

or instance, quasi-stationary technique has been used to solve 

hase change problems [ 15 , 16 ]. This method assumes a steady- 

tate temperature distribution in the newly formed phase. The in- 

egral method, originally proposed for boundary layer problems in 

uid mechanics has also been employed extensively to solve vari- 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121802
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
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Fig. 1. Schematic showing the one-dimensional solid-to-liquid phase change prob- 

lem considered here. Phase change is driven by both diffusion and advection. The 

opposite problem of freezing of a liquid, as well as mass transfer problems can be 

analyzed using the same framework. 
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Nomenclature 

C specific heat capacity (Jkg −1 K 

−1 ) 

k thermal conductivity (Wm 

−1 K 

−1 ) 

L ref reference lengthscale (m) 

L latent heat of phase change (Jkg −1 ) 

P e j Peclet number, P e j = U j L re f / αL , for j = L,S 

Ste Stefan number, Ste = C L ( T re f − T m 

) / L 

T temperature (K) 

V flow velocity (ms −1 ) 

x spatial coordinate (m) 

y location of the phase change front (m) 

ȳ non-dimensional location of phase change front, y = 

y/L re f 

t time (s) 

α diffusivity (m 

2 s −1 ) 

ᾱ2 ratio of thermal diffusivities, ᾱ2 = 

αL 
αS 

k̄ 2 ratio of thermal conductivities, k̄ 2 = 

k L 
k S 

ρ density (kgm 

−3 ) 

τ non-dimensional time, τ = 

αL t 

L 2 
re f 

θ non-dimensional temperature, θ j = 

( T j − T f ) / ( T re f − T f ) , for j = L, S 

ξ non-dimensional spatial coordinate, ξ = 

x 
L re f 

λ non-dimensional eigenvalue 

Subscripts 

i initial temperature 

L liquid phase 

f phase change temperature 

ref reference 

S solid phase 

0 imposed temperature 

us phase change problems [ 17 , 18 ]. In this method, a polynomial

orm for the temperature profile within the newly formed phase is 

ssumed. The governing equation is then integrated over the newly 

ormed phase, resulting in an ordinary differential equation for 

he phase change front [ 20 ]. Perturbation method, an approximate 

nalytical technique has also been used to solve various moving 

oundary problems such as Stefan problems with time-dependent 

oundary conditions [19-21] . In this method, the temperature pro- 

le is written as a power series of the Stefan number. Derivation 

f the solution using perturbation method is often mathematically 

omplicated, especially if higher order terms are considered [4] . 

ariable eigenvalue technique has been also used to solve one- 

imensional transient phase change problems [22] . 

A key drawback of most approximate analytical solutions is that 

he solutions are often valid only for small Ste or short times. 

ignificant error may be encountered at large Ste . This is primar- 

ly due to the nature of assumptions underlying the approximate 

ethods. Therefore, several numerical techniques have also been 

eveloped for solving phase change problems. Fixed-grid meth- 

ds [23] , variable-grid methods [23] , front-fixing method [24] , and 

he enthalpy method [25] are among the commonly used numer- 

cal techniques. Numerical methods have been used to address 

ore complicated phase change problems involving higher dimen- 

ions [ 26 , 27 ], phase change over a temperature range [28] and

emperature-dependent thermal properties [29] . 

Most of the previous literature on moving boundary problems 

onsidered diffusion as the only heat transfer mechanism [11] . 

owever, in specific practical applications, heat transfer may also 

ccur due to advection driven by fluid flow in the liquid phase, 

nd possibly in the porous solid phase as well. Equivalent mass 
2 
ransfer problems, involving advection of species towards or away 

rom the reaction front due to fluid flow in addition to diffusion 

ay also be important in practical applications. Accounting for ad- 

ection is clearly important for accurate prediction of the evolu- 

ion of the moving boundary in such problems, and traditional self- 

imilarity based solution may not be valid when both diffusion and 

dvection exist. While pure-diffusion phase change problems are 

ell-studied [11] , there is a relative lack of analytical models that 

ccount for the advection term in equations governing the phase 

hange process. Most of the literature on buoyancy-driven flow 

uring phase change rely on numerical solution of the energy and 

ow equations. Analytical treatment of problems with advection is 

vailable only for very specific problems [30-34] . For example, self- 

imilarity based solution for one-dimensional convection-diffusion 

hase change problems have been derived under the specific as- 

umptions of velocity [34] or imposed heat flux at the boundary 

33] decaying as 1 / 
√ 

t . Such self-similarity based solutions are not 

alid in general, or even for a commonly encountered constant ve- 

ocity profile. 

This paper derives an approximate analytical solution for a one- 

imensional two-phase moving boundary problem in the presence 

f uniform advection. A solution for the temperature distribution 

s written in the form of error functions. A mathematical condition 

or exactness of the analytical solution is derived. Even outside of 

his range, results are shown to be in good agreement with numer- 

cal simulations, as well as with past results for special cases. In 

articular, results from the present work compare favorably with 

ther approximate analytical methods, and offer much improved 

ccuracy at large values of Ste . The next section defines the prob- 

em and presents a solution. Section 3 discusses a condition in 

hich the results are exact. Further discussion of the results, in- 

luding comparison with other approximate analytical techniques 

s presented in Section 4. 

. Problem definition 

The problem considered here is shown schematically in Fig. 1 . 

onsider a one-dimensional semi-infinite solid slab, initially at a 

niform temperature T i , which is lower than or equal to the phase 

hange temperature T f . Thermal conductivity, heat capacity and 

iffusivity are denoted by k, C and α respectively, and the liquid 

nd solid phases are denoted by subscripts L and S , respectively. 

he latent heat for phase change is denoted by L . At t = 0, the phase

hange process is initiated by imposing a constant temperature T 0 
 > T f ) on the boundary of the solid body, due to which, the solid

egins to melt, and the phase change front propagates towards the 

ight. Fluid flow with constant velocity U L is assumed in the liquid 

hase. In case the solid itself is porous, there may be a fluid veloc- 

ty U S in the solid phase as well, assumed to be constant. In order 

o analyze the case of a non-porous solid, U S can be simply set to 

ero. As the solid melts, thermal energy from the boundary is used 
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p to heat the liquid and, if T i < T f , solid phase, as well as drive the

hase change process. If T i < T f , i.e., the solid is initially subcooled,

here is a temperature gradient in both phases. In the absence of 

dvection, this two-phase problem is often referred to as the Neu- 

ann problem. If T i = T f , the solid is initially at the melting tem-

erature, and no heat transfer occurs into the solid. In the absence 

f advection, this one-phase problem is referred to as the Stefan 

roblem. Both Neumann and Stefan problems have analytical solu- 

ions, in which, the location of the phase change front change is 

roportional to 
√ 

t [1] . 

While the problem discussed above pertains to the melting of a 

olid, the opposite problem – freezing of a liquid – can also be an- 

lyzed using the same framework. Further, mass transfer problems 

nvolving diffusion and advection of species through a layer before 

eing consumed at a reaction front can also be analyzed similarly. 

eferring to Fig. 1 , and assuming that all thermal properties are in- 

ependent of temperature, energy conservation equations govern- 

ng the temperature fields in the solid and liquid phases may be 

ritten as [ 1 , 9 ] 

∂ 2 T L 
∂ x 2 

− U L 

αL 

∂ T L 
∂x 

= 

1 

αL 

∂ T L 
∂t 

(1) 

∂ 2 T S 
∂ x 2 

− U S 

αS 

∂ T S 
∂x 

= 

1 

αS 

∂ T S 
∂t 

(2) 

The two terms on the left hand sides represent heat transfer 

ue to diffusion and advection, respectively. The usual boundary 

onditions associated with this problem are [ 1 , 9 ] 

 L = T 0 at x = 0 (3) 

 L = T S = T f at x = y ( t ) (4) 

 S = T i as x → ∞ (5) 

here y ( t ) represents the location of the phase change front. 

In addition, the following equation may be written to represent 

he conservation of energy at the interface 

k L 

[
∂ T L 
∂x 

]
x = y 

+ k S 

[
∂ T S 
∂x 

]
x = y 

= ρL L 

dy 

dt 
(6) 

The initial condition for the solid phase is 

 S = T i at t = 0 (7) 

Non-dimensionalization is first carried out based on θ j = 

T j −T f 
T 0 −T f 

, 

here j = L,S , ξ = 

x 
L re f 

and τ = 

αL t 

L 2 
re f 

, where L ref is a reference length.

n the absence of a natural length scale in this problem, L ref is arbi-

rary and is often assumed to be unity. This results in the following 

on-dimensional equations governing this problem 

∂ 2 θL 

∂ ξ 2 
− P e L 

∂ θL 

∂ξ
= 

∂ θL 

∂τ
(8) 

∂ 2 θS 

∂ ξ 2 
− P e S 

∂ θS 

∂ξ
= ᾱ2 ∂ θS 

∂τ
(9) 

L = 1 at ξ = 0 (10) 

L = θS = 0 at ξ = y (11) 

S = θi as ξ → ∞ (12) 

S = θ at t = 0 (13) 
i 

3 
[
∂ θL 

∂ξ

]
ξ= ξLS 

+ 

1 

k̄ 2 

[
∂ θS 

∂ξ

]
ξ= ξLS 

= 

1 

Ste 

d ξLS 

dτ
(14) 

here θi = 

T i −T f 
T 0 −T f 

and ȳ = 

y 
L are the non-dimensional initial tem- 

erature and phase change front location, respectively. P e j = 

U j L 

αL 

 j = L,S ) is the Peclet number that represents the magnitude of ad-

ection relative to diffusion. ᾱ2 = 

αL 
αS 

and k̄ 2 = 

k L 
k S 

represent the 

atios of thermal diffusivities and thermal conductivities, respec- 

ively. Finally, Ste = 

C L ( T 0 −T f ) 

L is the Stefan number. Note that Pe L = 

e S = 0 reduces this to a standard Neumann/Stefan problem in 

hich, no advection occurs and heat transfer is driven only by 

iffusion. Well-known self-similarity based analytical solutions are 

vailable for these problems [ 1,4 ]. 

The liquid phase of the present problem with advection is con- 

idered first. Eq. (8) for the liquid temperature distribution is the 

onvection-diffusion problem, which has been investigated widely 

35-37] , though not much in the context of phase change [ 30–32 ].

ased on past work on problems with fixed boundaries and no 

hase change [ 37 , 38 ], the following function satisfies Eq. (8) ex- 

ctly: 

f ( ξ , τ ) = 

erfc 

(
ξ−P e L τ

2 
√ 

τ

)
+ exp ( P e L ξ ) erfc 

(
ξ+ P e L τ

2 
√ 

τ

)
2 

(15) 

here erfc is the complementary error function. Therefore, a gen- 

ral form for the liquid temperature distribution may be written as 

ollows: 

L = A + B 

erfc 

(
ξ−P e L τ

2 
√ 

τ

)
+ exp ( P e L ξ ) erfc 

(
ξ+ P e L τ

2 
√ 

τ

)
2 

(16) 

here A and B are coefficients that may be determined based on 

he boundary conditions. 

Inserting Eq. (16) into Eqs. (11) and (12) and solving for A and 

 results in 

 = 

− ˆ f ( y , τ ) 

1 − ˆ f ( y , τ ) 
= 

− 1 
2 

[ 
erfc 

(
y −Pe L τ

2 
√ 

τ

)
+ exp ( Pe L y ) erfc 

(
y + Pe L τ

2 
√ 

τ

)] 
1 − 1 

2 

[ 
erfc 

(
y −Pe L τ

2 
√ 

τ

)
+ exp ( Pe L y ) erfc 

(
y + Pe L τ

2 
√ 

τ

)] 
(17) 

 = 

1 

1 − ˆ f ( y , τ ) 
= 

1 

1 − 1 
2 

[ 
erfc 

(
y −Pe L τ

2 
√ 

τ

)
+ exp ( Pe L y ) erfc 

(
y + Pe L τ

2 
√ 

τ

)] 
(18) 

here ˆ f ( ̄y , τ ) = f ( ξ = ȳ , τ ) . 

Note the time-dependence of A and B , due to which, the as- 

umed form of the liquid temperature distribution may not ex- 

ctly satisfy the governing energy equation, given by Eq. (8) , un- 

ess Pe L = 0, or Pe L scales as 1 / 
√ 

τ , in which case, ȳ scales as 
√ 

τ ,

nd therefore, A and B are pure constants. The important question 

f the validity of Eq. (16) as the solution for the liquid tempera- 

ure distribution is addressed in section (3), where it is shown that 

nder certain conditions, Eq. (16) satisfies Eq. (8) exactly. Compari- 

on with numerical simulations discussed in Section 4 also demon- 

trates that this approximate analytical method offers excellent ac- 

uracy in a broad range of Ste and Pe numbers, including at large 

te . 

Similar to the liquid problem, a general solution of the 

onvection-diffusion equation in the semi-infinite solid domain, 

iven by Eq. (9) can be written as [ 37 , 38 ]: 

 ( ξ , τ ) = 

erfc 

(
ᾱξ−Pe ∗S τ

2 
√ 

τ

)
+ exp 

(
P e ∗S ̄αξ

)
erfc 

(
ᾱξ+ Pe ∗S τ

2 
√ 

τ

)
(19) 
2 



A. Jain and M. Parhizi International Journal of Heat and Mass Transfer 180 (2021) 121802 

w

p

θ

c

C

D

w

t  

i

(

u

c

ξ
d

 

−
(

 

exp 

τ  

e

c

t

t

t

s

c

r

 

w  

p

a

v

i

o

v

i

t

e

m

o

a

l

e

d

s

p

p

b

a

3

s

t

S

m  

t

B

w

s

f

 

o

t

l

m

t

c

n

a

 

b

f  

a

t

P

e

here Pe ∗
S 

= 

P e S 
ᾱ . Therefore, the following form for the solid tem- 

erature distribution may be written: 

S = C + D 

erfc 

(
ᾱξ−Pe ∗S τ

2 
√ 

τ

)
+ exp 

(
P e ∗S ̄αξ

)
erfc 

(
ᾱξ+ Pe ∗S τ

2 
√ 

τ

)
2 

(20) 

Coefficients C and D may be determined using the boundary 

onditions, Eqs. (11) and (12) , as follows: 

 = θi (21) 

 = 

−2 θi 

erfc 

(
ᾱȳ −Pe ∗

S 
τ

2 
√ 

τ

)
+ exp 

(
P e ∗

S ̄
αȳ 

)
erfc 

(
ᾱȳ + Pe ∗

S 
τ

2 
√ 

τ

) (22) 

Note that if the solid is initially at the melting temperature, 

hich is a commonly made assumption justified by the large la- 

ent heat of common materials, then θi = 0 , and therefore, θS = 0 ,

.e., there is no heat transfer or temperature field in the solid. 

Once expressions for θL and θS are available from Eqs. (16) and 

20) , respectively, the interface equation given by Eq. (14) may be 

sed to derive an equation governing the phase change front lo- 

ation ȳ . Eqs. (16) and (20) are differentiated with respect to ξ at 

= ȳ , and inserted in Eq. (14) to result in the following ordinary 

ifferential equation for ȳ 

d y 

dτ
= −Ste 

2 

[ 

− 1 √ 

π
√ 

τ

[ 

exp 

[ 

−
(

y − P e L τ

2 

√ 

τ

)2 
] 

+ exp ( y P e L ) exp 

[

Ste · θi 

k 
2 

[ 

− α√ 

π
√ 

τ

[ 

exp 

[ 

−
(

αy − P e ∗S τ
2 

√ 

τ

)2 
] 

+ exp ( αy P e ∗S )

An appropriate initial condition for Eq. (23) is that ȳ = 0 at 

= 0 . While analytical integration of Eq. (23) is not likely, it can be

asily integrated numerically to provide the phase change front lo- 

ation as a function of time, and subsequently, the liquid and solid 

emperature distributions as well. 

Note that in many cases, the solid is initially at the melting 

emperature, or the subcooling of the solid is neglected, because 

he heat needed for phase change is much greater than for sen- 

ible heating of the solid. In such a one-phase problem, the term 

ontaining θi in the right hand side of Eq. (23) may be ignored, 

esulting in significant simplification. 

Further, note that setting P e L = P e S = 0 reduces Eq. (14) to the

ell-known Neumann ( θi � = 0) and Stefan ( θi = 0) solutions of the

ure-diffusion problems, in which the phase change front ȳ scales 

s 
√ 

τ . In the more general case considered here, with constant ad- 

ection velocity, the 
√ 

τ scaling may not be valid any more, and ȳ 

s obtained, in general, by solving Eq. (23) . Numerical integration 

f Eq. (23) is quite straightforward since the derivative of ȳ is pro- 

ided explicitly. The scaling of ȳ with τ in the advection problem 

s discussed in more detail in Section 4. 

As discussed above, the liquid and solid temperature distribu- 

ions given by Eqs. (16) and (20) may not satisfy the governing 

nergy equation exactly, due to which, the solution derived here 

ust, in general, be viewed as an approximate analytical solution 

f the problem. Section 3 analyzes the conditions in which the an- 

lytical solution is indeed exact. Further, the accuracy of the ana- 

ytical solution derived in this section, and the dependence of the 

rror on key non-dimensional parameters, such as Ste and Pe is 

iscussed in Section 4. 

The solution derived here is close to, but not a self-similarity 

olution. The existence of a self-similarity solution for the present 

roblem is unlikely due to the existence of a length scale in the 

roblem. Self-similarity solutions for similar problems [ 33 , 34 ] have 

een derived for very specific conditions, and not valid for gener- 

lized analysis presented here. 
4 
y + P e L τ

2 

√ 

τ

)2 
] ] 

+ P e L er f c 

(
y + P e L τ

2 

√ 

τ

)] 

+ 

[ 

−
(

αy + P e ∗S τ
2 

√ 

τ

)2 
] ] 

+ P e ∗S αer f c 

(
αy + P e ∗S τ

2 

√ 

τ

)] 

(23) 

. Conditions for exactness of the analytical solution 

This section discusses the conditions in which the liquid and 

olid temperature distributions, given by Eqs. (16) and (20) , respec- 

ively, satisfy the governing energy conservation equations exactly. 

tarting with the liquid temperature distribution, such a condition 

ay be examined by inserting Eq. (16) into Eq. (8) . This results in

he following requirement 

 

(
∂ 2 f 

∂ ξ 2 
− P e L 

∂ f 

∂ξ

)
= B 

∂ f 

∂τ
+ 

dA 

dτ
+ f 

dB 

dτ
(24) 

here f, A and B are given by Eqs. (15), (17) and (18) , respectively. 

Note that the left hand side and the first term on the right hand 

ide in Eq. (24) cancel each other out. Therefore, the requirement 

or the solution given by Eq. (16) to be exact may be written as 

dA 

dτ
+ f 

dB 

dτ
= 0 (25) 

Now, from Eq. (17) , A = 1 − B . Further, since ȳ itself is a function

f τ , therefore, 

dB 

dτ
= 

1 [ 
1 − ˆ f ( y , τ ) 

] 2 
[
∂ ˆ f 

∂ y 

d y 

dτ
+ 

∂ ˆ f 

∂τ

]
(26) 

Therefore, the general requirement for exactness may be writ- 

en simply as 

1 √ 

π

[ 

exp 

( 

−
(

y − P e L τ√ 

τ

)2 
) [

y 
′ − P e L 

2 

√ 

τ
− y − P e L τ

4 τ
√ 

τ

]

+ exp ( y P e L ) exp 

( 

−
(

y + P e L τ√ 

τ

)2 
) [

y 
′ + P e L 

2 

√ 

τ
− y + P e L τ

4 τ
√ 

τ

]
√ 

π

2 

P e L y 
′ 
exp ( y P e L ) erfc 

(
y + P e L τ

2 

√ 

τ

)]
= 0 (27) 

When this condition is satisfied, Eq. (16) represents an exact so- 

ution for the liquid temperature distribution. Note that this state- 

ent pertains only to the governing energy conservation equa- 

ion. It is possible, in general, for the error in predicting the phase 

hange front location to be negligibly small even when Eq. (8) is 

ot satisfied exactly, because the liquid temperature distribution 

ppears in the ODE for ȳ only as a derivative at ξ = ȳ . 

In order for Eq. (27) to hold, it is sufficient that ( 
ȳ −P e L τ√ 

τ
) � 0 ,

ecause this results in the exponential and complementary error 

unction terms in Eq. (27) to both be zero ( exp ( −x 2 ) and erfc (x )

re both zero for large x ). Except when τ is unrealistically large, 

his condition is satisfied if 

 e L << 

ȳ 

τ
(28) 

Note that this is a sufficient, but not necessary condition for 

xactness. In other words, one may obtain good accuracy in phase 
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hange front prediction even if P e L is not much smaller than 

ȳ 
τ , be- 

ause of the exponential terms in Eq. (27) that decay very rapidly. 

It is well known that deriving a bound for the error associated 

ith approximate analytical solutions of phase change problems is 

ot possible even for much simpler phase change problems [1] . 

owever, an error analysis based on comparison with numerical 

imulations presented in Section 4 shows that, in general, the er- 

or is the least when Pe L and Ste are both small. Section 4 also

hows that this method incurs lower error compared to other ap- 

roximate analytical methods, especially at large Ste . 

A condition for exactness of the solid temperature distribution 

ay be derived along similar lines. By inserting Eq. (20) in Eq. (9) ,

he requirement for exactness may be written as 

 

(
∂ 2 g 

∂ ξ 2 
− P e S 

∂g 

∂ξ

)
= ᾱ2 

(
D 

∂g 

∂τ
+ g 

dD 

dτ

)
(29) 

here g, C and D are given by Eqs. (19), (21) and (22) , respectively.

sing the properties of g , and some mathematical rearrangement, 

t can be shown that the following condition ensures exactness: 

1 √ 

π

[ 

exp 

[ 

−
(

α · y − Pe ∗S τ√ 

τ

)2 
] [

α · y 
′ − Pe ∗S 

2 
√ 

τ
+ 

α · y − Pe ∗S τ
4 τ

√ 

τ

]

+ exp ( α · y Pe ∗S ) exp 

[ 

−
(

α · y + Pe ∗S τ√ 

τ

)2 
] [

α · y 
′ + Pe ∗S 

2 
√ 

τ
− α · y + Pe ∗S τ

4 τ
√ 

τ

]
√ 

π

2 
α · y 

′ 
P e ∗S exp ( α · y P e ∗S ) erfc 

(
α · y + P e ∗S τ

2 
√ 

τ

)]
= 0 (30)

Finally, similar to the liquid problem, it can be shown that this 

ondition may be satisfied if 

 e S << ᾱ2 ȳ 

τ
(31) 

This completes the set of requirements for the analytical solu- 

ion derived here to be exact. Since ȳ is expected to scale slower 

han linearly in time, therefore, for a given set of conditions, Eqs. 

28) and (31) become more and more difficult to satisfy as τ in- 

reases. In other words, it is likely, based on the analysis above, 

hat the method discussed here is exact at early times and may 

ose accuracy as time passes. In addition, the method is also ex- 

ected to become less and less accurate as the Peclet number in- 

reases. In light of this discussion, a comparison of results from 

his method with numerical simulations may be helpful. This is 

resented in detail in Section 4. 
ig. 2. Comparison of results with Neumann solution for the special case of no advect

emperature vs ξ at three different times for Ste = 0 . 4 . Other problem parameters are P e

5 
. Results and discussion 

.1. Comparison with self-similarity solutions and numerical 

imulations 

It is of interest to compare the results from the present work 

ith exact solutions available for special cases, as well as with 

umerical simulations for more general cases. A comparison with 

he exact Neumann solution in absence of advection is presented 

n Fig. 2 . For a number of values of Ste , Fig. 2 (a) plots the phase

hange front location as a function of time. Other parameters used 

or Fig. 2 (a) are θi = −1 . 0 , ᾱ = 1 , k̄ = 1 . For the same parameters

nd with Ste = 0.4, Fig. 2 (b) plots the temperature distributions at 

hree different times. Fig. 2 (a) shows, as expected, rapid phase 

hange propagation initially, followed by a slow down due to in- 

reased thermal resistance of the growing liquid layer. There is ex- 

ellent agreement between the present work and the Neumann so- 

ution based on self-similarity. As Ste increases, so does the rate of 

hase change propagation, which is expected because Ste repre- 

ents the magnitude of the temperature boundary condition that 

rives the phase change process. The propagation of phase change 

ront with time is also seen in Fig. 2 (b). Further, temperature dis- 

ributions shown in Fig. 2 (b) decay to a value of θi = −1 . 0 at large

. Similar to Fig. 2 (a), excellent agreement in the computed tem- 

erature distribution between the present work and the Neumann 

olution is observed in Fig. 2 (b). 

For a more general case with advection, a comparison of the 

ethod described in this work with numerical simulations is pre- 

ented in Fig. 3 . These numerical simulations are carried out us- 

ng a variable timestep approach described in [4] . The governing 

quation and boundary conditions are discretized into equal spa- 

ial intervals 
x . The time intervals, 
t , on the other hand, do not

ave equal size and are determined in order that the phase change 

ront propagates by an amount 
x after each timestep. The set of 

lgebraic equations obtained from discretization are solved using 

n implicit finite difference scheme. Phase change front propaga- 

ion with time for a one-phase problem is plotted in Fig. 3 (a) for

wo different values of Pe L , with Ste = 0.13. Curves based on the 

odel presented in this work are compared with numerical sim- 

lations. For the same conditions, Fig. 3 (b) plots the temperature 

istribution in the liquid phase at τ = 1 . 4 × 10 −6 for the present 

ethod as well as numerical simulations. Figs. 3 (a) and 3 (b) show 

hat the present work agrees almost exactly with numerical sim- 

lations at Pe L = 500. When Pe L increases to 20 0 0, there is slightly

orse agreement, particularly at large times in Fig. 3 (a). However, 

ven at Pe L = 20 0 0, the worst-case error is only 3.2%. The temper-

ture plots in Fig. 3 (b) show that there is greater curvature in the 
ion in both phases: (a) ȳ as a function of τ for three different values of Ste ; (b) 

 L = 0 , P e S = 0 , θin = −1 . 0 , α = 1 ; k = 1 . 
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Fig. 3. Comparison of results with finite-difference simulations for a one-phase problem with advection: (a) Phase change front ȳ as a function of τ ; (b) Temperature 

distribution in liquid phase at τ = 1 . 4 × 10 −6 . A value of Ste = 0 . 13 is used. Two different values of P e L are considered. 

Fig. 4. Percentage deviation of the present work from numerical simulations as a 

function of τ during the phase change process for the two values of P e L considered 

in Fig. 3 . All other parameters are the same as in Fig. 3 (b). 
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Fig. 5. Plot of ȳ /τ as a function of τ during the phase change process for the three 

values of Pe considered in Fig. 3 . All other parameters are the same as in Fig. 3 (b). 
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emperature distribution at large Pe L , which is well-captured by 

he present method. These results demonstrate the accuracy of the 

nalytical method discussed in Section 2 . 

Fig. 4 plots the deviation in the analytical method compared to 

umerical simulations as a function of time for a representative 

ne-phase problem considered in Fig. 3 . The deviation is defined 

n terms of phase change front location as a function of time, and 

s positive or negative if the model prediction is greater or smaller 

han the numerical simulation result. The deviation is somewhat 

arge at very early times, most likely because of the small value 

f ȳ at early times, which may amplify numerical computational 

rror. For most of the time duration, the error is quite small, par- 

icularly for Pe L = 500, in which case, the error is nearly zero. This

s consistent with Eq. (28) , based on which, the analytical method 

s expected to be exact for longer times when Pe L is small. For 

e L = 20 0 0, the error gradually increases in magnitude with time, 

hich is also consistent with the analysis presented in Section 3 . 

.2. Error analysis and comparison with other approximate methods 

As discussed in Sections 2 and 3 , the analytical method de- 

cribed in Section 2 is exact under conditions given by Eqs. (28) 

nd (31) . For a one-phase problem with Ste = 0.2, Fig. 5 plots ȳ /τ
s a function of τ for three different values of Pe L . According to 

q. (28) , ȳ /τ must be much larger than Pe L in order to ensure ex- 

ctness of the method. Fig. 5 shows that ȳ /τ reduces sharply at 

rst, and then plateaus out as τ increases. The curves shown in 
6 
ig. 5 appear to be nearly invariant of the value of Pe L . For the

hree cases considered in Fig. 5 , the corresponding Pe L are indi- 

ated on the y axis. This shows that the analytical method is ac- 

urate for much longer time at small values of Pe L than at larger 

alues. Note that even outside the theoretical limit for exactness 

ndicated by Eq. (28) , the analytical method offers very small er- 

or, as shown in Figs. 3 and 4 . 

It is instructive to compare the analytical method described in 

his work with other approximate analytical methods for phase 

hange problems. Three representative one-phase problems are 

olved using a number of methods, and results are summarized 

n Fig. 6 , in terms of phase change front propagation as a func- 

ion of time. In addition to numerical simulations and the analyt- 

cal method described in this work, results from quasistationary, 

igenfunction expansion and heat integral methods are also shown 

n Fig. 6 . The quasistationary method determines the phase change 

ront based on an assumed quasistationary temperature distribu- 

ion in the newly formed phase [15] . The eigenfunction expansion 

ethod solves the transient heat equation in the liquid phase to 

etermine the nature of phase change front propagation [39] . Fi- 

ally, the heat integral method assumes a second-order polynomial 

orm for the temperature distribution, based on which, the phase 

hange front location is determined [4] . 

Three different sets of Pe L and Ste values are considered. In the 

rst set, Pe L = 500 and Ste = 0.13 are both relatively low. In the sec-

nd set, a higher value of Pe L is considered while holding Ste at the 

ame value. Finally, in the third set, Ste is increased while keeping 
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Fig. 6. Comparison of results from present work with other approximate analytical methods for a one-phase problem ( P e S = 0) : Phase change front ȳ as a function of 

τ computed by the present work and three other approximate methods for (a) Ste = 0 . 13 and P e L = 500 ; (b) Ste = 0 . 13 and P e L = 30 0 0 ; (c) Ste = 1 . 3 and P e L = 500 . Results 

from a numerical simulation are also shown for comparison. 

Fig. 7. (a) % deviation between the analytical method and numerical simulations (a) as a function of Ste for two fixed values of Pe ; (b) as a function of Pe for two fixed 

values of Ste . Deviation is computed on the basis of predicted temperature at τ = 1 . 4 × 10 −6 compared to numerical simulation results. 
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e L at the same value. Results for the three sets are summarized 

n Figs. 6 (a)-(c), respectively. When Pe L and Ste are both relatively 

mall, each of the approximate analytical methods offer good accu- 

acy, as shown in Fig. 6 (a). At large Pe L ( Fig. 6 (b)), the heat integral

ethod performs poorly, while the performance of present work 

s comparable to that of quasistationary and eigenfunction expan- 

ion methods. At large Ste ( Fig. 6 (c)), the present method performs 

uch better than all other methods considered here. In summary, 

he present method offers close agreement with the numerical 

imulation results in all conditions analyzed in Figs. 6 (a)-(c), and 

erforms much better than other methods. In contrast, the heat 

ntegral method works reasonably well for large Ste , but poorly for 

arge Pe L , whereas the quasi-stationary and eigenfunction expan- 

ion methods are reasonably accurate at large Pe L , but very poor 

t large Ste . The good performance of the present method at large 

te is particularly remarkable because most approximate analytical 

ethods for phase change heat transfer lose accuracy at large Ste 

1] . The good performance of the present method at large Ste may 

e because the criteria for exactness of the present method is more 

irectly related to Pe L than to Ste , as shown in Eq. (28) . 

The accuracy of the analytical method is further evaluated as 

 function of Stefan and Peclet numbers, the two key parameters 

hat represent the boundary condition and advection (relative to 

iffusion), respectively. Fig. 7 (a) plots the deviation between the 

resent method and numerical simulations for the predicted phase 

hange front location at τ = 1 . 4 × 10 −6 as a function of Ste for

 one-phase problem. Curves are plotted for two values of Pe L . Re- 

ults indicate that when Pe L is relatively small, the deviation is also 

uite small. At Pe L = 20 0 0, the deviation is larger, but still within

%, even for large values of Ste . Fig. 7 (a) shows that as Ste in-

reases, the magnitude of the deviation peaks and then actually 

educes at greater Ste . Most approximate analytical methods do 

ot perform well at large Ste [1] , which is why, the good perfor-

ance of the present method at large Ste is remarkable. Fig. 7 (b) 

resents a similar analysis of the dependence of the deviation on 
t

7 
e L , while Ste is held constant. This plot shows that the magnitude 

f the deviation grows monotonically with Pe L , and is somewhat 

ess sensitive to the value of Ste . As Pe L increases, so does the de-

iation. However, as discussed in Fig. 6 , the worst-case error for 

he present method is still much lower than the error incurred in 

ther approximate analytical methods, which perform poorly when 

te and/or Pe L is large. 

.4. Effect of diffusion and advection on phase change propagation 

The effect of key non-dimensional parameters on the phase 

hange process is examined next. Fig. 8 plots the nature of phase 

hange front propagation with time for different values of Peclet 

umber. The two-phase Neumann problem and one-phase Stefan 

roblem are considered in Figs. 8 (a) and 8(b), respectively. In each 

ase, ȳ is plotted as a function of τ and Ste is held constant at 

te = 0.4. The no-advection Neumann and Stefan solutions are also 

hown in Figs. 8 (a) and 8 (b), respectively, for comparison. For the 

eumann problem, other parameters are θi = −1 . 0 , ᾱ = 1 , k̄ = 1 .

ig. 8 (a) shows that as Pe L ( = Pe S ) increases, the phase change front

ropagates faster and faster. This is primarily because of greater 

dvection of heat into the liquid phase, and therefore, greater liq- 

id temperature, at larger values of Pe L . At large times, phase 

hange propagation slows down, but not as much as the classical 

ero-advection Neumann problem does. Similar observations can 

lso be made for the one-phase Stefan problem shown in Fig. 8 (b). 

hase change propagation occurs faster in the Stefan problem than 

n the Neumann problem because of the additional energy needed 

o heat up the subcooled solid phase in the Neumann problem. 

The effect of Ste on phase change propagation is presented in 

ig. 9 . Here, the Peclet number is held constant at Pe L = Pe S = 10 0 0. ȳ

s plotted as a function of τ for the Neumann and Stefan problems 

n Figs. 9 (a) and 9 (b), respectively for multiple values of Ste . These

lots show that for both Neumann and Stefan problems, the larger 

he value of Ste , the faster is the propagation of phase change. 
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Fig. 8. Plots showing the impact of advection on phase change propagation: Phase change front ȳ as a function of τ for three different values of P e L = P e S = Pe for (a) 

two-phase problem ( Ste = 0 . 4 ; θin = −2 . 0 ; α = 1 ; k = 1 ); (b) one-phase problem ( Ste = 0 . 4 ). The self-similarity based exact solution for the no-advection case is also plotted 

for comparison. 

Fig. 9. Effect of the Stefan number on phase change propagation: Phase change front ȳ as a function of τ for different values of Ste for (a) two-phase problem, with 

P e L = P e S = 10 0 0 ; θin = −2 . 0 ; α = 1 ; k = 1 ; (b) one-phase problem, with P e L = P e S = 10 0 0 . 
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i

c

5

his is because Ste is related to the magnitude of the temperature 

oundary condition that drives the phase change process. In gen- 

ral, for the same values of Ste and Pe , phase change propagation is 

lower for the Neumann problem than the Stefan problem due to 

he need to heat up the subcooled solid in the Neumann problem. 

Finally, the scaling of ȳ with time for the phase change problem 

ith advection is examined and compared with the zero-advection 

eumann problem, in which, ȳ grows proportional to 
√ 

τ . It is 

nstructive to determine if a similar power scaling also exists in 

he presence of advection. Note that since diffusion and advection 

cale as 
√ 

τ and τ , respectively, and since diffusion and advection 

oth occur in the present problem, therefore, a scaling of τ a , where 

.5 < a < 1 may be expected. In order to investigate this systemati- 

ally, log ( ̄y ) is plotted as a function of log (τ ) in Fig. 10 for a num-

er of different values of Pe L ( = Pe S ). On a log ( ̄y ) - log (τ ) plot, the

ure-diffusion Neumann solution appears as a straight line with a 

lope of 0.5, as shown in Fig. 10 . Curves at different values of Pe L 
hown in Fig. 10 exhibit a slope close to 0.5 at small times, but as

ime increases, the slopes in these curves also go up. Due to the 

ncreasing slope with time in the presence of advection, it is not 

ossible to prescribe a uniform power law relationship between ȳ 

nd τ throughout the time period. This is likely because in this 

ase, both diffusion and advection contribute towards the growth 

f the phase change front. At small times, diffusion contributes to- 

ards heat transfer to the phase change front – resulting in a slope 

lose to 0.5 at small times – and as time increases, advection be- 

omes more and more dominant, resulting in ever-increasing slope 

f the log ( ̄y ) - log (τ ) curve. Consistent with the nature of advec- 

ion, the larger the value of Pe L , the larger is the slope. Finally, it
 t

8 
s seen from Fig. 10 that the slope never exceeds 1.0, which is also 

onsistent with the linear nature of advection due to fluid flow. 

. Conclusions 

Mathematical modeling of phase change heat transfer is impor- 

ant for the design and optimization of a variety of practical engi- 
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eering systems. Such models are also helpful in analyzing mass 

ransport problems involving a reaction front, such as oxidation 

f Silicon wafers and passivation layer formation in Li-ion cells. 

hile phase change heat transfer with pure diffusion has been suf- 

ciently analyzed in the past literature, there is relatively lesser 

ork on analytical solutions for problems in which diffusion and 

dvection both exist and together drive the phase change front 

ropagation. The present work contributes towards addressing this 

ap in the literature. 

While the analytical solution derived in this work is, in prin- 

iple, not exact, nevertheless, it is shown that its performance 

ompares very well with other approximate analytical techniques. 

articularly, at large Ste , the method retains reasonable accuracy, 

hereas other methods are quite inaccurate. An analytical condi- 

ion which, when satisfied, ensures exactness of the solution is also 

erived. 

It is important to be aware of key limitations of the present 

ork. It may not be applicable for problems where natural convec- 

ion in the fluid or temperature-dependent thermal properties play 

 key role. Further, the method is limited only to one-dimensional 

eat and fluid flow with constant velocity. Finally, in some appli- 

ations, phase change occurs over a temperature range, such as al- 

oys, which is not accounted for by the model presented here. 

In addition to improving our theoretical understanding of phase 

hange heat transfer, it is expected that the mathematical models 

eveloped in this work may also aid in design and optimization 

f practical phase change based thermal management and energy 

torage systems. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Ankur Jain: Conceptualization, Methodology, Formal analysis, 

alidation, Investigation, Data curation, Supervision, Project ad- 

inistration, Writing – original draft, Writing – review & editing. 

ohammad Parhizi: Conceptualization, Methodology, Validation, 

ata curation, Writing – original draft, Writing – review & editing. 

cknowledgments 

This material is based upon work supported by CAREER Award 

o. CBET-1554183 from the National Science Foundation. 

eferences 

[1] V. Alexiades , Mathematical modeling of melting and freezing processes, CRC 

Press, 1992 . 

[2] V.J. Lunardini , Heat transfer with freezing and thawing, Elsevier, 1991 . 
[3] A. Mostafavi , M. Parhizi , A. Jain , Semi-analytical thermal modeling of trans- 

verse and longitudinal fins in a cylindrical phase change energy storage sys- 
tem, International Journal of Thermal Sciences 153 (2020) 106352 . 
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