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a b s t r a c t 

Convective heat transfer due to laminar fluid flow past a flat plate is a standard problem in heat trans- 

fer. While constant heat flux or temperature along the plate is often assumed for solving such problems, 

there may be several practical scenarios where the heat flux along the plate varies as a function of both 

space and time. Developing an analytical solution for the resulting plate temperature distribution is im- 

portant for understanding and optimizing the thermal performance of such systems. While some work 

exists on analyzing problems with time-dependent or space-dependent heat flux, there is a lack of work 

on the general problem where the heat flux is a function of both space and time. This paper presents 

a solution for this problem by solving the integral form of the energy equation, along with the use of 

fourth-order Karman-Pohlhausen polynomials for velocity and temperature distributions in the momen- 

tum and thermal boundary layers. A non-linear, first order, hyperbolic partial differential equation for the 

plate temperature is derived in response to the time- and space-varying plate heat flux. This equation is 

shown to agree well with results from past work for several special cases. Numerical solutions for the 

generalized equation are presented. Based on this approach, the plate temperature distribution is pre- 

dicted for several heat flux profiles that may be of interest in practical applications. Results from this 

work improve our understanding of unsteady convective heat transfer, and contribute towards modeling 

and optimization of practical engineering systems where such phenomena occur. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat transfer between a flat plate and fluid flow is a classical 

roblem in convective heat transfer [1–3] , with applications in a 

ide variety of engineering applications. As the fluid flows past the 

late, hydrodynamic and thermal boundary layers develop, across 

hich, momentum and thermal transport occurs. Analytical solu- 

ions of several such problems are available in textbooks [1–3] and 

n the research literature. Despite its classical, long-standing na- 

ure, external convective heat transfer in flat plate boundary layers 

ontinues to be a research topic of current interest [ 4 , 5 ]. 

Several simplifying assumptions are often made in order to 

olve the underlying momentum and energy conservation equa- 

ions, including steady state, uniform freestream velocity and tem- 

erature, laminar, incompressible flow, and uniform plate temper- 

ture or heat flux [1] . Two distinct approaches have been used for 

nalytically solving such problems. In the differential approach, the 

nderlying momentum and energy conservation equations, writ- 
en in differential form are solved in order to determine the ve- 
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ocity and temperature distributions [1] . Self-similar solutions are 

ften sought for these equations [2] , although this approach works 

nly for the simplest problems, such as a flat plate with constant 

emperature. In most other problems, one must rely on numerical 

omputation using finite-volume or similar methods. On the other 

and, integral approaches [1] seek a solution that satisfies the en- 

rgy equation integrated over the boundary layer, which results in 

ome error, but also, considerable simplification. In the Karman- 

ohlhausen integral approach [1] , polynomial forms of velocity and 

emperature profiles in the boundary layers are written in order to 

atisfy various boundary conditions at the plate and edge of the 

oundary layer. These polynomials are then used in the integral 

nergy balance equation to simplify and solve the problem. The 

ssumption of polynomial forms for velocity and temperature pro- 

les is an approximation, but has been justified because parame- 

ers governing plate-flow interactions such as the Nusselt number 

epend only on processes near the plate and are relatively unaf- 

ected by the velocity/temperature distribution in the remainder of 

he boundary layer [ 1 , 6 , 7 ]. Polynomial expressions up to the fourth

rder have been used in the past [ 6 , 7 ]. 

While flow past a flat plate at a constant temperature or flux 

re amongst the simplest problems in external convective heat 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121084
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Fig. 1. Schematic of the geometry considered in this work, comprising laminar, in- 

compressible flow past a thin flat plate with time- and space-varying heat flux. 
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Nom enclature 

c specific heat capacity, Jkg −1 K 

−1 

C coefficient, C = 5 . 83 
√ 

ν
U ∞ 

, m 

-0.5 

k thermal conductivity, Wm 

−1 K 

−1 

Nu Nusselt number 

Pr Prandtl number 

q heat flux, Wm 

−2 

Re Reynolds number 

t time, s 

T temperature, K 

U,V velocities in x and y directions, respectively, ms −1 

x,y spatial coordinate, m 

θ relative temperature, K 

α thermal diffusivity, m 

2 s −1 

ν kinematic viscosity, m 

2 s −1 

ρ mass density kgm 

−3 

δ boundary layer thickness, m 

Subscripts 

p plate 

t thermal 

∞ freestream 

ransfer, analytical solutions for several other, more complicated 

roblems have also been reported. For example, spatial variation in 

late temperature or heat flux has been accounted for using super- 

mposition or Duhamel’s theorem [8] . The Karman-Pohlhausen ap- 

roach has also been used for solving this problem [6] . The steady- 

tate problem with a specific heat flux profile has been solved us- 

ng a differential approach [9] . While this results in an exact solu- 

ion, it is valid only for the specific flux profile assumed, and is not 

alid in general. A discrete Green’s function approach has also been 

eveloped to solve such problems [ 4 , 10 ]. Solutions for several other

teady-state problems have also been summarized [8] . Unsteady 

onvective heat transfer has also been analyzed [ 11 , 12 ]. For exam- 

le, the effect of time-varying plate flux, including a step change in 

eat flux has been accounted for using the Karman-Pohlhausen ap- 

roach [7] , resulting in a partial differential equation for the plate 

emperature as a function of time and space. This problem has also 

een solved using Laplace transform approach [13] and Green’s 

unctions [14] . Other considerations such as turbulence [15] , non- 

at surface [16] and finite thickness plate [17] have also been in- 

estigated. Unsteady convective heat transfer analysis often results 

n a differential equation that must be solved numerically due to 

he lack of a closed-form analytical solution. 

While there is, in general, extensive literature on external con- 

ective heat transfer, one particular problem that has not been dis- 

ussed much in the literature is that of a flat plate with heat flux 

hat varies both in space and in time, i.e. q p = q p (x,t) . While solu-

ions have been presented for problems where the heat flux varies 

nly in space, q p (x) [6] or only in time, q p (t) [7] , a solution of the

eneral q p (x,t) problem is desirable for many practical applications. 

or example, the problem of fluid flow over a bed of phase change 

aterial (PCM) occurs commonly in latent energy storage systems 

 18 , 19 ]. In such a case, heat flux at the fluid-PCM interface varies

ver space due to boundary layer development in the fluid flow, 

nd also varies in time because of phase change front propagation 

nto the PCM over time [20] . While such problems involving flow 

ver a PCM have been solved by assuming a specific form of the 

usselt number [ 21 , 22 ], this assumption is likely to be inaccurate

ue to the expected time and spatial variation. Another example 

s the cooling of a Li-ion cell [23] . Thermal management of Li- 

on cells – used commonly for energy storage and conversion in 

lectric vehicles and other applications – often involves flow of a 
2 
oolant fluid over the cell or battery pack. In such a case, the in- 

erface flux may vary with space due to boundary layer growth, 

nd may also vary in time due to fluctuations in heat generation 

nside the cell in response to transient changes in the electrical 

oad. Analysis of convective heat transfer from a plate with heat 

ux that varies in both space and time is critical for understanding 

nd optimizing these and other related engineering applications. 

nlike problems with only time-varying or only spatially-varying 

eat flux, the more general problem identified above has not been 

ufficiently addressed in the literature. 

This paper presents a solution for external convective heat 

ransfer between a flat plate and fluid flow where the plate heat 

ux changes with time as well as space. Laminar incompress- 

ble flow with constant freestream velocity and temperature is as- 

umed. Velocity and temperature distributions are represented by 

ourth-order Karman-Pohlhausen polynomials. It is shown that the 

late temperature is governed by a first-order hyperbolic partial 

ifferential equation involving the given heat flux and its deriva- 

ives. While an analytical solution for this equation is unlikely, the 

quation is integrated numerically to determine the plate temper- 

ture as a function of space and time for any arbitrary heat flux 

istribution. Results from this work are shown to agree well with 

ast results for special cases of time-varying [7] , spatially-varying 

6] or constant flux [1] . Various general cases of time- and space- 

arying heat flux, such as those that might arise in applications 

iscussed above are analyzed. 

. Mathematical modeling 

As shown schematically in Fig. 1 , consider laminar, incompress- 

ble fluid flow past a thin, one-dimensional flat plate in which the 

late flux, q p , varies both in space and in time. Uniform freestream 

elocity U ∞ 

and temperature T ∞ 

are assumed. All properties are 

ssumed to be independent of temperature. Viscous dissipation is 

eglected. The interest here is to determine the nature of heat 

ransfer between the flat plate and the fluid flow. In particular, the 

esulting plate temperature T p (x,t) due to the spatial and time vari- 

tion in flux, q p (x,t) , is of interest. 

Under the assumptions listed above, and referring to Fig. 1 for 

he coordinate system, the governing equations for conservation of 

ass, momentum and energy can be written as 

∂U 

∂x 
+ 

∂V 

∂y 
= 0 (1) 

 

∂U 

∂x 
+ V 

∂U 

∂y 
= ν

∂ 2 U 

∂ y 2 
(2) 

∂ 2 θ

∂ y 2 
= 

∂θ

∂t 
+ U 

∂θ

∂x 
+ V 

∂θ

∂y 
(3) 

here θ = T − T ∞ 

. 

The boundary conditions are 

 = U ∞ 

; θ = 0 at x = 0 (4) 

 = 0 ;V = 0 at y = 0 (5) 
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) 

[

t

q
5 k 
 = U ∞ 

at y ≥ δ (6) 

= 0 at y ≥ δt (7) 

k 
∂θ

∂y 
= q p ( x, t ) at y = 0 (8) 

Eq. (4) represents the uniform freestream velocity and tem- 

erature of the fluid flow. Eq. (5) is the no slip condition at the

late. Eqs. (6) and (7) are based on δ and δt , the momentum 

nd thermal boundary layer thicknesses, respectively. Eq. (8) is the 

iven heat flux at the flat plate. In addition, the initial tempera- 

ure field, θ ( x, y, t = 0 ) , is assumed to be zero. The interest is in

olving this set of equations to determine the plate temperature 

p ( x, t ) = θ ( x, y = 0 , t ) . 

.1. Solution procedure 

It is assumed that hydrodynamic boundary layer growth is un- 

ffected by heat transfer. Integral analysis of momentum transfer 

n this problem can be shown to result in the following expression 

or the momentum boundary layer thickness, δ [ 6 , 7 ] 

( x ) = 5 . 83 

√ 

νx 

U ∞ 

(9) 

In order to solve this problem, the velocity and temperature 

istributions in their respective boundary layers are assumed to 

e given by fourth-order Karman-Pohlhausen polynomials [ 1 , 6 , 7 ] 

s follows: 

U ( x, y, t ) 

U ∞ 

= 2 

y 

δ
− 2 

(
y 

δ

)3 

+ 

(
y 

δ

)4 

(10) 

θ ( x, y, t ) 

θp 
= 1 − 2 

y 

δt 
+ 2 

(
y 

δt 

)3 

−
(

y 

δt 

)4 

(11) 

These polynomials that already satisfy several boundary condi- 

ions in the problem are substituted into the integrated form of the 

nergy equation in order to satisfy overall energy conservation. To 

o so, Eq. (3) is first integrated from y = 0 to y = δt , resulting in 

∂ 

∂t 

δt ∫ 
0 

θdy + 

∂ 

∂x 

δt ∫ 
0 

Uθdy = −α

(
∂θ

∂y 

)
y =0 

= 

q p 

ρc 
(12) 

By substituting the polynomial form of θ from Eq. (11) into the 

rst term of Eq. (12) , it can be shown that 

∂ 

∂t 

δt ∫ 
0 

θdy = 

6 

5 

k θp 

q p 

∂ θp 

∂t 
− 3 

5 

kθ2 
p 

q 2 p 

∂ q p 
∂t 

(13) 

Also, substituting Eqs. (10) and (11) into the second term in 

q. (12) results in 

∂ 

∂x 

δt ∫ 
0 

Uθdy = U ∞ 

∂ 

∂x 

[
8 

15 

k 2 θ3 
p 

q 2 p C 
√ 

x 
− 12 

35 

k 4 θ5 
p 

q 4 p C 
3 x 

√ 

x 
+ 

8 

45 

k 5 θ6 
p 

q 5 p C 
4 x 2 

]
(14) 

here C = 5 . 83 
√ 

ν
U ∞ 

. 

Recognizing that θp and q p are both functions of x and t , 

q. (14) can be differentiated by parts to result in 

∂ 

∂x 

δt ∫ 
0 

Uθdy = U ∞ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

8 
15 

k 2 

C 

(
− 2 

q 3 p 

∂q p 
∂x 

θ3 
p √ 
x 

+ 

1 
q 2 p 

(
3 θ2 

p √ 
x 

∂θp 

∂x 
− θ3 

p 

2 x 
√ 

x 

))
− 12 

35 
k 4 

C 3 

(
− 4 

q 5 p 

∂q p 
∂x 

θ5 
p 

x 
√ 

x 
+ 

1 
q 4 p 

(
5 θ4 

p 

x 
√ 

x 

∂θp 

∂x 
− 3 θ5 

p 

2 x 2 
√ 

x 

))
+ 

8 
45 

k 5 

C 4 

(
− 5 

q 6 p 

∂q p 
∂x 

θ6 
p 

x 2 
+ 

1 
q 5 p 

(
6 θ5 

p 

x 2 
∂θp 

∂x 
− 2 θ6 

p 

x 3 

))
⎤ 

⎥ ⎥ ⎥ ⎦ 

(15) 
3 
Substituting Eqs. (13) and (15) in the integral energy equation 

iven in Eq. (12) , followed by mathematical simplification results 

n a partial differential equation of the form 

 ( θp , x, t ) 
∂ θp 

∂t 
+ B ( θp , x, t ) 

∂ θp 

∂x 
= F ( θp , x, t ) (16) 

here 

 ( θp , x, t ) = 

6 

5 

θp q 
4 
p C 

k 3 
(17) 

 ( θp , x, t ) = U ∞ 

[
8 

5 

θ2 
p q 

3 
p 

k 2 
√ 

x 
− 12 

7 

θ4 
p q p 

C 2 x 
√ 

x 
+ 

16 

15 

θ5 
p 

C 3 x 2 
k 

]
(18) 

 ( θp , x, t ) = 

αq 6 p C 

k 5 
+ 

3 Cθ2 
p q 

3 
p 

5 k 3 
∂ q p 
∂t 

+ 

[
4 θ3 

p q 
3 
p 

15 k 2 x 
√ 

x 
− 18 q p θ5 

p 

35 C 2 x 2 
√ 

x 
+ 

16 kθ6 
p 

45 C 3 x 3 

]
U ∞

− ∂ q p 
∂x 

[
− 16 q 2 p θ

3 
p 

15 k 2 
√ 

x 
+ 

48 θ5 
p 

35 C 2 x 
√ 

x 
− 8 kθ6 

p 

9 C 3 x 2 q p 

]
U ∞ 

(19)

Eq. (16) along with coefficients defined in Eqs. (17) –(19) rep- 

esents the governing equation for the plate temperature for the 

eneral case considered here, where the imposed plate flux varies 

ith both x and t . Note that the heat flux function q p ( x, t ) and

ts derivatives appearing in the coefficients of Eq. (16) are known 

n advance, and therefore, Eq. (16) is a non-linear, first-order hy- 

erbolic partial differential equation in θp ( x, t ) . While it is unlikely 

hat Eq. (16) has a general closed-form solution, hyperbolic differ- 

ntial equations such as Eq. (16) can be solved numerically. 

.2. Numerical integration of Eq. (16) 

In order to numerically compute the solution of Eqs. (16) –(19) , 

iscretization in x direction is carried out to convert the partial 

ifferential equation into a coupled system of ordinary differen- 

ial equations in θp,i (t) where the subscript i refers to the dis- 

retized spatial location. The coupled system of ordinary differen- 

ial equations is then solved by numerical integration over time 

ith a three-stage, third-order Runge-Kutta solver using adaptive 

imestepping [24] . The initial condition provides the initial state 

eeded for starting the integration process. 

. Results and discussion 

.1. Special cases 

It is instructive to compare special cases of the general results 

erived in Section 2 with past work that investigated specific spe- 

ial cases of this problem. 

In case the plate flux is a function of time alone, i.e. q p = q p (t) ,

hen the last set of terms in Eq. (19) that appear with 

∂q p 
∂x 

can be

et to zero. Even if the plate flux may not be spatially dependent, 

he plate temperature will still be a function of both x and t due to

oundary layer development. For this case, the general governing 

quation can be simplified to 

6 

5 

θp q 
4 
p C 

k 3 
∂ θp 

∂t 
+ 

[
8 

5 

θ2 
p q 

3 
p 

k 2 
√ 

x 
− 12 

7 

θ4 
p q p 

C 2 x 
√ 

x 
+ 

16 

15 

θ5 
p 

C 3 x 2 
k 

]
U ∞ 

∂ θp 

∂x 

− 3 Cθ2 
p q 

3 
p 

5 k 3 
∂ q p 
∂t 

−
[

4 θ3 
p q 

3 
p 

15 k 2 x 
√ 

x 
− 18 q p θ5 

p 

35 C 2 x 2 
√ 

x 
+ 

16 kθ6 
p 

45 C 3 x 3 

]
U ∞ 

= 

αq 6 p C

k 5 

(20

Eq. (20) matches exactly with the result from Lachi, et al . 

7] that considered the specific case of time-varying heat flux on 

he flat plate. 

Further, the case of only spatially-varying plate flux, i.e. q p = 

 p (x ) is of interest. In such a case, the 
3 Cθ2 

p q 
3 
p 

3 

∂q p 
∂t 

term appearing 
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n Eq. (19) can be eliminated. Therefore, the governing equation 

or this case is 

6 
5 

θp q 
4 
p C 

k 3 
∂ θp 

∂t 
+ 

[ 
8 
5 

θ2 
p q 

3 
p 

k 2 
√ 

x 
− 12 

7 

θ4 
p q p 

C 2 x 
√ 

x 
+ 

16 
15 

θ5 
p 

C 3 x 2 
k 

] 
U ∞ 

∂ θp 

∂x 

+ 

∂ q p 
∂x 

[ 
− 16 q 2 p θ

3 
p 

15 k 2 
√ 

x 
+ 

48 θ5 
p 

35 C 2 x 
√ 

x 
− 8 kθ6 

p 

9 C 3 x 2 q p 

] 
U ∞ 

+ 

[ 
− 4 θ3 

p q 
3 
p 

15 k 2 x 
√ 

x 
+ 

18 q p θ5 
p 

35 C 2 x 2 
√ 

x 
− 16 kθ6 

p 

45 C 3 x 3 

] 
U ∞ 

= 

αq 6 p C 

k 5 

(21) 

The transient problem of spatially-varying plate flux was pre- 

ented by Polidori and Padet [6] . Appendix A shows that the gov- 

rning equation obtained above by simplifying the equation for the 

eneral q p (x,t) case agrees exactly with results from Polidori and 

adet [6] . 

Further, the steady state component of the spatially-varying 

eat flux problem is a standard problem, for which, the solution 

s available [1] as follows: 

p ( x ) = 

0 . 623 

k 
P r −1 / 3 Re −1 / 2 

x 

x 

∫ 
0 

q p ( ξ ) 

[ 

1 −
(

ξ

x 

)3 / 4 
] −2 / 3 

dξ (22) 

Where Re x = 

U ∞ 

x 
ν is the Reynolds number. In comparison, in 

he present work, for steady state conditions with q p = q p (x), 

q. (21) can be further simplified to 
 

8 
5 

θ2 
p q 

3 
p 

k 2 
√ 

x 
− 12 

7 

θ4 
p q p 

C 2 x 
√ 

x 
+ 

16 
15 

θ5 
p 

C 3 x 2 
k 

] 
U ∞ 

∂ θp 

∂x 

+ 

∂ q p 
∂x 

[ 
− 16 q 2 p θ

3 
p 

15 k 2 
√ 

x 
+ 

48 θ5 
p 

35 C 2 x 
√ 

x 
− 8 kθ6 

p 

9 C 3 x 2 q p 

] 
U ∞ 

+ 

[ 
− 4 θ3 

p q 
3 
p 

15 k 2 x 
√ 

x 
+ 

18 q p θ5 
p 

35 C 2 x 2 
√ 

x 
− 16 kθ6 

p 

45 C 3 x 3 

] 
U ∞ 

= 

αq 6 p C 

k 5 

(23) 

Eq. (23) is an ordinary differential equation in θp (x) , which is 

ifficult to solve analytically due to its non-linear nature. How- 

ver, a numerical computation of Eq. (23) can be compared against 

q. (22) . 

Finally, note that the solution for a flat plate with constant heat 

ux is [1] 

p ( x ) = 

q p 

0 . 453 k 
P r −1 / 3 Re −1 / 2 

x x (24) 

hereas, the present work, through elimination of terms appearing 

ith 

∂q p 
∂x 

in Eq. (23) results in 

8 

5 

θ2 
p q 

3 
p 

k 2 
√ 

x 
− 12 

7 

θ4 
p q p 

C 2 x 
√ 

x 
+ 

16 

15 

θ5 
p 

C 3 x 2 
k 

]
U ∞ 

∂ θp 

∂x 

+ 

[
− 4 θ3 

p q 
3 
p 

15 k 2 x 
√ 

x 
+ 

18 q p θ5 
p 

35 C 2 x 2 
√ 

x 
− 16 kθ6 

p 

45 C 3 x 3 

]
U ∞ 

= 

αq 6 p C 

k 5 
(25) 

The equations for special cases resulting from the present work 

re plotted along with past results in the next section. 

.2. Model validation 

The analytical model derived in this work is compared against 

esults from past papers that have presented theoretical analysis of 

imilar problems. Firstly, results are compared with Lachi, et al . [7] , 

ho presented the analysis of unsteady convective heat transfer 

ith a time-dependent flat plate heat flux, q p (t) . For this compar- 

son, a specific case of step change heat flux considered by Lachi, 

t al . is also implemented in the present analytical model. This step 

hange involves a change of heat flux from ϕ1 to ϕ 2 ( ϕ 2 > ϕ 1 ) at

ime t 0 . Eq. (20) is solved for this specific heat flux profile in order

o compute the plate temperature as a function of x and t . Under

he same freestream conditions and fluid properties, a comparison 

ith Lachi, et al . [7] is presented in Fig. 2 , where plate temperature

nd Nusselt number at multiple locations are plotted as functions 

f time in Fig. 2 (a) and (b), respectively. In general, there is very
4 
ood agreement between the present work and Lachi, et al . for the 

pecial case of time-dependent plate heat flux. The plate tempera- 

ure rises with time, including a sharp rise beyond t = t 0 when the

eat flux undergoes a step change. Further, the greater the value 

f x , the higher is the temperature, which is due to boundary layer 

rowth and diminished heat transfer from the plate at large x . Sim- 

larly, Nu reduces with time and then undergoes a large increase at 

 = t 0 due to the increased heat flux, as expected, and then finally 

educes with increasing time. The larger the value of x , the higher 

s the value of Nu , which is also expected. 

Further, the present work is compared with Polidori and Padet 

6] for the special case of spatially-varying heat flux, q p (x) . A spe- 

ific form of q p (x ) = 150 · exp (−10 x ) W/m 

2 used in their work is

lso implemented in the present model, Eq. (21) , which pertains 

o the special case of spatially-varying heat flux, q p (x) . Compari- 

on of the present work with Polidori and Padet is presented in 

ig. 3 , which plots the spatial distribution in the plate temper- 

ture at multiple times prior to steady state. At each time, the 

late temperature increases with x , and then decreases after reach- 

ng a maxima. This is because the plate flux reduces exponen- 

ially as x increases. At each time, there is good agreement be- 

ween the past work and the present model. Please note that the 

pproach for numerical solution of the derived equations is differ- 

nt between Polidori and Padet and the present work. Polidori and 

adet adopted an explicit finite-difference scheme [6] , whereas in 

he present work, the partial differential equation is discretized in 

pace, and the resulting system of ordinary differential equations 

s solved numerically using a three-stage, third-order, Runge-Kutta 

ethod. This difference between the two approaches may explain 

he small discrepancy between the two sets of curves in Fig. 3 . 

The problem of spatially-varying plate temperature has also 

een solved in steady state using superposition methods [1] . In 

hort, the solution for a problem with constant plate temperature 

nd an nunheated length has been derived and then superimposed 

ased on linearity of the problem to determine the solution for the 

patially-varying plate temperature problem. A comparison of the 

resent work with these results is presented in Fig. 4 (a) and (b) for 

wo specific q p (x) profiles – linear, and one in which q p (x) reduces 

roportional to 
√ 

x . In both cases, there is good agreement between 

he two. Note that this good agreement is particularly encouraging 

ecause the approach in the superposition-based method is dis- 

inctly different from the approach in the present work. 

Finally, comparison with past work is carried out for the sim- 

lest case of a constant heat flux plate. A solution for this case 

as been presented in Kays and Crawford [1] , and is reproduced as 

q. (24) in the present work. Fig. 5 presents the variation in Nu as 

 function of x for a constant heat flux plate, based on the present 

odel as well as past results. The two are in excellent agreement 

ith each other. 

The good agreement between the present work and various 

ast results for special cases of q p (t), q p (x) and constant q p pro-

ides confidence in the present approach. 

.3. Plate temperature for specific q p (x,t) functions 

The plate temperature distribution is determined for several 

epresentative plate flux profiles in order to further demonstrate 

he capability of the present analytical model. 

In order to analyze a scenario where the plate flux changes 

ith both time and space, a plate flux profile given by q p (x, t) =
 + Bx + Ct is considered, where A = 200 W/m 

2 , B = −400 ( W 

m 

2 ) /m

nd C = −50 ( W 

m 

2 ) /s . The freestream velocity is assumed to be 1

/s. Room temperature properties of air are used. The resulting 

late temperature distribution determined by solving Eq. (16) is 

lotted in Fig. 6 . Plate temperature as a function of x at three dif-

erent times is plotted in Fig. 6 (a), while plate temperature as a 
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Fig. 2. Comparison of present work with Lachi, et al. [7] for the special case of time-dependent heat flux, q p (t) = 

{
10 W/ m 

2 , 0 < t ≤ 0 . 3 s 

100 , W/ m 

2 t > 0 . 3 s 
: (a) Plate temperature, θ p vs t at 

multiple x , and (b) Nu vs t at the plate at multiple x . 

Fig. 3. Comparison of present work with Polidori and Padet [6] for the special case 

of spatially-varying heat flux: Plate temperature, θ p as a function of x at multiple 

different times for q p (x ) = 150 e −10 x W/ m 

2 . Note that x is in m. 

f

F

w

i

g

c  

p

p

Fig. 5. Comparison of present work with Kays and Crawford [1] for the special case 

of steady state constant heat flux: Nu as a function of x . 

d

b

f

c

v

d

m

t  

F

N

unction of time at four different locations is plotted in Fig. 6 (b). 

ig. 6 (a) shows, as expected, that the plate temperature increases 

ith x at any given time. A saturation effect at large values of x 

s also seen, as expected, due to the saturation in boundary layer 

rowth. The plate temperature decreases with time due to the de- 

reasing nature of q p with time. Fig. 6 (b) shows that the plate tem-

erature at any specific location increases sharply first, reaches a 

eak and then slowly decreases. The initial rise in temperature is 
ig. 4. Comparison of present work with Kays and Crawford [1] for the special case of

usselt number, Nu, as a function of x for (a) linear q p (x ) = −500 x + 125 W/ m 

2 , (b) non-l

5 
ue to heating up of the plate, which is followed by a cool down 

ecause the plate flux reduces with time according to the assumed 

orm of the plate flux distribution, while the plate continues to be 

onvectively cooled by the flow. Fig. 6 (b) shows that the larger the 

alue of x , the larger is the temperature rise, which is expected 

ue to the increasing boundary layer thickness and therefore, di- 

inishing convective cooling as x increases. 

Fig. 7 presents results for a similar heat flux distribu- 

ion, given by q p (x, t) = A + B 
√ 

x + C 
√ 

t , with A = 500 W/m 

2 , B =
 steady state spatially-dependent heat flux: (a) plate temperature in the form of 

inear q p (x ) = −250 
√ 

x + 125 W/ m 

2 . Note that x is in m. 
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Fig. 6. Plate temperature, θ p as a function of (a) x at multiple times, and (b) time at multiple x for a general heat flux distribution given by q p ( x, t ) = 

[ 200 − 400 x − 50 t ] W/ m 

2 . 

Fig. 7. Plate temperature, θ p as a function of (a) x at multiple times, and (b) time at multiple x for a general heat flux distribution given by q p ( x, t ) = 

[ 500 − 400 
√ 

x − 50 
√ 

t ] W/ m 

2 . 

Fig. 8. Plate temperature, θ p as a function of (a) x at multiple times, and (b) time at multiple x for a general heat flux distribution given by q p ( x, t ) = [ 500 − 400 
√ 

x ] W/ m 

2 

for t < 0 . 3 s and q p ( x, t ) = [ 500 − 1000 
√ 

x ] W/ m 

2 afterwards. 

−  

p

p

t

t

F

c

r

t

t

i  

a√
 

t

s

b

l

p

s  

0  

t  

−  

a

t

d

f

A

fi  

l  
400 ( W 

m 

2 ) / 
√ 

m and C = −50 ( W 

m 

2 ) / 
√ 

s . Here, the dependence of

late flux of x and t is weaker than in the previous case. Other 

roblem parameters such as freestream velocity as the same as 

he previous Figure. Fig. 7 (a) and (b) plot the variation in plate 

emperature as a function of x and time, respectively. Similar to 

ig. 6 (a), the plate temperature distribution in Fig. 7 (a) shows in- 

reasing temperature with x at any time, which is consistent with 

educed convective cooling at large x . Compared to Fig. 6 (a), the 

hree curves in Fig. 7 (a) at three different times are much closer 

o each other, which is likely due to the slower rate of reduction 

n the plate heat flux with time compared to Fig. 6 . Note that the

ssumed plate flux for results shown in Fig. 7 decays as 
√ 

x and 

 

t , compared to the linear decay for Fig. 6 . Similar to Fig. 6 (b),

here is initial rise in plate temperature at any given location, as 

hown in Fig. 7 (b). This is followed by a reduction in temperature, 
6 
ut at a much slower rate than in the previous case. This is also 

ikely due to the weaker decay in the plate flux compared to the 

revious case. 

Finally, a step function change in the plate flux is also con- 

idered, wherein the plate flux is given by q p = A + B 1 
√ 

x for

 < t < 0.3 s, and q p = A + B 2 
√ 

x afterwards. The numerical values of

hese parameters are A = 500 W 

m 

2 , B 1 = −400 ( W 

m 

2 ) / 
√ 

m and B 2 =
10 0 0 ( W 

m 

2 ) / 
√ 

m . This constitutes a sharp drop in the plate flux

fter t = 0.3 s. The resulting plate temperature distribution is plot- 

ed in Fig. 8 . Spatial distribution in the plate temperature at three 

ifferent times is plotted in Fig. 8 (a), while plate temperature as a 

unction of time at three different locations is plotted in Fig. 8 (b). 

s expected, the plate temperature at any given location increases 

rst with time up to t = 0.3 s, with the temperature being greater at

arge values of x . This is followed by a gradual reduction due to the
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tep change in the flux distribution. Eventually, the plate tempera- 

ure at each location reaches a steady state. Temperature at steady 

tate increases with increasing value of x , which is due to reduced 

onvective cooling at large x . The plate temperature distribution at 

hree different times, shown in Fig. 8 (a) indicates that the plate 

emperature rises with x and eventually plateaus out. Similar to 

ig. 8 (b), this occurs due to the reduced convective cooling at large 

 , combined with the gradual reduction in the plate flux with x , 

ased on the assumed flux distribution. 

Figs. 6–8 demonstrate the capability of the theoretical model 

erived in this work to account for a given plate heat flux as a 

unction of both space and time in order to predict the resulting 

emperature distribution. Experimental data on the plate heat flux, 

f available, may also be inserted into Eqs. (16) –(19) to predict the 

emperature distribution. In such a case, the derivatives 
∂q p 
∂t 

and 

∂q p 
∂x 

appearing in Eq. (19) may need to be evaluated numerically. 

. Conclusions 

Understanding the nature of temperature distribution on a flat 

late due to convective cooling in response to a plate heat flux 

hat varies in both space and time is important for design and op- 

imization of several practical engineering systems such as latent 

eat energy storage systems and thermal management of Li-ion 

atteries. In the past, such problems have been solved when the 

late flux is a function of only time or only x . The present work

eneralizes this by considering the plate heat flux to be a func- 

ion of both space and time. The generalized solution derived in 

his work is based on the integral approach and uses fourth-order 

arman-Pohlhausen polynomials, which have been shown to of- 

er reasonable accuracy. Results are shown to agree well with past 

ork for specific cases of the general problem discussed in this 

ork. 

The present work does not account for second-order effects 

uch as thermal resistance and capacitance of the flat plate, which 

ay require solving a conjugate heat transfer problem, for which, 

he present results may be helpful. Also, turbulent effects, which 

ay be important in specific applications are not accounted for in 

he present work. 

The present work improves our fundamental understanding of 

xternal convective heat transfer. The results derived here may 

ontribute towards design and optimization of practical engineer- 

ng systems. 
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ppendix A. Proof that results from present work agree with 

olidori and Padet [6] for special case of q p (x) 

The general equation derived in the present work for the plate 

emperature due to a time- and spatially-varying heat flux q p (x,t) 
7 
 Eq. (16) ) reduces to a simpler form, Eq. (21) , for the special case

f a heat flux that varies only in x , i.e., q p (x) . This specific problem

as been discussed in the past by Polidori and Padet [6] . In order

o establish that Eq. (21) matches with the results in Polidori and 

adet [6] , one may begin with Eq. (4) of their paper. This equation,

ith variable names changed to match the present work is 

3 

10 

∂ 

∂t 
[ θp δt ] + U ∞ 

∂ 

∂x 

[
θp 

(
2 

15 

δ2 
t 

δ
− 3 

140 

δ4 
t 

δ3 
+ 

1 

180 

δ5 
t 

δ4 

)]
= 

νq p 

k · P r 

(A.1) 

Introducing δ(x ) = C 
√ 

x for the momentum boundary layer 

hickness and δt = 

2 k θp 

q p 
, one may simplify Eq. (A.1) to 

6 

5 

k θp 

q p 

∂ θp 

∂t 
+ U ∞ 

∂ 

∂x 

[(
8 

15 

k 2 θ3 
p 

Cq 2 p 

√ 

x 
− 12 

35 

k 4 θ5 
p 

C 3 q 4 p x 
√ 

x 
+ 

8 

45 

k 5 θ6 
p 

C 4 q 5 p x 
2 

)]

= 

αq p 

k 
(A.2) 

Since θp and q p are both functions of x , the second term in 

q. (A.2) is differentiated by parts. In addition, the entire equation 

s multiplied by 
Cq 5 p 

k 4 
, resulting in 

6 
5 

θp q 
4 
p C 

k 3 
∂ θp 

∂t 
+ 

[ 
8 
5 

θ2 
p q 

3 
p 

k 2 
√ 

x 
− 12 

7 

θ4 
p q p 

C 2 x 
√ 

x 
+ 

16 
15 

θ5 
p 

C 3 x 2 
k 

] 
U ∞ 

∂ θp 

∂x 

+ 

∂ q p 
∂x 

[ 
− 16 q 2 p θ

3 
p 

15 k 2 
√ 

x 
+ 

48 θ5 
p 

35 C 2 x 
√ 

x 
− 8 kθ6 

p 

9 C 3 x 2 q p 

] 
U ∞ 

+ 

[ 
− 4 θ3 

p q 
3 
p 

15 k 2 x 
√ 

x 
+ 

18 q p θ5 
p 

35 C 2 x 2 
√ 

x 
− 16 kθ6 

p 

45 C 3 x 3 

] 
U ∞ 

= 

αq 6 p C 

k 5 

(A.3) 

Eq. (A.3) is identical to the result from the present work for the 

pecial case of q p (x) , given by Eq. (21) . Therefore, the generalized

esult derived in the present work reduces to the one presented by 

olidori and Padet [6] for the special case of a plate heat flux that 

aries only with x . 
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