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a b s t r a c t 

This paper presents a theoretical analysis of a one-dimensional multilayer heat transfer problem with 

diffusion, advection and linear temperature-dependent heat generation occurring in each layer. A general 

solution of the problem is derived. Orthogonality of eigenfunctions is proved, and an explicit expression 

for the eigenequation is derived. The special case of a two-layer body is discussed. It is shown that, un- 

der specific conditions, this problem admits two types of imaginary eigenvalues, one of which is related 

to divergence of temperature at large times, corresponding to the thermal runaway phenomenon in bat- 

teries. The impact of various problem parameters related to diffusion, advection and heat generation on 

the appearance of imaginary eigenvalues is discussed. Specifically, due to the directional nature of fluid 

flow, advection in each layer of a two-layer body has opposing impact on the occurrence of imaginary 

eigenvalues. It is also shown that a balance between heat generation, diffusion and advection determines 

whether an imaginary eigenvalue is encountered, and consequently, whether thermal runaway occurs. 

Results presented here expand the theoretical understanding of multilayer heat transfer, and may also 

contribute towards improved thermal design of multilayer engineering systems such as flow batteries. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat and mass transport in a multilayer body [1] has been in- 

estigated in several past papers for a variety of engineering and 

iomedical applications. For example, mass transfer in a multilayer 

tructure has been used for modeling drug delivery in drug eluting 

tents [2] . Thermal transport in biological tissue has been mod- 

led using multilayer Pennes equation that contains a temperature- 

ependent perfusion term [3] . Heat transfer in multilayered bodies 

s also relevant for several traditional engineering fields, such as 

anufacturing [4] , atmospheric re-entry [5] , extended surfaces [6] , 

icroelectronics cooling [7] and nuclear power generation [8] . 

Key physical processes that occur in multilayer heat and mass 

ransfer problems include diffusion, advection due to fluid flow 

nd generation/consumption. The rate of generation or consump- 

ion of heat/mass is often proportional to the local tempera- 

ure/concentration. For example, a chemical reaction with first- 

rder kinetics consumes/generates species at a rate proportional 

o the local concentration of the reactant. Heat generated by 

uch a chemical reaction is also often approximated as linearly 
∗ Corresponding author at: 500W First St, Rm 211, Arlington, TX, USA 76019 
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emperature-dependent [ 9 , 10 ], even though, strictly speaking, the 

ependence is exponential in nature, as modeled by Arrhenius ki- 

etics [11] . In addition, the perfusion term in the Pennes bioheat 

ransfer equation [12] may also be interpreted as an energy con- 

umption term proportional to the local temperature. Finally, the 

n equation used for analysis of multilayer segmented fin may also 

e interpreted to contain a negative heat generation term that is 

roportional to the local temperature [6] . 

A transient energy conservation equation representing a bal- 

nce between diffusion, advection and generation in each layer of 

n M -layer one-dimensional body may be written as [2] 

∂ T m 

∂t 
= αm 

∂ 2 T m 

∂ x 2 
− U m 

∂ T m 

∂x 
+ βm 

T m 

( m = 1 , 2 , 3 . . . M ) (1) 

where T m 

is the temperature field relative to ambient in the m 

th 

ayer. 

A similar equation can be written for the concentration field 

n a mass transfer problem. This equation is often referred to 

s the Convection-Diffusion-Reaction (CDR) equation [ 13 , 14 ], and 

as been heavily researched for both heat and mass transfer 

roblems. This problem is distinct from the pure-diffusion mul- 

ilayer problem analyzed in textbooks [1] due to the appearance 

f convection and reaction terms. The eigenvalues and orthogo- 

ality relationships for CDR problems are likely to be very dif- 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121465
http://www.ScienceDirect.com
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Nomenclature 

Bi Biot number 

c coefficient 

h convective heat transfer coefficient (Wm 

−2 K 

−1 ) 

i unit imaginary number, i = 

√ −1 

k thermal conductivity (Wm 

−1 K 

−1 ) 

k̄ non-dimensional thermal conductivity 

M number of layers 

N eigenvalue norm 

Pe Non-dimensional velocity 

T temperature rise above ambient (K) 

U velocity (ms −1 ) 

x spatial coordinate (m) 

t time (s) 

α diffusivity (m 

2 s −1 ) 

ᾱ non-dimensional diffusivity 

β generation/consumption coefficient (s −1 ) 

β̄ non-dimensional generation/consumption coeffi- 

cient 

γ non-dimensional interface location 

τ non-dimensional time 

θ non-dimensional temperature 

ω non-dimensional eigenvalue 

ξ non-dimensional spatial coordinate 

λ non-dimensional eigenvalue 

Subscripts 

A,B left and right ends, respectively, of the multilayer 

body 

m layer number 

0 initial value 

erent from the ones for pure-diffusion multilayer problems dis- 

ussed in textbooks. Analytical approaches for solving CDR prob- 

ems include an eigenfunction-based series solution [1] that uses 

uasi-orthogonality of the eigenfunctions [ 15 , 16 ] and an appro- 

riate transformation to account for the effect of advection and 

eneration [17] . The nature of orthogonality of eigenfunctions de- 

ends strongly on the presence of advection and the specific na- 

ure of boundary conditions. A number of unique interface condi- 

ions between layers in mass transfer problems involving porous 

edia have been presented [17] . Analytical solutions for a variety 

f convection-diffusion problems – a subset of the CDR problem –

ave also been presented [ 18 , 19 ]. 

Several previous studies have developed analytical, semi- 

nalytical, and numerical solutions of problems governed by the 

DR equation. For example, the separation of variables technique 

as used to derive an exact solution for mass diffusion through 

 two-layer porous media with pure diffusion in one layer and 

ll three phenomena in the other one [ 17 , 20 ]. A similar technique

as also used to solve a more general CDR problem in multilayer 

orous media [21] . Laplace transformation technique has been 

sed to derive an analytical solution to a two-layer CDR problem 

or drug-eluting stent problems [22] . A semi-analytical model for 

olute transport in multilayer porous media using Laplace transfor- 

ation has been presented [23] . Several studies have used numer- 

cal techniques such as Additive Runge–Kutta [ 14 , 24 ], Positivity- 

reserving Variational (PPV) [25] , and Boundary Element Method 

26] to solve more complicated CDR problems involving higher 

imensions, non-linear terms, and variable coefficients. Various 

ypes of convection-diffusion problems have been solved using 

he method of eigenfunction expansions [27] , integral transform 

 28 , 29 ] and separation of variables [30] . 
2 
A limited amount of past work suggests that imaginary eigen- 

alues may be encountered in multilayer heat/mass transport 

roblems. The first class of such problems pertains to 2D [ 31 , 32 , 33 ]

nd 3D [34] multilayer diffusion problems. In such problems, imag- 

nary eigenvalues appear in the thickness direction due to real 

igenvalues in the orthogonal direction(s). The second class of 

roblems with imaginary eigenvalues involves multiple transport 

nd generation processes in each layer, even for a one-dimensional 

ody. For example, it has been suggested that eigenvalues may 

ecome imaginary in a one-dimensional two-layer mass transfer 

roblem with diffusion in one layer and a combination of dif- 

usion, advection and generation in the second layer [17] . How- 

ver, a detailed analysis of conditions in which such eigenvalues 

ay appear and their physical interpretation is missing. In recent 

ork, an analysis of imaginary eigenvalues appearing in multilayer 

iffusion-reaction problems [35] has been presented. While this 

ork derived the conditions in which imaginary eigenvalues ap- 

ear and discussed their physical interpretation, the impact of ad- 

ection was not considered. A complete analysis including the ef- 

ect of advection is needed for modeling systems where advection 

lays a key role. 

Imaginary eigenvalues are not merely a theoretical curiosity be- 

ause certain imaginary eigenvalues in one-dimensional multilayer 

roblems are directly related to the phenomenon of thermal run- 

way [35] , in which, the temperature field diverges at large times. 

rediction of imaginary eigenvalues and thermal runaway is of 

uch practical importance for the safety of engineering systems 

uch as Li-ion cells and battery packs. Specifically, in a flow battery 

36] where the electrolyte is circulated, diffusion, advection and 

eat generation due to electrochemical reactions all occur simul- 

aneously. In order to ensure the safety and reliability of such sys- 

ems, it is important to develop a robust theoretical understanding 

f the regimes in which an imbalance between diffusion, advection 

nd generation may lead to imaginary eigenvalues, and therefore, 

hermal runaway. In addition, understanding imaginary eigenvalues 

s important because a series solution must include all eigenvalues, 

hether real or imaginary, and standard methods for computing 

igenvalues may miss an imaginary eigenvalue. 

This paper presents the solution of a multilayer one- 

imensional CDR heat transfer problem and specifically investi- 

ates the conditions that result in imaginary eigenvalues in such a 

roblem. A solution is first presented for a general multilayer prob- 

em, followed by discussion of a special case of a two-layer body. A 

hysical interpretation of imaginary eigenvalues in terms of a bal- 

nce between conduction, advection and generation is presented. 

ithin the context of a two-layer body, conditions for appearance 

f two types of imaginary eigenvalues are discussed. It is shown 

hat the first type of imaginary eigenvalues results in thermal run- 

way in the body. The analysis of conditions that lead to imagi- 

ary eigenvalues may help in better design of multilayer systems 

n practical problems such as a flow battery. 

This paper is organized as follows: the next section presents 

he general, M -layer problem and its solution, including deriva- 

ion of the eigenequation and the orthogonality of eigenfunctions. 

he specific case of a two-layer body is discussed in Section 3 . 

ection 4 then derives a mathematical requirement for the occur- 

ence of imaginary eigenvalues. Several aspects of the conditions in 

hich imaginary eigenvalues may appear – and their relationships 

ith parameters associated with diffusion, advection and genera- 

ion – are discussed in Section 5. 

. General M -layer body 

Consider a one-dimensional M -layer body such as shown in 

ig. 1 (a). Heat is generated within each layer at a rate propor- 

ional to the local temperature. Heat transfer occurs within this 
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Fig. 1. Schematics of the (a) M -layer and (b) two-layer one-dimensional geometries with diffusion, one-dimensional flow and linear, temperature-dependent heat generation 

in each layer. A general convective boundary condition is also assumed at both ends. 
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ody due to diffusion and due to advection driven by an imposed 

ne-dimensional fluid flow in each layer from left to right. Each 

ayer has distinct thermal properties, flow velocity and rate of heat 

eneration. General convective boundary conditions are assumed 

n the left and right boundaries, respectively. The goal of the anal- 

sis is to predict the transient temperature distribution within the 

ultilayer body. Note that based on the analogy between heat and 

ass transfer, the analysis presented below can be readily applied 

o a mass transfer problem, where concentration distribution in 

 multilayer body is governed by diffusion, advection and species 

eneration/consumption at a rate proportional to the local concen- 

ration. Appropriate adjustments may need to be made to account 

or changes in boundary and interface conditions, for example due 

o porous flow specific to the mass transfer problem [ 17 ]. 

The governing equation based on energy conservation for this 

roblem was presented as Eq. (1) in the previous section. In this 

quation, often referred to as the Convection-Diffusion-Reaction 

CDR) equation, the first two terms on the right hand side rep- 

esent heat transfer due to diffusion and advection, respectively, 

nd the third term represents heat generation/consumption that is 

roportional to the local temperature. αm 

and U m 

are the thermal 

iffusivity and flow speed, respectively, in the m 

th layer. Note that 

ach layer may have distinct speeds without violating mass con- 

ervation, since the fluid density in each layer may be different. 

inally, βm 

is the source coefficient that relates the rate of heat 

eneration to the local temperature. All properties are assumed to 

e independent of temperature. 

General boundary conditions associated with Eq. (1) are 

k 1 
∂ T 1 
∂x 

+ h A T 1 + ρ1 C 1 U 1 T 1 = 0 at x = 0 (2) 

nd 

 M 

∂ T M 

∂x 
+ h B T M 

− ρM 

C M 

U M 

T M 

= 0 at x = x M 

(3) 

These boundary conditions represent a balance between con- 

ective heat transfer between the body and the ambient, and dif- 

usion and advection into and out of the body. Note that while ad- 

ection conveys energy from the ambient into the first layer, it re- 

oves energy from the M 

th layer into the ambient. 

In addition, temperature continuity and heat flux conservation 

t the interfaces in the body result in the following conditions for 

 = 1,2.. M -1: 

 m 

= T m +1 at x = x m 

(4) 

nd 

k m 

∂ T m 

∂x 
+ ρm 

C m 

U m 

T m 

= −k m +1 
∂ T m +1 

∂x 
+ ρm +1 C m +1 U m +1 T m +1 

at x = x m 

(5) 
3 
Finally, each layer is assumed to be at a given initial tempera- 

ure 

 m 

= T m, 0 ( x ) at t = 0 ( m = 1 , 2 . . . M ) (6) 

The set of Eqs. (1) - (6) are non-dimensionalized to ensure gen- 

rality of the results. The following variables are introduced: θm 

= 

T m 
T re f 

, ξ = 

x 
x M 

, τ = 

αM t 

x 2 
M 

, γm 

= 

x m 
x M 

, k̄ m 

= 

k m 
k M 

, ᾱm 

= 

αm 
αM 

, P e m 

= 

U m x M 
αM 

,

¯
m 

= 

βm x 
2 
M 

αM 
, θm, 0 = 

T m, 0 

T ref 
, B i A = 

h A x M 
k M 

, B i B = 

h B x M 
k M 

. Here, T ref is an ar-

itrary reference temperature. 

Based on these parameters, the non-dimensional set of CDR 

quations for the multilayer body are 

∂ θm 

∂τ
= ᾱm 

∂ 2 θm 

∂ ξ 2 
− P e m 

∂ θm 

∂ξ
+ β̄m 

θm 

( m = 1 , 2 , 3 . . . M ) (7) 

Subject to 

k̄ 1 
∂ θ1 

∂ξ
+ ̄k 1 

P e 1 
ᾱ1 

θ1 + B i A θ1 = 0 at ξ = 0 (8) 

¯
 M 

∂ θM 

∂ξ
− k̄ M 

P e M 

ᾱM 

θM 

+ B i B θM 

= 0 at ξ = 1 (9) 

m 

= θm +1 at ξ = γm 

( m = 1 , 2 ...M − 1 ) (10) 

k̄ m 

∂ θm 

∂ξ
+ ̄k m 

P e m 

ᾱm 

θm 

= −k̄ m +1 
∂ θm +1 

∂ξ
+ ̄k m +1 

P e m +1 

ᾱm +1 

θm +1 

at ξ = γm 

( m = 1 , 2 ...M − 1 ) (11) 

m 

= θm, 0 ( ξ ) at τ = 0 ( m = 1 , 2 ., .. M ) (12) 

A separable form of the solution, θm 

(ξ , τ ) = 

∑ ∞ 

n =1 f m,n (ξ ) g n (τ ) 

 m = 1,2,…M ) may be assumed in order to solve Eqs. (7) -

12) . By substituting the assumed form in Eq. (7) , it can be

hown that g n (τ ) = exp (−λ2 
n τ ) , where λn are the eigenvalues. 

n addition, the functions f m,n satisfy ᾱm 

f ′′ m,n − P e m 

f ′ m,n + β̄m 

f m,n = 

λ2 
n f m,n ( m = 1,2…M ). A general solution for f m,n comprises a 

roduct of periodic functions with an exponential function to ac- 

ount for the Pe m 

term [17] . A solution for θm 

can, therefore, be 

ritten as follows: 

m 

( ξ , τ ) = 

∞ ∑ 

n =1 

c n [ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] 

exp 

(
P e m 

ξ

2 ̄αm 

)
exp 

(
−λ2 

n τ
)

(13) 

here ω m,n are the spatial eigenvalues, which, by substituting 

q. (13) in the governing Eq. (7) can be shown to be given by 

 m,n = 

√ 

λ2 
n + β

∗
m 

α
( m = 1 , 2 ..M ) (14) 
m 
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where β̄∗
m 

= β̄m 

− Pe 2 m 

/ (4 ̄αm 

) . 

Now, A m,n , B m,n and λn are to be determined using the boundary 

nd interface conditions given by Eqs. (8) - (11) . Inserting Eq. (13) in

qs. (8) - (11) results in 

k̄ 1 ω 1 ,n B 1 ,n + Bi ∗A A 1 ,n = 0 (15) 

¯
 M 

ω M,n [ −A M,n sin ( ω M,n ) + B M,n cos ( ω M,n ) ] 

+ Bi ∗B [ A M,n cos ( ω M,n ) + B M,n sin ( ω M,n ) ] = 0 (16) 

xp 

(
P e m 

γm 

2 ̄αm 

)
[ A m,n cos ( ω m,n γm 

) + B m,n sin ( ω m,n γm 

) ] 

= exp 

(
P e m +1 γm 

2 ̄αm +1 

)
[ A m +1 ,n cos ( ω m +1 ,n γm 

) + B m + 1 ,n sin ( ω m +1 ,n γm 

) ] 

(17) 

¯
 m 

exp 

(
P e m 

γm 

2 ̄αm 

)
[ ω m,n ( −A m,n sin ( ω m,n γm 

) + B m,n cos ( ω m,n γm 

) ) 

− P e m 

2 ̄αm 

( A m,n cos ( ω m,n γm 

) + B m,n sin ( ω m,n γm 

) ) 

] 
= k̄ m +1 exp 

(
P e m +1 γm 

2 ̄αm +1 

) [ 
ω m +1 ,n ( −A m +1 ,n sin ( ω m +1 ,n γm 

) 

+ B m +1 ,n cos ( ω m +1 ,n γm 

) ) − P e m +1 

2 ̄αm +1 
( A m +1 ,n cos ( ω m +1 ,n γm 

) 

+ B m +1 ,n sin ( ω m +1 ,n γm 

) ) 

] 
(18) 

here Bi ∗
A 

= B i A + 

k̄ 1 P e 1 
2 ̄α1 

and Bi ∗B = B i B − k̄ M P e M 
2 ̄αM 

may be interpreted 

s the modified Biot numbers that account for advection at the 

oundaries. Note that Eqs. (17) and (18) hold for m = 1,2,…M -1. 

Eqs. (15) - (18) represent a set of 2 M homogeneous equations in 

 m,n and B m,n ( m = 1,2.. M ). The eigenvalues λn are also unknown,

hich can be determined by requiring Eqs. (15) - (18) to admit a 

on-trivial solution. The following procedure systematically elimi- 

ates the coefficients from these equations in order to derive an 

xplicit eigenequation for the M –layer case. 

From Eqs. (15) - (18) , one may write 

f m,n ( ξ ) = A 1 ,n �m 

p m,n ( ξ ) (19) 

Where 

m 

= 

p m −1 ,n ( γm −1 ) 

p m,n ( γm −1 ) 
· p m −2 ,n ( γm −2 ) 

p m −1 ,n ( γm −2 ) 
· · · · p 2 ,n ( γ2 ) 

p 3 ,n ( γ2 ) 
· p 1 ,n ( γ1 ) 

p 2 ,n ( γ1 ) 

( m = 2 , 3 , ..M ) (20) 

ith 

p m,n ( ξ ) = [ cos ( ω m,n ξ ) + ψ m,n ( λn ) sin ( ω m,n ξ ) ] exp 

(
P e m 

ξ

2 ̄αm 

)
(21) 

Note that �1 = 1 . Further, the functions ψ m,n ( λn ) in 

q. (21) are given by 

 1 ,n ( λn ) = 

Bi ∗A 
k̄ 1 ω 1 ,n 

(22) 

 m +1 ,n ( λn ) = 

−
[ 

k m 

cos ( ω m +1 ,n γm 

) p ’ m,n ( γm 

) 

−k m 

P e m 

αm 

cos ( ω m +1 ,n γm 

) p m,n ( γm 

) 

−k m +1 ω m +1 ,n sin ( ω m +1 ,n γm 

) p m,n ( γm 

) 
4 
+ k m +1 
P e m +1 

2 αm +1 

cos ( ω m +1 ,n γm 

) p m,n ( γm 

) 

] / 

[ 
k m 

sin ( ω m +1 ,n γm 

) p ’ m,n ( γm 

) − k m 

P e m 

αm 

sin ( ω m +1 ,n γm 

) p m,n ( γm 

) 

−k m +1 ω m +1 ,n cos ( ω m +1 ,n γm 

) p m,n ( γm 

) 

+ k m +1 
P e m +1 

2 αm +1 

sin ( ω m +1 ,n γm 

) p m,n ( γm 

) 

] 
( m = 1 , 2 ..M − 1 ) (23) 

 M,n ( λn ) = 

[
k̄ M 

ω M,n sin ( ω M,n ) − Bi ∗B cos ( ω M,n ) 
]

[
k̄ M 

ω M,n cos ( ω M,n ) + Bi ∗
B 
sin ( ω M,n ) 

] (24) 

The function ψ M,n ( λn ) for the M 

th layer can be obtained from 

ither Eq. (23) by setting m = M -1, or directly from Eq. (24) .

herefore, the eigenvalues λn can be determined by comparing 

q. (24) with Eq. (23) for m = M -1. This results in [
k̄ M 

ω M,n sin ( ω M,n ) − Bi ∗B cos ( ω M,n ) 
]/

[
k̄ M 

ω M,n cos ( ω M,n ) + Bi ∗B sin ( ω M,n ) 
]

+ 

[ 
k̄ M−1 cos ( ω M,n γM−1 ) p 

′ 
M−1 ,n ( γM−1 ) 

−k̄ M−1 
P e M−1 

ᾱM−1 

cos ( ω M,n γM−1 ) p M−1 ,n ( γM−1 ) 

−k̄ M 

ω M,n sin ( ω M,n γM−1 ) p M−1 ,n ( γM−1 ) 

+ k̄ M 

P e M 

2 ̄αM 

cos ( ω M,n γM−1 ) p M−1 ,n ( γM−1 ) 

] / 

[ 
k̄ M−1 sin ( ω M,n γM−1 ) p 

′ 
M−1 ,n ( γM−1 ) 

−k̄ M−1 
P e M−1 

ᾱM−1 

sin ( ω M,n γM−1 ) p M−1 ,n ( γM−1 ) 

−k̄ M 

ω M,n cos ( ω M,n γM−1 ) p M−1 ,n ( γM−1 ) 

+ ̄k M 

P e M 

2 ̄αM 

sin ( ω M,n γM−1 ) p M−1 ,n ( γM−1 ) 

] 
= 0 (25) 

here ω M,n is given by Eq. (14) for m = M. 

Eq. (25) represents a transcendental equation in the eigenval- 

es λn . Once the eigenvalues are obtained by determining the 

oots of Eq. (25) , the coefficients A m,n and B m,n can be determined 

rom Eqs. (15) - (17) by assuming, without loss of generality, that 

 1,n = 1. The principle of orthogonality for this problem is de- 

ived in Appendix A , using which, the coefficient c n appearing in 

q. (13) may be obtained from the initial condition as follows: 

 n = 

1 

N n 

[ 

M ∑ 

m =1 

k m 

αm 

s m 

γm ∫ 
γm −1 

θm, 0 ( ξ ) f m,n exp 

(
−P e m 

ξ

αm 

)
dξ

] 

(26) 

here the norm N n is given by 

 n = 

[ 

M ∑ 

m =1 

k̄ m 

ᾱm 

s m 

γm ∫ 
γm −1 

[ f m,n ( ξ ) ] 
2 
exp 

(
−P e m 

ξ

ᾱm 

)
dξ

] 

(27) 

here the coefficients s m 

are given by equation (A.5) in 

ppendix A . 

Note that the orthogonality relationship and norm given by 

quations (A.7) and (27) differ from the standard diffusion-only 

ultilayer problem [1] because of the exponential terms that ac- 

ount for advection, as well as the s m 

term that occurs in the gen- 

ral CDR problem. 

The special case of a two-layer body is discussed in detail in 

he next section. 
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. Special case: two-layer body 

This section considers the special case of the CDR equations for 

 two-layer body, which is particularly relevant for several engi- 

eering applications. Analysis of the two-layer body also reduces 

he number of parameters, and makes it easier to understand the 

nterplay between diffusion, advection, heat generation and heat 

emoval from the boundaries. 

In this case, a solution for temperature fields in the two layers, 

1 and θ2 can be written as follows: 

1 ( ξ , τ ) = 

∞ ∑ 

n =1 

c n [ A 1 ,n cos ( ω 1 ,n ξ ) + B 1 ,n sin ( ω 1 ,n ξ ) ] 

exp 

(
P e 1 ξ

2 ̄α1 

)
exp 

(
−λ2 

n τ
)

(28) 

nd 

2 ( ξ , τ ) = 

∞ ∑ 

n =1 

c n [ A 2 ,n cos ( ω 2 ,n ξ ) + B 2 ,n sin ( ω 2 ,n ξ ) ] 

exp 

(
P e 2 ξ

2 ̄α2 

)
exp 

(
−λ2 

n τ
)

(29) 

here ω m,n is given by Eq. (14) for m = 1,2. 

The eigenequation for the two-layer problem can be obtained 

ither by simply putting M = 2 in the general M -layer eigenequa- 

ion given by Eq. (25) , or by setting to zero the determinant of

he system of equations obtained by inserting Eqs. (28) and (29) in 

he boundary and interface conditions. The resulting eigenequation 

s 

¯
 1 ω 1 ,n 

[
−k̄ 1 ω 1 ,n + Bi ∗A cot ( ω 1 ,n γ1 ) 

]
[
k̄ 1 ω 1 ,n cot ( ω 1 ,n γ1 ) + Bi ∗

A 

] − k̄ 1 P e 1 
2 ̄α1 

+ ̄k 2 ω 2 ,n 

[
−k̄ 2 ω 2 ,n + Bi ∗B cot ( ω 2 ,n ( 1 − γ1 ) ) 

]
[
k̄ 2 ω 2 ,n cot ( ω 2 ,n ( 1 − γ1 ) ) + Bi ∗

B 

] + 

k̄ 2 P e 2 
2 ̄α2 

= 0 (30) 

Note that by setting Pe 1 = Pe 2 = 0 , Eq. (30) reduces to the iden-

ical eigenequation that was derived in a recent work for diffusion- 

eaction problem with no advection [35] . 

In order to complete the solution for the two-layer case, the 

oefficients A 1,n , B 1,n , A 2,n and B 2,n may be determined from the 

oundary and interface conditions, given by 

k̄ 1 ω 1 ,n B 1 ,n + Bi ∗A A 1 ,n = 0 (31) 

¯
 2 ω 2 ,n [ −A 2 ,n sin ( ω 2 ,n ) + B 2 ,n cos ( ω 2 ,n ) ] 

+ Bi ∗B [ A 2 ,n cos ( ω 2 ,n ) + B 2 ,n sin ( ω 2 ,n ) ] = 0 (32) 

xp 

(
P e 1 γ1 

2 ̄α1 

)
[ A 1 ,n cos ( ω 1 ,n γ1 ) + B 1 ,n sin ( ω 1 ,n γ1 ) ] 

= exp 

(
P e 2 γ1 

2 ̄α2 

)
[ A 2 ,n cos ( ω 2 ,n γ1 ) + B 2 ,n sin ( ω 2 ,n γ1 ) ] (33) 

¯
 1 exp 

(
P e 1 γ1 

2 ̄α1 

)[ 
ω 1 ,n ( −A 1 ,n sin ( ω 1 ,n γ1 ) + B 1 ,n cos ( ω 1 ,n γ1 ) ) 

− P e 1 
2 ̄α1 

( A 1 ,n cos ( ω 1 ,n γ1 ) + B 1 ,n sin ( ω 1 ,n γ1 ) ) 

] 
= 

k̄ 2 exp 

(
P e 2 γ1 

2 ̄α2 

) [ 
ω 2 ,n ( −A 2 ,n sin ( ω 2 ,n γ1 ) + B 2 ,n cos ( ω 2 ,n γ1 ) ) 

− P e 2 
2 ̄α2 

( A 2 ,n cos ( ω 2 ,n γ1 ) + B 2 ,n sin ( ω 2 ,n γ1 ) ) 

] 
(34) 

Specifically, since Eqs. (31) - (34) are not linearly independent, 

ne may set A 1,n = 1 and determine the remaining coefficients 
5 
rom the equations. Finally, using the statement of orthogonality 

erived in Appendix A for M = 2, the coefficient c n appearing in 

qs. (28) - (29) can be written as 

 n = 

1 

N n 

[ 

k 1 
α1 s 1 

γ1 ∫ 
0 

θ1 , 0 ( ξ ) f 1 ,n ( ξ ) exp 

(
−P e 1 ξ

α1 

)
dξ

+ 

k 2 
α2 s 2 

1 ∫ 
γ1 

θ2 , 0 ( ξ ) f 2 ,n ( ξ ) exp 

(
−P e 2 ξ

α2 

)
dξ

] 

(35) 

here the norm N n is given by 

 n = 

k̄ 1 
ᾱ1 s 1 

∫ γ1 

0 
[ f 1 ,n ( ξ ) ] 

2 
exp 

(
−P e 1 ξ

ᾱ1 

)
dξ

+ 

k̄ 2 
ᾱ2 s 2 

∫ 1 

γ1 

[ f 2 ,n ( ξ ) ] 
2 
exp 

(
−P e 2 ξ

ᾱ2 

)
dξ (36) 

This completes the solution for the special case of the two-layer 

ody. The nature of eigenvalues for this problem is discussed in 

etail in the next section. 

. Eigenvalue analysis 

This section presents an analysis of the eigenvalues for the two- 

ayer case described in Section 3 . Determining the conditions that 

esult in imaginary eigenvalues is of particular interest from both 

heoretical and practical perspectives, since an imaginary value 

f λn will cause exponential rise in temperature at large times, 

hich corresponds to thermal runaway. Therefore, in order to en- 

ure safety and reliability of engineering systems modeled by these 

quations, it is critical to understand the conditions in which imag- 

nary eigenvalues occur. 

Two types of imaginary eigenvalues may appear in this prob- 

em. Firstly, in order to determine if Eqn. 30 may admit any imag- 

nary roots, one may substitute ˆ λn = i · λn , where i = 

√ −1 is the 

nit imaginary number. By doing so, the eigenequation may be 

ewritten as 

f 

(
ˆ λ
)

= k 1 ̂  ω 1 ,n 

[
k 1 ̂  ω 1 ,n + Bi ∗A coth 

(
ˆ ω 1 ,n γ1 

)]
[
k 1 ̂  ω 1 ,n coth 

(
ˆ ω 1 ,n γ1 

)
+ Bi ∗

A 

] − k 1 P e 1 
2 α1 

+ k 2 ̂  ω 2 ,n 

[
k 2 ̂  ω 2 ,n + Bi ∗B coth 

(
ˆ ω 2 ,n ( 1 − γ1 ) 

)]
[
k 2 ̂  ω 2 ,n coth 

(
ˆ ω 2 ,n ( 1 − γ1 ) 

)
+ Bi ∗

B 

] + 

k 2 P e 2 
2 α2 

= 0 

(37) 

where ˆ ω m,n = 

√ 

ˆ λ2 
n −β

∗
m 

αm 
= i · ω m,n for m = 1,2 

Now, f ( ̂ λn ) is an increasing function for positive values of ˆ λn 

35] , and therefore, in order for a root of Eq. (37) to exist, corre-

ponding to an imaginary eigenvalue, it is necessary and sufficient 

hat the value of the function f ( ̂ λn ) be negative at ˆ λn = 0 . There-

ore, a limiting condition for an imaginary eigenvalue to exist for 

he two-layer CDR problem is that 

f ( 0 ) = k̄ 1 

[
−k̄ 1 β̄∗

1 / ̄α1 + Bi ∗A 

√ 

β̄∗
1 
/ ̄α1 cot 

(√ 

β̄∗
1 
/ ̄α1 γ1 

)]
[

k̄ 1 

√ 

β̄∗
1 
/ ̄α1 cot 

(√ 

β̄∗
1 
/ ̄α1 γ1 

)
+ Bi ∗

A 

] − k̄ 1 P e 1 
2 ̄α1 

+ ̄k 2 

[
−k̄ 2 β̄∗

2 / ̄α2 + Bi ∗B 

√ 

β̄∗
2 

ᾱ2 
cot 

(√ 

β̄∗
2 

ᾱ2 
( 1 − γ1 ) 

)]
[

k̄ 2 

√ 

β̄∗
2 

ᾱ2 
cot 

(√ 

β̄∗
2 

ᾱ2 
( 1 − γ1 ) 

)
+ Bi ∗

B 

]

+ 

k̄ 2 P e 2 
2 ̄α

< 0 (38) 

2 
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Due to the monotonically increasing nature of f ( ̂ λ) , at most one 

maginary eigenvalue may be expected. 

A special case of Eq. (38) can be considered where the bound- 

ry conditions are isothermal. This can be modeled by setting the 

iot numbers to infinity, which results in the following limiting 

ondition for an imaginary eigenvalue to exist for the isothermal 

roblem 

¯
 1 

√ 

β̄∗
1 
/ ̄α1 cot 

(√ 

β̄∗
1 
/ ̄α1 γ1 

)
− k̄ 1 P e 1 

2 ̄α1 

+ ̄k 2 

√ 

β̄∗
2 

ᾱ2 

cot 

( √ 

β̄∗
2 

ᾱ2 
( 1 − γ1 ) 

) 

+ 

k̄ 2 P e 2 
2 ̄α2 

< 0 (39) 

Eq. (39) represents a weaker condition for an imaginary eigen- 

alue to exist compared to the condition for the general case, be- 

ause an isothermal boundary condition results in more effective 

eat removal from the boundaries. 

Note that based on Eq. (13) , an imaginary value of λ1 will result 

n infinite temperature at large time due to the exponential term 

n the solution. Eq. (38) represents a complex interplay between 

dvection ( Pe ), generation ( ̄β), diffusion ( ̄α) and convective heat 

emoval at the boundaries ( Bi ) to determine whether an imaginary 

igenvalue, and therefore, thermal runaway occurs or not. In gen- 

ral, imaginary eigenvalues may be expected when heat generation 

ominates over heat removal, i.e., large positive values of β̄1 and/or 
¯
2 , and small values of Bi A and/or Bi B . The role of advection, rep-

esented by Pe 1 and Pe 2 may be more complicated to discern, and 

s discussed in detail in Section 5. 

In addition to the eigenequation given by Eq. (38) resulting in 

n imaginary eigenvalue λ1 , Eq. (14) shows that the spatial eigen- 

alues ω m,n may also become imaginary under certain conditions. 

his is referred to as the second type of imaginary eigenvalues in 

his work. Specifically, the condition for an imaginary ω m,n may be 

ritten as 

2 
n + β̄m 

− P e 2 m 

4 ̄αm 

< 0 (40) 

Eq. (40) shows that an imaginary value of ω m,n may be ex- 

ected for large Pe m 

, small ᾱm 

, large negative β̄m 

and for imagi- 

ary λn , if one exists according to Eq. (38) . This condition on β̄m 

s opposite to the conditions in which the first type of imaginary 

igenvalues occur. In addition, if the condition given by Eq. (40) is 

atisfied, a mix of imaginary and real eigenvalues may be expected. 

he first few eigenvalues may become imaginary because λn is 

mall in magnitude for small n . As λn increases in magnitude with 

ncreasing n , it is expected that subsequent eigenvalues will be 

eal. Eq. (40) also shows that eigenvalues of one layer may be- 

ome imaginary while those of other layers may all continue to 

e real, depending on the values of various parameters in the lay- 

rs. Note that an imaginary value of ω m,n does not cause thermal 

unaway, since ω m,n does not appear in an exponential term in the 

emperature solution given by Eqs. (28) and (29) . Also note that 

ast work [ 35 ] has shown that the temperature distribution re- 

ains real even if the eigenvalues appearing in the periodic terms 

re imaginary. 

Since the occurrence of imaginary eigenvalues is of practical 

mportance for predicting thermal runaway, a detailed discussion 

n the impact of various problem parameters on the appearance 

f imaginary eigenvalues is presented in the next section. 

. Discussion 

Before discussing the impact of various problem parameters on 

he occurrence of imaginary eigenvalues in the problem, the accu- 

acy of the analysis presented in this work is established. Specifi- 

ally, the predicted temperature distribution for a two-layer body 
6 
ased on Eq. (28) and (29) is compared against numerical simula- 

ions based on the finite-difference method. For this purpose, the 

overning equation and boundary conditions in each layer are dis- 

retized using a second-order central difference formula in space 

nd a fully implicit scheme in time. A node at the interface is de- 

ned to apply the required interfacial conditions and ensure con- 

inuity. 10 0 0 nodes and 10 0 0 intervals are used for space and

ime discretization, respectively. The resultant algebraic equations 

as been solved using a Tridiagonal Matrix Algorithm (TDMA). 

wo contrasting scenarios are considered for this comparison. In 

he first scenario, both source coefficients β̄1 and β̄2 are nega- 

ive, based on which, temperature distribution is expected to stay 

ounded as time passes. A comparison of temperature distribu- 

ions at multiple times predicted by the analytical model and nu- 

erical simulations is presented in Fig. 2 (a) for an initial temper- 

ture of 1 throughout. As expected, due to the negative values of 

oth source coefficients, temperature stays bounded, and there is 

ery good agreement between the analytical model and numeri- 

al simulations at each time. On the other hand, a scenario with 

¯
1 = 0 and β̄2 = 18 is considered in Fig. 2 (b). In this case, the large

ource coefficient in the second layer dominates over advection 

nd convective heat removal at the boundaries to result in ther- 

al runaway at large times, as shown in Fig. 2 (b). The temperature 

istributions at various times predicted by the analytical model re- 

ains in good agreement with numerical simulations, even when 

here is exponential temperature rise with time. 

It is of interest to determine the regimes of various problem pa- 

ameters in which imaginary eigenvalues may appear in the CDR 

roblem. Thermal diffusivities, Peclet numbers and the source co- 

fficients are the key parameters that represent diffusion, advec- 

ion and generation, respectively. A complex interplay between 

hese parameters, as represented in Eqs. (38) and (40) ultimately 

etermines whether the problem has imaginary eigenvalues, and 

hether the temperature field diverges at large times. These con- 

iderations are discussed next in the context of a two-layer prob- 

em. 

Fig. 3 investigates the impact of Peclet numbers on the 

igenequation. Specifically, the eigenequation, Eq. (30) is plotted 

or three different values of Pe 1 and Pe 2 in Figs. 3 (a) and 3(b), re- 

pectively in the imaginary regime. Note that an imaginary eigen- 

alue exists if the eigenequation curve crosses the x axis. These 

lots show that changing Pe 2 has a much stronger impact on the 

igenequation than changing Pe 1 . In general, increasing Pe 2 shifts 

he eigenequation upwards and away from the appearance of an 

maginary eigenvalue. On the other hand, increasing Pe 1 shifts the 

urves slightly downwards. This is consistent with the physical un- 

erstanding of advection in this problem. Since the flow is as- 

umed to be from left to right in this problem, therefore, advec- 

ion in the second layer facilitates removal of heat from the body 

nto the ambient. As a result, greater value of Pe 2 will move the 

igenequation away from the x axis. On the other hand, Pe 1 ad- 

ects heat into the body, and therefore, increasing Pe 1 is expected 

o contribute towards thermal runaway. Both of these considera- 

ions are consistent with the results shown in Fig. 3 . Fig. 3 is also

onsistent with Eq. (38) , in that Eq. (38) shows that increasing Pe 1 
ill reduce the value of the eigenfunction f , whereas increasing Pe 2 

as the opposite effect. 

Note that Fig. 3 is plotted for fixed values of the source coef- 

cients β̄1 and β̄2 . To further investigate this and account for the 

ffect of heat generation, Fig. 4 plots the magnitude of the imag- 

nary eigenvalue as a function of advection for multiple values of 

he source term. Figs. 4 (a) and 4(b) present these plots for param- 

ters related to the first and second layers, respectively. Consistent 

ith Fig. 3 , Fig. 4 shows much greater sensitivity of the imagi- 

ary eigenvalue on Pe 2 than Pe 1 . When the value of Pe 2 exceeds 

 certain threshold, the imaginary eigenvalue is eliminated com- 



A. Jain, L. Zhou and M. Parhizi International Journal of Heat and Mass Transfer 177 (2021) 121465 

Fig. 2. Comparison of predicted temperature distribution for a two-layer body with numerical simulations: θ vs ξ at multiple values of τ for (a) converging and (b) di- 

verging temperature distributions. For (a), B i A = B i B = 2 ; β̄1 = −3 ; β̄2 = −5 , and for (b), B i A = B i B = 10 ; β̄1 = 0 ; β̄2 = 18 . Other parameters are k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; P e 1 = 1 ; P e 2 = 

0 . 25 ; γ1 = 0 . 61 . 

Fig. 3. Plot of the eigenequation for imaginary values of λ: (a) plots the eigenequation for four different values of P e 1 , with P e 2 = 0 , and (b) plots the eigenequation for four 

different values of P e 2 , with P e 1 = 0 . Other parameters are k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; B i A = B i B = 2 ; β̄1 = 5 ; β̄2 = 15 ; γ1 = 0 . 667 . 

Fig. 4. Plot of the magnitude of the imaginary eigenvalue as a function of (a) P e 1 for three different values of β̄1 with P e 2 = 0 and β̄2 = 5 ; (b) P e 2 for three different values 

of β̄2 with P e 1 = 0 and β̄1 = 5 . Other parameters are k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; B i A = B i B = 2 ; γ1 = 0 . 667 . 
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letely. In this regime, the effect of advection in removing heat 

rom the body is enough to overcome generation, and therefore, 

hermal runaway does not occur at all. The curves in Fig. 4 (b) shift

pwards as β̄2 increases, which is because at a greater rate of heat 

eneration, a greater amount of advection is needed to keep the 

emperature bounded. Compared to the plots in Fig. 4 (b), the sen- 

itivity on Pe 1 is not as strong, as shown in Fig. 4 (a). While there is

 monotonic reduction in λ1 with Pe 2 , λ1 actually increases slightly 

nd then decreases as Pe 1 increases. In the range of Pe 1 shown in 

ig. 4 (a), no value is found to avoid thermal runaway, unlike Pe 2 , 

hich has a threshold value as shown in Fig. 4 (b). 

The interplay between advection and generation is expected to 

ccur in practical engineering systems such as a flow battery, and 

s critical in determining whether thermal runaway occurs or not. 

ig. 5 investigates this by identifying regions in the Pe - ̄β space cor- 

esponding to real and imaginary eigenvalues according to Eq. (28) . 
7 
hese colorplots are presented for the first and second layer in 

igs. 5 (a) and 5(b), respectively. In both cases, small β̄ and large 

e results in real eigenvalues, whereas the imaginary eigenvalue 

ccurs when generation is large and advection is small. This is ex- 

ected because thermal runaway occurs due to an imbalance be- 

ween heat generation and removal, i.e., when too much heat is 

enerated and too little is removed. As expected, there is no imag- 

nary eigenvalue of the first type if both β̄1 and β̄2 are zero or 

egative. 

Convective boundary conditions at the two ends of the body, 

epresented by Bi A and Bi B also play a key role in determining 

hether thermal runaway occurs or not. While Figs. 3 , 4 and 5 are

lotted for a fixed value of the Biot numbers, the impact of Biot 

umber on imaginary eigenvalues is investigated next. Fig. 6 plots 

he minimum value of Pe 2 needed to avoid thermal runaway as a 

unction of Bi for three different values of the source coefficient β̄ . 
2 
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Fig. 5. Colormap showing regimes in the advection-generation spaces for (a) Layer 1, and (b) Layer 2 of a two-layer body, indicating the regions where one of the eigenvalues 

λ is imaginary. In (a), P e 2 = 0 and β̄2 = 0 , while in (b), P e 1 = 0 and β̄1 = 0 . Other parameters are k 1 = 0 . 5 ;α1 = 2 . 0 ; Bi A = Bi B = 2 ; γ1 = 0 . 667 . 

Fig. 6. Plot of the minimum P e 2 needed to avoid divergence as a function of Bi 

for a two-layer problem. Plots are shown for three different values of β̄2 . Other 

parameter values are k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; β̄1 = 0 ; P e 1 = 0 ; γ1 = 0 . 667 . 
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he same Biot number is assumed on both boundaries, and there is 

o generation in the first layer, as may be the case in several realis-

ic two-layer problems where one of the layers is passive in nature. 

ig. 6 shows that, for a given β̄2 , the minimum Pe 2 needed to avoid 

hermal runaway reduces with increasing Bi . This is expected be- 

ause both advection and the convective boundary condition help 

eep the temperature distribution bounded. Therefore, the greater 

he value of Bi , corresponding to more effective convective cooling 

t the boundary, the lower is the value of Pe 2 needed to avoid ther- 

al runaway. Fig. 6 shows that the curve for minimum Pe 2 shifts 

pwards as β̄2 increases, which is also consistent with the expec- 

ation that greater heat generation will require greater advection 

or avoiding thermal runaway through heat removal. Note that for 

ny given β̄2 , there is a maximum Bi , beyond which, the convective 

oundary condition is strong enough to avoid thermal runaway by 

tself even if there is no advection at all. This is the reason why the

urves shown in Fig. 6 are expected to flatten out at a threshold Bi

alue. 

In addition to the first eigenvalue λ1 turning imaginary due 

o relatively large source coefficients, low advection and/or insuf- 

cient heat removal from the boundaries, the CDR problem dis- 

ussed here may also result in imaginary values of ω m,n . As dis- 

ussed in Section 4 , ω 1 ,n may become imaginary if Pe 1 is large, 

¯ 1 is negative and/or β̄1 is small, and similarly for the eigenvalues 

f the second layer, ω 2 ,n . Fig. 7 presents a colorplot of the Pe 1 - ̄β1 

pace, showing the regions where the first spatial eigenvalue of the 

rst layer, ω 1 , 1 turns imaginary. As expected, this occurs for large 
8 
alues of Pe 1 , and relatively small values of β̄1 . A similar plot for 

he second layer shows quantitative differences between the two 

ayers. In this case, imaginary eigenvalues are expected for large 

e 2 , even when β̄2 may be somewhat large. This asymmetry be- 

ween the two layers is due to the differences in the thermal dif- 

usivities. In this case, ᾱ1 = 0 . 5 , i.e., the first layer has lower dif-

usivity than the second layer, which results in greater sensitivity 

f the occurrence of imaginary eigenvalues on β̄1 compared to the 

econd layer since thermal diffusivity appears in the denominator 

f Eq. (40) . Note that Fig. 7 is plotted for fixed values of Bi A and

i B that represent the convective boundary conditions. 

Also, note that imaginary values of ω m,n do not impact bound- 

dness of the temperature distribution at large times, unlike the 

maginary temporal eigenvalue λ1 . This is because while λ1 ap- 

ears in the exponential term in Eq. (13) that may diverge at large 

imes for imaginary value of λ1 , on the other hand, ω m,n appear 

nly in spatial terms within periodic functions that do not di- 

erge even for imaginary eigenvalues. Note that a recent paper has 

hown that the temperature distribution for a problem comprising 

iffusion and generation remains real even if some of the eigenval- 

es may be imaginary [35] . This was proved in a recursive fashion 

n the basis of the form of the temperature distribution. Since the 

emperature distribution for the present problem that also includes 

dvection given by Eq. (13) is similar to the past work, the same 

esult also holds for the present work. This is physically quite rea- 

onable because an imaginary eigenvalue is a mathematical phe- 

omenon, despite which, the temperature distribution for a physi- 

ally well-defined problem must be expected to be real. 

Finally, thermal analysis of a practical application of a two-layer 

DR problem is carried out. In the context of a two-layer flow bat- 

ery, it is important to understand the limits in which thermal run- 

way of the battery will be avoided when heat is generated due 

o temperature-dependent decomposition reactions. Note that de- 

omposition reactions for different battery chemistries have dif- 

erent temperature-dependent heat generation characteristics, i.e., 

alues of β̄ . For a given set of external cooling conditions, i.e. given 

i on both ends, calculations are carried out to determine the max- 

mum value of β̄2 in which the temperature field will still remain 

ounded. This analysis is carried out non-dimensionally in order to 

etain generality of the results, since the geometry and other prop- 

rties of batteries vary significantly. In this case, a constant value 

f 0.5 is assumed for the source coefficient in the first layer, β̄1 . Re- 

ults are plotted in Fig. 8 for five different values of Pe , which is as-

umed to be the same in both layers, as may be the case in a prac-

ical flow battery. Fig. 8 shows that the greater the value of Pe , the

reater is the maximum value of β̄2 before thermal runaway oc- 

urs. This is along expected lines because advection causes removal 

f heat from the second layer, which, in this case, has greater heat 
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Fig. 7. Colormap showing regimes in the advection-generation spaces for (a) Layer 1, and (b) Layer 2 of a two-layer body, indicating the regions where the first spatial 

eigenvalue is imaginary. In (a), P e 2 = 0 and β̄2 = 0 , while in (b), P e 1 = 0 and β̄1 = 0 . Other parameters are k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; B i A = B i B = 2 ; γ1 = 0 . 667 . 

Fig. 8. Practical application of the theoretical model: Plot of the maximum value 

of β̄2 as a function of Bi in order to avoid thermal runaway in a two-layer flow 

battery. Plots for different values of P e 1 = P e 2 = Pe are presented. Other parameters 

are k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; β̄1 = 0 . 5 ;γ1 = 0 . 667 . 
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eneration than the first layer. Fig. 8 also shows that for a given Pe ,

he maximum value of β̄2 before thermal runaway first increases 

lowly as external cooling conditions improve, i.e., as Bi increases. 

his is followed by a region of rapid increase in β̄2 with Bi . This

ffect eventually saturates, as the external cooling approaches the 

sothermal limit when Bi is very large. The greater the value of 

e , the large is the isothermal value of β̄2 corresponding to large 

i . Finally, it is interesting to note that as Pe decreases, the curves 

n Fig. 8 approach the no-advection curve obtained independently 

rom a past work [35] which analyzed a diffusion-reaction prob- 

em with zero advection. This is along expected lines, since Pe = 0 

liminates advection in the general CDR problem, and reduces it to 

 diffusion-reaction problem considered in the past paper [35] . 

. Conclusions 

Theoretical modeling of multilayer CDR problems is impor- 

ant from both theoretical and practical perspectives. The occur- 

ence of imaginary eigenvalues in such problems, even for a one- 

imensional geometry, determines whether thermal runaway is 

ncountered or not. In addition, the prediction of conditions in 

hich imaginary eigenvalues appear is important because standard 

lgorithms for computing eigenvalues only focus on real eigenval- 

es and may miss an imaginary eigenvalue. The analytical solution 

erived here is for a general M -layer body, and can be adapted for 

ther heat/mass transfer scenarios, such as in a porous medium, 

here the nature of boundary conditions may be different from 
9 
he ones considered here. Compared to the standard diffusion-only 

roblem, the orthogonality of eigenfunctions for the general multi- 

ayer CDR problem derived in this work comprises additional ex- 

onential terms that account for advection. On the other hand, 

he orthogonality remains unaffected by the reaction term. The 

resent work may be considered to be a generalization of recent 

ork [35] in which the effect of advection was not considered. 

he present work finds that modeling advection results in signif- 

cant changes in the solutions, particularly, the orthogonality ex- 

ression and eigenequation is significantly more complicated than 

n the previous work. While presented in the context of tempera- 

ure, results from the present work are equally applicable for con- 

entration problems. 

Further generalization of the present work to 2D/3D geometries 

ay be of interest. As shown in past work on thermal conduction 

n a multi-dimensional multi-layer body [31] , the direction(s) or- 

hogonal to the layers contribute an additional set of eigenvalues, 

hich themselves may induce imaginary eigenvalues in the normal 

irection. When coupled with the imaginary eigenvalues shown in 

his work to occur due to convection and reaction terms, this is 

ikely to make the eigenvalue analysis of the problem even more 

omplicated. 

In addition to improving the theoretical understanding of 

onvection-diffusion-reaction problems in a multilayer body, this 

ork may also help understand and optimize heat/mass transfer in 

ractical engineering systems such as flow batteries where a care- 

ul balance between heat generation, diffusion, advection and ex- 

ernal cooling determines whether thermal runaway may occur. 
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ppendix A. Orthogonality Relationship for M -layer Problem 

As shown in Section 2 , for the m 

th layer, and for two numbers

 and j , the functions f m,n and f m,j satisfy 

¯ m 

f ′′ m,n − P e m 

f ′ m,n + β̄m 

f m,n = −λ2 
n f m,n (A.1) 

¯ m 

f ′′ m, j − P e m 

f ′ m, j + β̄m 

f m, j = −λ2 
j f m, j (A.2) 

https://doi.org/10.13039/100000001
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By multiplying equations (A.1) and (A.2) by f m, j exp ( −P e m ξ
ᾱm 

) and 

f m,n exp ( −P e m ξ
ᾱm 

) , respectively, and then subtracting, one may ob- 

ain 

ᾱm 

(
f ′′ m,n f m, j − f ′′ m, j f m,n 

)
− P e m 

(
f ′ m,n f m, j − f ′ m, j f m,n 

)]
exp 

(
−P e m 

ξ

ᾱm 

)
= −

(
λ2 

n − λ2 
j 

)
f m,n f m, j exp 

(
−P e m 

ξ

ᾱm 

)
(A.3) 

Note that the β̄m 

term cancels out. Equation (A.3) can be sim- 

lified to 

¯ m 

[(
f ′ m,n f m, j − f ′ m, j f m,n 

)
exp 

(
−P e m 

ξ

ᾱm 

)]′ 

= −
(
λ2 

n − λ2 
j 

)
f m,n f m, j exp 

(
−P e m 

ξ

ᾱm 

)
(A.4) 

For m = 1,2,.. M , equation (A.4) provides one equation per layer. 

he equation for each layer is multiplied by k̄ m 
ᾱm s m 

, where s m 

are 

iven by the recursive relationship 

 m +1 = s m 

exp 

(−P e m +1 γm 

ᾱm +1 

)
exp 

(−P e m γm 

ᾱm 

) (A.5) 

or m = 1,2.. M -1, and s 1 = exp ( 
−P e 1 γ1 

ᾱ1 
) . 

Each equation is then integrated from ξ = γm −1 to ξ = γm 

and 

dded, resulting in 

k̄ 1 

[
f ′ 1 ,n ( 0 ) f 1 , j ( 0 ) − f ′ 

1 , j ( 0 ) f 1 ,n ( 0 ) 
]

exp 

(−P e 1 γ1 

ᾱ1 

)
+ ̄k M 

exp 

(−P e M 

ᾱM 

)[
f ′ M,n ( 1 ) f M, j ( 1 ) − f ′ 

M, j ( 1 ) f M,n ( 1 ) 
]

s M 

+ 

M ∑ 

m =2 

exp 

(−P e m −1 γm −1 

ᾱm −1 

)
s m −1 [

k̄ m −1 

(
f ′ m −1 ,n ( γm −1 ) f m −1 , j ( γm −1 ) − f ′ m −1 , j ( γm −1 ) f m −1 ,n ( γm −1 ) 

)
− k̄ m 

(
f ′ m,n ( γm −1 ) f m, j ( γm −1 ) − f ′ m, j ( γm −1 ) f m,n ( γm −1 ) 

)]
= 

(
λ2 

n − λ2 
j 

) M ∑ 

m =1 

k̄ m 

ᾱm 

s m 

γm ∫ 
γm −1 

f m,n f m, j exp 

(
−P e m 

ξ

ᾱm 

)
dξ (A.6) 

The first term on the left hand side of equation (A.6) is 

ero because from the boundary condition at ξ = 0 , one 

ay write k̄ 1 f 
′ 
1 ,n 

(0) = ( B i A + ̄k 1 P e 1 ) f 1 ,n (0) and k̄ 1 f 
′ 
1 , j 

(0) = 

 B i A + ̄k 1 P e 1 ) f 1 , j (0) . Similarly, using the boundary condition 

t ξ = 1 , the second term on the left-hand side of equation (A.6)

ay be shown to be zero. 

Further, each term within square bracket inside the summa- 

ion on the left hand side can be shown to be zero as follows:

rom the interface condition at ξ = γm −1 given by Eq. (17) , 

f m −1 ,n ( γm −1 ) = f m,n ( γm −1 ) and f m −1 , j ( γm −1 ) = f m, j ( γm −1 ) , 

herefore, each term within square bracket inside the sum- 

ation on the left hand side of equation (A.6) can be re- 

rranged as f m −1 , j ( γm −1 )[ ̄k m −1 f 
′ 
m −1 ,n 

( γm −1 ) − k̄ m 

f ′ m,n ( γm −1 ) ] −
f m −1 ,n ( γm −1 )[ ̄k m −1 f 

′ 
m −1 , j 

( γm −1 ) − k̄ m 

f ′ 
m, j 

( γm −1 ) ] . Finally, 

rom the interface condition at ξ = γm −1 given by 

q. (18) , k̄ m −1 f 
′ 
m −1 ,n ( γm −1 ) − k̄ m −1 P e m −1 f m −1 ,n ( γm −1 ) = 

¯
 m 

f ′ m,n ( γm −1 ) − k̄ m 

P e m 

f m,n ( γm −1 ) and k̄ m −1 f 
′ 
m −1 , j 

( γm −1 ) −
¯
 m −1 P e m −1 f m −1 , j ( γm −1 ) = k̄ m 

f ′ 
m, j 

( γm −1 ) − k̄ m 

P e m 

f m, j ( γm −1 ) . 

herefore, each term within the summation on the left 

and side of equation (A.6) may be further rearranged as 

f m −1 , j ( γm −1 )[ ̄k m −1 P e m −1 f m −1 ,n ( γm −1 ) − k̄ m 

P e m 

f m −1 ,n ( γm −1 ) ] −
f m −1 ,n ( γm −1 )[ ̄k m −1 P e m −1 f m −1 , j ( γm −1 ) − k̄ m 

P e m 

f m −1 , j ( γm −1 ) ] , 
10 
hich is zero. Therefore, the left hand side of equation (A.6) 

s zero, and thus, for distinct values of n and j , one may write the

ollowing orthogonality relationship 

M ∑ 

 =1 

k m 

αm 

s m 

γm ∫ 
γm −1 

f m,n f m, j exp 

(
−P e m 

ξ

αm 

)
dξ = 0 , for n � = j (A.7) 
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