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Detection of Unusual Thermal
Activities in a Semiconductor
Chip Using Backside Infrared
Thermal Imaging
Rapid detection of hardware Trojans on a semiconductor chip that may run malicious
processes on the chip is a critical and ongoing security need. Several approaches have
been investigated in the past for hardware Trojan detection, mostly based on changes in
circuit parameters due to Trojan activity. Chip temperature is one such parameter that is
closely related to the degree of Trojan activity. This paper carries out backside infrared
(IR) imaging of a two-die three-dimensional integrated circuit (3D IC) thermal test chip
in order to detect unusual thermal activities on the chip. Four distinct image processing
algorithms are evaluated and compared in terms of speed, accuracy, and occurrence of
false positives and negatives. The impact of background thermal activity and finite dura-
tion of Trojan activity on the accuracy of detection is investigated. Within the parameter
space tested in this work, the histogram method is found to be the most effective at Trojan
detection in the 3D IC. Modifications in data analysis techniques are proposed that
improve Trojan detection performance. This work may help develop thermal imaging as
a means for real-time Trojan detection and enhancement of security of modern semicon-
ductor chips, including 3D ICs. [DOI: 10.1115/1.4049291]
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1 Introduction

The security of modern microprocessors and other semiconduc-
tor chips is of critical importance, particularly for sensitive appli-
cations, such as defense and finance. Due to the highly distributed
nature of design, manufacturing and assembly, semiconductor
chips have become increasingly vulnerable to hardware and soft-
ware Trojans. A hardware Trojan is any unidentified circuit that
can access, distort, or disable ongoing operations anonymously
[1]. The intended or unintended introduction of an undesired cir-
cuit element could occur, for example, at an external foundry or
chip packaging company that simultaneously serves multiple cli-
ents across the globe. A software Trojan could be introduced in a
network attack on the chip. Even though a software Trojan does
not involve physical alterations in the chip, it can have similarly
deleterious effect on chip operation. Rapid detection and disable-
ment of Trojans—both hardware and software—is a critical secu-
rity need for semiconductor chips [2,3].

Trojan detection is inherently challenging due to the stealthy
nature of the Trojan, the behavior or characteristics of which are
not known in advance and may change over time [4]. Accuracy,
cost and speed of detection are key figures of merit for any Trojan
detection approach. A good detection technique must minimize
the likelihood of false negatives—when the detection method fails
to identify a Trojan-related activity—and false positives—when
an activity is detected to be Trojan-related, but is, in fact, benign.

While a hardware Trojan may, in principle, be detected using
destructive testing and reverse engineering, such an approach is
expensive, time-consuming, and unlikely to be practical [5]. Sev-
eral nondestructive methods have been proposed for Trojan detec-
tion. These methods can be broadly categorized into side-channel
analysis and full Trojan activation, also known as logic testing

method [6]. Side-channel analysis methods track changes in cir-
cuit parameters such as impendence, current or power [3,7,8],
path delays [9,10], and surface temperature [11], which are gener-
ally side effects of Trojan activity. The efficacy of side channel
analysis depends on the magnitude of side-channel signal gener-
ated by the Trojan, which malicious players strive to keep to a
minimum [2]. Logic testing methods seek to find the set of test
vector patterns that, when applied to the chip, maximizes the
probability of activating available hardware Trojans [12], and are
often used to enhance the side-channel analysis method.

Side-channel analysis based on current or power measurements
determines and compares the circuit power ratio to that of a
known, trusted chip, also called as a golden integrated circuit (IC)
[13]. The need for a golden IC can be eliminated by comparing IC
current signatures at two different times to detect abnormal pat-
terns and spot a hardware Trojan [7]. Path delay-based side-
channel analysis methods work on generating and detecting
anomalies in path delay [9,10]. The key benefit of this approach is
that the Trojan does not even need to be activated for detection
[14]. On-chip sensors have also been used for detecting side-
channel signals [15,16], including current/power sensors [17,18]
and delay counters [19,20]. Side-channel signal measurements
such as localized electromagnetic emanation [21] have also been
used to detect unusual patterns due to hardware Trojan activation.
Synergistic combination of multiple side-channel signals has been
investigated. For example, combination of current with delay
[22], current with maximum frequency [4], and time with electro-
magnetic measurements [23] has been shown to offer improved
detection than analysis based on only one signal. The logic testing
approach has also been used in conjunction with side-channel
analysis to improve the performance of signal measurements and
improve the accuracy of Trojan detection [4,24].

Infrared (IR)-based thermography has traditionally been used in
the semiconductor industry for surface temperature measurement
[25,26], detecting defective chips [27], hotspot detection [28,29],
etc. In principle, Trojans are intended to draw minimal current
and remain undetected. Nevertheless, abnormal circuit activity
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due to a Trojan is expected to cause some distortion in the temper-
ature field of the chip due to Joule heating. Some literature is
available on the use of this thermal signal for hardware Trojan
detection using infrared imaging and image processing
approaches. In general, the temperature field from an IR camera is
represented as time-varying matrices, which are analyzed for
detecting a hardware Trojan. Two-dimensional principal compo-
nent analysis has been used to calculate and compare the Euclid-
ean distance between the test chip and a benchmark chip [5].
Unsupervised clustering methods have been used for hardware
Trojan detection without the need for a benchmark chip [30]. Sim-
ilarly, application of Kalman filters on the difference matrices of
IR thermal images at two different time periods has been used for
hardware Trojan detection [31,32]. Most of this past work pertains
to traditional, planar chips. In contrast, detection on a three-
dimensional (3D) IC [33] —which refers to a stack of multiple die
that are electrically interconnected with each other—have not
been investigated much.

This paper presents measurement of temperature field of the
transistor plane of a two-die 3D IC thermal test chip through infra-
red imaging from the backside of the top chip. Due to the
infrared-transparent nature of bulk Silicon and infrared-opaque
nature of insulation layers above transistors, this facilitates direct
thermal imaging of the transistor plane. The occurrence of unusual
thermal activities mimicked through Joule heating in embedded
metal resistors is detected through image analysis. The perform-
ance of a number of image analysis algorithms is benchmarked
and compared. While past work is available on temperature-based
detection in traditional, planar chips, this work specifically inves-
tigates a two-die 3D IC and suggests possible mechanisms for
improved Trojan detection in a 3D IC. Results from this work can
be utilized to develop improvised real-time algorithms for quick
and effective Trojan detection techniques.

2 Experimental Setup

Experiments are carried out to investigate the use of backside
infrared thermal imaging to predict the onset of Trojan-related
unusual activity on the chip. For these experiments, a two-die, 3D
IC is used [34]. Figures 1(a) and 1(b) show top view and cross-
sectional view schematics of the 3D IC. This 3D IC has two
unequally sized die bonded face-to-face to each other. Each chip
has two embedded metal resistors of around 500 X each on the
M7 layer. The 3D IC is bonded on to a leadless chip carrier sub-
strate such that the backside of the top die is optically accessible.
I/O pads on the periphery of the larger sized, bottom die are wire-
bonded to bond pads on the substrate. The substrate is, in turn,
mounted on a ceramic socket. This enables electrical access to
various features on both die of the 3D IC. A Keithley 2602B
power source is used for passing current through the metal resis-
tors on each die.

Figure 2(a) shows a picture of the experimental setup, including
the two-die 3D IC packaged in a chip carrier and socket. Figure
2(b) shows a close-up view of the 3D IC. A FLIR A6703sc IR
camera with 640� 512 pixel resolution and 15 lm pixel pitch is
used. Infrared emission is measured at 100 Hz frequency and con-
verted to temperature field. The camera is mounted to focus on
the bare backside of the top chip of the 3D IC. Infrared data are
acquired using ResearchIR software (Flir Systems, Inc., Nashua,
NH) and analyzed using MATLAB. Temperature maps obtained
from emissivity field measurements are stored in the form of mat-
rices An, where n depicts the time-step. The backside of the top
chip is not coated with graphite because in this case, the interest is
in imaging temperature distribution on the transistor plane, and not
the chip backside. By not having an IR-opaque graphite layer on
the backside—as is customary for surface IR thermography—the
IR camera in this case is able to directly measure the temperature
field on the transistor plane instead of the backside temperature.
The impact of a graphite layer on the die backside is discussed in
more detail in Sec. 4.4.

The thermal effect of Trojan activity is mimicked through Joule
heating in independently addressable top and bottom die resistors
in the thermal test chip, as shown in Fig. 1. The use of Joule heat-
ing that mimics a hardware Trojan on either the top or bottom die
of the 3D IC facilitates analysis of different possible Trojan activ-
ity levels. Experiments are carried out to investigate a variety of
Trojan activity scenarios, which includes variations in heating
current from 0.1 mA to 25 mA for the resistors in the top and bot-
tom die. In each case, the capability of detection, including speed,
accuracy, and occurrence of false positives and negatives, is
investigated.

3 Image Processing Techniques

Figure 3 shows a schematic of the data acquisition and analysis
framework used in this paper. Following image acquisition as
described in Sec. 2, data at various times are analyzed using four
distinct image processing algorithms. Background subtraction,
binary conversion, and filtering are also carried out. The perform-
ance of the image process algorithms for such detection is charac-
terized and compared. The fundamental premise behind anomaly
detection is to compare successive thermal images in time with
the ultimate thermal image of the chip—also called the standard
image—in response to a thermal load and determine the minimum
time at which the degree of similarity between the two exceeds a
certain threshold. A comparison of the performance of these algo-
rithms is carried out in terms of minimum detection time, occur-
rence of false positives and false negatives, etc.

A brief summary of the four image analysis algorithms used in
this work is presented below.

3.1 Binary Comparison Method. In this method, the tem-
perature field is converted into a binary signal based on compari-
son with a threshold value of the temperature. The threshold is
chosen to be 0.55 times the average of ten highest temperature
values. Image comparison is then carried out between the binary
equivalents of the image matrix under consideration and the
standard image matrix. The percentage similarity between the two
is defined as the percentage of pixels with a binary one entry in
the term-by-term product of the two matrices.

3.2 Structural Similarity Index Method. Structural similar-
ity index method (SSIM) quantifies the similarity between
two images by using three factors for comparison—luminance,
contrast, and structure [35]. The SSIM index is calculated to
be [36]

SSIM A;Bð Þ ¼ ð2lAlB þ C1Þð2rAB þ C2Þ
ðl2

A þ l2
B þ C1Þðr2

A þ r2
B þ C2Þ

(1)

where A and B are the two images to be compared, and lA, lB,
rA

2, rB
2, rAB are means for A and B, covariances for A and B, and

the covariance between A and B, respectively. C1 and C2 are con-
stants that are included to avoid instability [37]. A high value of
SSIM calculated using Eq. (1) represents a large degree of similar-
ity between the images being compared.

3.3 Two-Dimensional Correlation Coefficient Method.
The two-dimensional (2D) correlation method compares the magni-
tudes and locations of peaks between the test and standard images.
Specifically, the zero-normalized cross correlation is calculated as
follows [38]:

corr2 ¼
P

i

P
jðfi;j � flÞðgi;j � glÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P

i

P
j ðfi;j � flÞ2

�P
i

P
j ðgi;j � glÞ2

�r (2)

where fi,j and gi,j are the two datasets to be compared and fl and
gl are the averages of corresponding datasets. Similar to SSIM,
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the 2D correlation coefficient also represents a degree of similar-
ity, although the specific values of the two parameters may differ.
This correlation technique has been used in applications such as
measurement of strain [38] and in-plane deformation [39].

3.4 Histogram Comparison Method. In this method, a vec-
tor, or histogram, containing the distribution of discrete pixel
intensities of the differential thermal image is computed and used
as the basis for comparison between a reference and test differen-
tial image [40]. The degree of similarity, defined as the average
pairwise distance between the histograms of the two images, is
computed. This pairwise distance is the difference between the
probability density at every normalized pixel intensity for the two
histograms plotted. Higher the pairwise distance, lower is the
degree of similarity of test image against reference image. This
approach is illustrated in Fig. 4, which plots the probability den-
sity as a function of normalized pixel intensity for a reference

Fig. 1 Schematic picture of the two-die 3D IC used in this work. (a) and (b) show top and cross
section views, respectively.

Fig. 2 Picture of the experimental setup. (a) shows the packaged 3D IC under the infrared camera
and connected to an external power source; (b) shows a close-up view of the 3D IC—the two unequally
sized die and wire bonds from the bottom die to the chip carrier are visible. In this configuration, the
top-most surface of the 3D IC is the backside of the top die, through which, infrared thermography is
carried out.

Fig. 3 Schematic of the computational framework used for
data acquisition and analysis
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image (no heating in the circuit, referred to as Dead Circuit) and a
test image (10 mA current passing through the top die resistor,
referred to as Active Circuit). This figure plots the number of pixels
that correspond to a specific pixel intensity value. Both are plotted
in normalized form. This figure shows, as expected, that the image
for dead circuit has higher number of pixels with low intensity, i.e.,
less than 10% intensity, than the test image with active top die resis-
tor. The histogram for test image appears to be normally distributed
in the range of 0% to 35% of pixel intensity. Simulated hardware
Trojan in active state produces heat due to Joule effect. The result-
ing change in the pixel intensity configuration of infrared image of
the circuit can be easily traced by this method. Thus, sudden change
in intensity of successive images will trigger the similarity index,
which can be used to identify the Trojan activity.

4 Results and Discussion

4.1 Temperature Colormaps. Figures 5(a) and 5(b) present
representative temperature colorplots at different times obtained
from infrared imaging for experiments with 15 mA and 5 mA
heating current through the top die resistor. In each case, meas-
ured temperature map at t¼ 0 s prior to passing the current is sub-
tracted. In the 15 mA case shown in Fig. 5(a), a distinct signal is
clearly detected even at 0.1 s, with the signal becoming more and
more distinct at larger times. For the lower, 5 mA current case
shown in Fig. 5(b), a similar detection is not visible as clearly at
t¼ 0.1 s, but emerges much later due to the weaker heat genera-
tion. Figure 6 plots the average measured temperature rise as a
function of time for multiple heating currents passing through the
top die resistor. It is seen that the expected temperature rise for
5 mA and lower currents is quite low. While the distinction
between the 15 mA and 5 mA cases can be seen visually in Fig. 5,
quantitative signal processing methods are clearly desirable for
systematic, real-time data analysis and Trojan detection, particu-
larly at low activity levels.

4.2 Algorithm-Based Detection With Top Die Resistor
Activated. The four image analysis algorithms discussed in
Sec. 3 are applied on the differential images acquired from experi-
ments with different currents passing through the top die resistor.
Figures 7(a) and 7(b) plot the degree of similarity as a function of
time for the four image analysis algorithms at 15 mA and 5 mA
heating currents, respectively.

In the case of 15 mA case, each method exhibits sharp rise in
the degree of similarity just after current activation. The histogram
comparison approach reports the most rapid change in degree of
similarity. On the other hand, the degree of similarity reported by
SSIM method is relatively high even prior to current activation,
due to which, the relative change in signal may be low.

Detection of a 5 mA signal—corresponding to only 12.5 mW
power—is more challenging due to the lower heating rate. This
case is shown in Fig. 7(b). In this case, the binary comparison and
2D correlation coefficient method fail to detect the onset of the
heating activity—the predicted degree of similarity does not
change appreciably following the onset of heating. On the other
hand, the SSIM index and histogram comparison method work
much better, and show a sharp increase in the degree of similarity.
A key tradeoff between the two is that while the SSIM method
jumps to 100% similarity faster, it does exhibit a high degree of
similarity even prior to the onset of heating activity. This might
cause SSIM to report more false negatives. On the other hand, his-
togram comparison method is much slower to report 100% simi-
larity, but provides a greater contrast compared to the preheating
measurement. As a result, the histogram comparison method may
take longer and may report more false negatives, especially if the
time window available for detection is short, but may be more
immune to false positives. The final choice between the two algo-
rithms may depend on the relative importance of fast detection
and avoiding false positives/negatives in the specific application.
It is possible that a hybrid evaluation that combines both methods
could be employed to meet detection needs across this spectrum
of requirements.

For further comparison of the four algorithms, experiments are
repeated at a number of currents, up to 25 mA in the top die resis-
tor. Figure 8 compares performance of the image analysis

Fig. 4 Pixel probability density as a function of pixel intensity,
as an illustration of the histogram comparison method

Fig. 5 Measured temperature maps on the top die, in response
to (a) 15 mA and (b) 5 mA heating current in the top die resistor.
Temperature maps are differential, after subtracting a baseline
image prior to onset of heating.

Fig. 6 Measured average temperature rise as a function of
time for a number of heating currents in the top die resistor
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algorithms as a function of heating current. Figure 8 plots the
mean difference in degree of similarity before and after starting
the heating current in the top die. This allows comparison of the
algorithms on a scale with same starting point. Higher mean dif-
ference in degree of similarity corresponds to a strong signal for
identifying unusual thermal activities for a particular technique at
a specific input current. Figure 8 shows that the use of binary com-
parison and 2D correlation coefficient method may not be effec-
tive for the detection of unusual thermal activities at lower signal.
On the other hand, SSIM index and histogram comparison meth-
ods work well for small signals. The histogram comparison
method exhibits a high difference in degree of similarity over the
entire range of thermal signals, whereas the SSIM index method
does saturate after a certain amount of current.

It is instructive to compare how the degree of similarity and
average temperature rise change as functions of time. This is plot-
ted in Fig. 9 for 5 mA heating in the top die resistor, i.e., carrying
as less as 12.5 mW power. Data on degree of similarity are plotted
only for SSIM and histogram comparison methods, since these
appear to be more effective than the other two methods. The verti-
cal dashed line represents the time at which the top die resistor is
triggered. Figure 9 shows the even though the temperature rise
may be very small (less than 0.1 �C), SSIM and histogram com-
parison methods are able to detect the thermal activity very
quickly.

4.3 Algorithm-Based Detection of Heating Pulse With
Background Thermal Activity. The set of experiments discussed
is Sec. 4.2 imposed a heating current on the top die resistor repre-
sentative of Trojan activity while the remaining chip is inactive.
Also, the heating current stayed on throughout the experiment. In
realistic conditions, Trojan activity must be detected in the pres-
ence of background thermal activity due to legitimate processes,
and, in addition, the Trojan activity may last only a short time. To
investigate the impact of these realistic considerations on detec-
tion accuracy, experiments are carried out where a single pulse of
10 mA current and 1 s duration is passed through the top die resis-
tor to represent Trojan activity, while the bottom die resistor is
either kept inactive, or is active with 10 mA current. Figures 10(a)
and 10(b) plot the degree of similarity using SSIM index and his-
togram comparison methods as well as average temperature rise
for these two scenarios. The location of the current pulse is shown
using dashed line. Figures 10(a) and 10(b) show that the histo-
gram comparison method accurately detects heating in the top die
resistor, even in the presence of background thermal activity. The
SSIM index method shows much greater noise, which may be an
additional disadvantage. It is also interesting to note that the
degree of similarity predicted by the SSIM index method decays
very slowly following the end of the heating pulse, whereas the
histogram method returns to the baseline level quite rapidly. Since
there is more heat generated in active circuit case, the average

Fig. 7 Degree of similarity predicted by four different image processing algorithms as a function of
time when the top die resistor is activated with (a) 15 mA and (b) 5 mA current

Fig. 8 Mean difference in degree of similarity before and after
heating event for a number of heating current. Data are shown
for four different image process algorithms.

Fig. 9 Measured average temperature rise and degree of simi-
larity plotted as functions of time for 5 mA heating current
through the top die resistor. Data are shown for SSIM index and
histogram comparison methods.
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temperature rise in Fig. 10(b) is slightly higher than in Fig. 10(a).
Note that Fig. 10 captures the thermal interactions between the
two die in the stack, which is unique to the 3D IC architecture.

In order to demonstrate that additional data filtering can further
facilitate Trojan detection, thermal noise reduction is carried out
on the data shown in Fig. 10(b). Figure 11 presents these data in
binary format, which helps understands the importance of thermal
noise reduction. Figure 11(a) shows the thermal map before the
heating current is passed, whereas Fig. 11(b) shows the thermal
map at 2.1 s after both top die and bottom die resistors are heated
with 10 mA current. The use of a median filter for noise reduction
is demonstrated in Fig. 11(c). The median filter is a commonly
used image processing tool, which reduces “salt and pepper” noise
[41], such as the thermal noise observed in Fig. 11(b). The median
filter replaces each pixel with the median value of a 3� 3 matrix
surrounding the pixel. As shown in Fig. 11(c), this significantly
helps in noise reduction, thereby making it easier to detect unusual
thermal activities. Specifically, with the use of median filter, the
occurrence of false negatives that may be caused by thermal noise
shown in Fig. 11(b) can be reduced significantly.

Finally, it is shown that the poor performance of binary com-
parison and 2D correlation coefficient methods at small current
inputs can be improved by changing the emissivity value used to
acquire temperature data from infrared images in RESEARCHIR soft-
ware. Figures 12(a) and 12(b) plot the degree of similarity as a
function of time for 5 mA heating current through the top die
resistor predicted by these two methods. In each case, plots with
emissivity values of 0.92 and 0.50 are both shown. Figures 12(a)

and 12(b) show that lowering the emissivity significantly
improves the performance of both methods. The degree of similar-
ity remains flat despite the heating signal when the emissivity is
0.92, but there is a greater deviation when using a lower value of
emissivity. Even though changing the emissivity value may result
in inaccurate prediction of temperature, that may not be important
since the goal here is to detect a thermal activity rather than accu-
rately measure the temperature. It is interesting to note that there
is little effect of emissivity on the accuracy of SSIM index or his-
togram comparison methods.

4.4 Validity of Backside Infrared Imaging. A key compo-
nent of this work is the imaging of the chip from the backside in
order to optically access the transistor plane. Backside imaging is
more practical than frontside imaging since the frontside is usu-
ally occupied by electrical interconnection, as is the case in the
chip used in this work. IR imaging of the backside of the chip still
allows measurement of temperature field on the transistor plane
because of the IR-transparent nature of silicon [26]. In order to
independently confirm this, a separate experiment is carried out
on a single-die Silicon chip comprising MOSCap circuits fabri-
cated on the frontside. A thin graphite film is sprayed on the back-
side of one half of the chip while the other half is left bare. The
chip is placed upside down on a hot plate maintained at 50 �C.
Figure 13(a) shows a regular picture of the chip, whereas
Fig. 13(b) shows an infrared image. Chip orientation is the same
in both images. As shown in Fig. 13(a), the top half of the chip is

Fig. 10 Measured average temperature rise and degree of similarity plotted as functions of time for
5 mA pulsed heating current through the top die resistor. Data are shown for SSIM index and histo-
gram comparison methods. (a) shows data without background heating and (b) shows data with back-
ground heating produced by 10 mA heating current through the bottom die resistor.

Fig. 11 Temperature maps after thermal noise reduction for the case of 5 mA heating pulse through the
top die resistor, with background heating produced by 10 mA heating current through the bottom die
resistor. (a) shows baseline state before the onset of current; (b) shows state 2.1 s after the onset of cur-
rent; and (c) shows state after the onset of current, with the application of median filter.
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sprayed with graphite. IR imaging of the corresponding region is
quite uniform, whereas IR imaging of the bottom half of the chip
that is not sprayed with graphite reveals circuit features from the
frontside. This shows that backside infrared imaging—without
graphite coating—is able to access the transistor plane of the chip
due to the infrared-transparent nature of silicon. This feature is a
key enabler for IR-based Trojan detection because in most cases,
only the backside of the chip is available for imaging. Note that
the absolute temperature measured here is not as critical as the
ability to detect frontside features, leading to detection of Trojan
activity.

5 Conclusions

Chips that are fabricated and assembled globally, including by
external manufacturers, are inherently prone to the insertion of
malicious hardware. Detection of such hardware Trojans is an
ongoing security concern. This work contributes toward this
important technological need by examining the use of temperature
signals to detect Trojans specifically for a 3D IC. Similar to any
detection process, the time to detect and occurrence of false posi-
tives/negatives are important considerations, which are addressed
in this paper. Four candidate image processing algorithms are

compared, and strategies for improved performance are identified.
The proposed techniques help the hardware Trojan effectively and
can possibly be improved even further by a synergistic combina-
tion of multiple methods. Results presented in this work may help
ensure the security of present and future semiconductor chips
from hardware Trojans.
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