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ABSTRACT

Convective heat transfer due to laminar fluid flow past a flat plate is a standard problem in heat trans-
fer. While constant heat flux or temperature along the plate is often assumed for solving such problems,
there may be several practical scenarios where the heat flux along the plate varies as a function of both
space and time. Developing an analytical solution for the resulting plate temperature distribution is im-
portant for understanding and optimizing the thermal performance of such systems. While some work
exists on analyzing problems with time-dependent or space-dependent heat flux, there is a lack of work
on the general problem where the heat flux is a function of both space and time. This paper presents
a solution for this problem by solving the integral form of the energy equation, along with the use of
fourth-order Karman-Pohlhausen polynomials for velocity and temperature distributions in the momen-
tum and thermal boundary layers. A non-linear, first order, hyperbolic partial differential equation for the
plate temperature is derived in response to the time- and space-varying plate heat flux. This equation is
shown to agree well with results from past work for several special cases. Numerical solutions for the
generalized equation are presented. Based on this approach, the plate temperature distribution is pre-
dicted for several heat flux profiles that may be of interest in practical applications. Results from this
work improve our understanding of unsteady convective heat transfer, and contribute towards modeling

and optimization of practical engineering systems where such phenomena occur.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transfer between a flat plate and fluid flow is a classical
problem in convective heat transfer [1-3], with applications in a
wide variety of engineering applications. As the fluid flows past the
plate, hydrodynamic and thermal boundary layers develop, across
which, momentum and thermal transport occurs. Analytical solu-
tions of several such problems are available in textbooks [1-3] and
in the research literature. Despite its classical, long-standing na-
ture, external convective heat transfer in flat plate boundary layers
continues to be a research topic of current interest [4,5].

Several simplifying assumptions are often made in order to
solve the underlying momentum and energy conservation equa-
tions, including steady state, uniform freestream velocity and tem-
perature, laminar, incompressible flow, and uniform plate temper-
ature or heat flux [1]. Two distinct approaches have been used for
analytically solving such problems. In the differential approach, the
underlying momentum and energy conservation equations, writ-
ten in differential form are solved in order to determine the ve-
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locity and temperature distributions [1]. Self-similar solutions are
often sought for these equations [2], although this approach works
only for the simplest problems, such as a flat plate with constant
temperature. In most other problems, one must rely on numerical
computation using finite-volume or similar methods. On the other
hand, integral approaches [1] seek a solution that satisfies the en-
ergy equation integrated over the boundary layer, which results in
some error, but also, considerable simplification. In the Karman-
Pohlhausen integral approach [1], polynomial forms of velocity and
temperature profiles in the boundary layers are written in order to
satisfy various boundary conditions at the plate and edge of the
boundary layer. These polynomials are then used in the integral
energy balance equation to simplify and solve the problem. The
assumption of polynomial forms for velocity and temperature pro-
files is an approximation, but has been justified because parame-
ters governing plate-flow interactions such as the Nusselt number
depend only on processes near the plate and are relatively unaf-
fected by the velocity/temperature distribution in the remainder of
the boundary layer [1,6,7]. Polynomial expressions up to the fourth
order have been used in the past [6,7].

While flow past a flat plate at a constant temperature or flux
are amongst the simplest problems in external convective heat
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Nomenclature

c specific heat capacity, Jkg=1K-!
C coefficient, C = 5.83, /7, m3
k thermal conductivity, Wm~1K-1
Nu Nusselt number

Pr Prandtl number

q heat flux, Wm—2

Re Reynolds number

t time, s

T temperature, K

uv velocities in x and y directions, respectively, ms~!
Xy spatial coordinate, m

6 relative temperature, K

o thermal diffusivity, m2s~!

v kinematic viscosity, m2s~!

0 mass density kgm—3

$ boundary layer thickness, m
Subscripts

p plate

t thermal

00 freestream

transfer, analytical solutions for several other, more complicated
problems have also been reported. For example, spatial variation in
plate temperature or heat flux has been accounted for using super-
imposition or Duhamel’s theorem [8]. The Karman-Pohlhausen ap-
proach has also been used for solving this problem [6]. The steady-
state problem with a specific heat flux profile has been solved us-
ing a differential approach [9]. While this results in an exact solu-
tion, it is valid only for the specific flux profile assumed, and is not
valid in general. A discrete Green’s function approach has also been
developed to solve such problems [4,10]. Solutions for several other
steady-state problems have also been summarized [8]. Unsteady
convective heat transfer has also been analyzed [11,12]. For exam-
ple, the effect of time-varying plate flux, including a step change in
heat flux has been accounted for using the Karman-Pohlhausen ap-
proach [7], resulting in a partial differential equation for the plate
temperature as a function of time and space. This problem has also
been solved using Laplace transform approach [13] and Green’s
functions [14]. Other considerations such as turbulence [15], non-
flat surface [16] and finite thickness plate [17] have also been in-
vestigated. Unsteady convective heat transfer analysis often results
in a differential equation that must be solved numerically due to
the lack of a closed-form analytical solution.

While there is, in general, extensive literature on external con-
vective heat transfer, one particular problem that has not been dis-
cussed much in the literature is that of a flat plate with heat flux
that varies both in space and in time, i.e. gp=qp(x,t). While solu-
tions have been presented for problems where the heat flux varies
only in space, qp(x) [6] or only in time, qp(t) [7], a solution of the
general gp(x,t) problem is desirable for many practical applications.
For example, the problem of fluid flow over a bed of phase change
material (PCM) occurs commonly in latent energy storage systems
[18,19]. In such a case, heat flux at the fluid-PCM interface varies
over space due to boundary layer development in the fluid flow,
and also varies in time because of phase change front propagation
into the PCM over time [20]. While such problems involving flow
over a PCM have been solved by assuming a specific form of the
Nusselt number [21,22], this assumption is likely to be inaccurate
due to the expected time and spatial variation. Another example
is the cooling of a Li-ion cell [23]. Thermal management of Li-
ion cells - used commonly for energy storage and conversion in
electric vehicles and other applications - often involves flow of a
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Fig. 1. Schematic of the geometry considered in this work, comprising laminar, in-
compressible flow past a thin flat plate with time- and space-varying heat flux.

coolant fluid over the cell or battery pack. In such a case, the in-
terface flux may vary with space due to boundary layer growth,
and may also vary in time due to fluctuations in heat generation
inside the cell in response to transient changes in the electrical
load. Analysis of convective heat transfer from a plate with heat
flux that varies in both space and time is critical for understanding
and optimizing these and other related engineering applications.
Unlike problems with only time-varying or only spatially-varying
heat flux, the more general problem identified above has not been
sufficiently addressed in the literature.

This paper presents a solution for external convective heat
transfer between a flat plate and fluid flow where the plate heat
flux changes with time as well as space. Laminar incompress-
ible flow with constant freestream velocity and temperature is as-
sumed. Velocity and temperature distributions are represented by
fourth-order Karman-Pohlhausen polynomials. It is shown that the
plate temperature is governed by a first-order hyperbolic partial
differential equation involving the given heat flux and its deriva-
tives. While an analytical solution for this equation is unlikely, the
equation is integrated numerically to determine the plate temper-
ature as a function of space and time for any arbitrary heat flux
distribution. Results from this work are shown to agree well with
past results for special cases of time-varying [7], spatially-varying
[6] or constant flux [1]. Various general cases of time- and space-
varying heat flux, such as those that might arise in applications
discussed above are analyzed.

2. Mathematical modeling

As shown schematically in Fig. 1, consider laminar, incompress-
ible fluid flow past a thin, one-dimensional flat plate in which the
plate flux, gp, varies both in space and in time. Uniform freestream
velocity U, and temperature T., are assumed. All properties are
assumed to be independent of temperature. Viscous dissipation is
neglected. The interest here is to determine the nature of heat
transfer between the flat plate and the fluid flow. In particular, the
resulting plate temperature Tp(x,t) due to the spatial and time vari-
ation in flux, gp(x,t), is of interest.

Under the assumptions listed above, and referring to Fig. 1 for
the coordinate system, the governing equations for conservation of
mass, momentum and energy can be written as

au a9V
au au 0%U
U& + Va— = va—yz (2)
0%6 00 a0 a0
where 6 =T — T,.
The boundary conditions are
U=Uy,: 6=0atx=0 (4)

U=0;V=0aty=0 (5)
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U=Uy,aty>é (6)

0=0aty=>5é (7)
a6

_k@ =qy(x.t)at y=0 (8)

Eq. (4) represents the uniform freestream velocity and tem-
perature of the fluid flow. Eq. (5) is the no slip condition at the
plate. Eqs. (6) and (7) are based on § and §;, the momentum
and thermal boundary layer thicknesses, respectively. Eq. (8) is the
given heat flux at the flat plate. In addition, the initial tempera-
ture field, 6 (x,y,t =0), is assumed to be zero. The interest is in
solving this set of equations to determine the plate temperature
Op(x,t) =0 (x,y =0,t).

2.1. Solution procedure

It is assumed that hydrodynamic boundary layer growth is un-
affected by heat transfer. Integral analysis of momentum transfer
in this problem can be shown to result in the following expression
for the momentum boundary layer thickness, § [6,7]

8(x) = 5.83 /% 9)

In order to solve this problem, the velocity and temperature
distributions in their respective boundary layers are assumed to
be given by fourth-order Karman-Pohlhausen polynomials [1,6,7]
as follows:

)
e(xé:,t)_l_zg't“(g’tf_(%)“ (1)

These polynomials that already satisfy several boundary condi-
tions in the problem are substituted into the integrated form of the
energy equation in order to satisfy overall energy conservation. To
do so, Eq. (3) is first integrated from y=0 to y=&;, resulting in

3 3 4 (80 g
9t 1 0y + 5. JUbdy = ~a (f’y>yo = (12)

By substituting the polynomial form of 6 from Eq. (11) into the
first term of Eq. (12), it can be shown that
6 ko, 06, 3KkO; dq,

5 0% V=5q, ot 5@ ot (13)

Also, substituting Eqs. (10) and (11

Eq. (12) results in

8 k*0; 12 K6; 8 k563
/ Ubdy = U, L2 (14)
Bx 15 q2Cf 35 q4C3xf 45 q5C4x2

) into the second term in

where C =5.83, /-
Recognizing that 0p and qp are both functions of x and ¢,
Eq. (14) can be differentiated by parts to result in

AE(_;ﬂﬁJrl(ﬁaaﬂ_ o
VX 0X 2x/X

0 12 K 4 9q, 6 1 (594 96 303
g oty =us| ~BE(-a e (GRS - o)) | 09

0 8 K 5 9gp 9y 667 96, 26
+Ec7(—q*gwrz+* kT B
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Substituting Eqs. (13) and (15) in the integral energy equation

given in Eq. (12), followed by mathematical simplification results
in a partial differential equation of the form

a0 a0
AOp, X, t)a—tp + B(0p, %, t)a—x" =F(0p,x, 1) (16)
where
0pqu
A(Op, x,t) = =3 (17)
8050, 12 0jqp 16 0
B(Qp’x’t)_Um[Skzﬁ_7C2xﬁ+ 15C3x21 (18)
F(6yx.0) = aqgc 3C9§q§% 403q; B 18q,6; N 16k67
k 5k3 ot 15k2x/x  35C2x2/x  45C3x3
203 5 6
_dp[ 16036, 4863  8kOp 7 (19)
X 15k2f 35C2x/x  9C3x2qp
Eq. (16) along with coefficients defined in Egs. (17)-(19) rep-

resents the governing equation for the plate temperature for the
general case considered here, where the imposed plate flux varies
with both x and t. Note that the heat flux function g,(x,t) and
its derivatives appearing in the coefficients of Eq. (16) are known
in advance, and therefore, Eq. (16) is a non-linear, first-order hy-
perbolic partial differential equation in 6y (x, t). While it is unlikely
that Eq. (16) has a general closed-form solution, hyperbolic differ-
ential equations such as Eq. (16) can be solved numerically.

2.2. Numerical integration of Eq. (16)

In order to numerically compute the solution of Eqs. (16)-(19),
discretization in x direction is carried out to convert the partial
differential equation into a coupled system of ordinary differen-
tial equations in 6, ;(t) where the subscript i refers to the dis-
cretized spatial location. The coupled system of ordinary differen-
tial equations is then solved by numerical integration over time
with a three-stage, third-order Runge-Kutta solver using adaptive
timestepping [24]. The initial condition provides the initial state
needed for starting the integration process.

3. Results and discussion
3.1. Special cases

It is instructive to compare special cases of the general results
derived in Section 2 with past work that investigated specific spe-
cial cases of this problem.

In case the plate flux is a function of time alone, i.e. gp=qp(t),
then the last set of terms in Eq. (19) that appear with % can be
set to zero. Even if the plate flux may not be spatially dependent,
the plate temperature will still be a function of both x and t due to
boundary layer development. For this case, the general governing
equation can be simplified to

6 6pq;C 36, N [8 635 12 6jqp L 16 6; ,] 30,

5 K 9t | 5kedx 7 Cxdx 1502 |T%9x
_3C9§q;%_ 403q; B 189,06, N 16k67 ocqu
5k3 Ot 15k2x/x  35C2x2/x = 45C3x3 k5
(20)

Eq. (20) matches exactly with the result from Lachi, et al.
[7] that considered the specific case of time-varying heat flux on
the flat plate.

Further, the case of only spatially-varying plate flux, ie. qp=

302
bp aq‘” term appearing

qp(x) is of interest. In such a case, the =5
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in Eq. (19) can be eliminated. Therefore, the governing equation
for this case is
6§%%C 30, | 800 12 %% | 16 % |y 26

S5keyx 7 Coxyx ' 15 0x2 | Yoo By

5 k3 ot
d 16¢203 4803 8k0S
ailp 5% D p U (21)

TI5kEX T 35C2xJx | 96K,
4= 462q; I 184,65 _ 16k65 U. — agsC
15k2x/x 35C2x2./x 45C3x3 e k5

The transient problem of spatially-varying plate flux was pre-
sented by Polidori and Padet [6]. Appendix A shows that the gov-
erning equation obtained above by simplifying the equation for the
general qp(xt) case agrees exactly with results from Polidori and
Padet [6].

Further, the steady state component of the spatially-varying
heat flux problem is a standard problem, for which, the solution
is available [1] as follows:

-2/3

0.623

Op(x) = K §

34
Pr*”3Re;1/ZZQp(§) 1- () d& (22)

X

Where Rey = %=X is the Reynolds number. In comparison, in
the present work, for steady state conditions with gy=qp(x),
Eq. (21) can be further simplified to

800 12 039 | 16 05yl 96
Sex 7 oxsx T BB Vo 3k
dgp [ 164367 4803 8k6S
* ax [_ Bz T B 9C3x2q, Us (23)

343 5 6 6.
+| - + oty — s |Uoe = 2
Eq. (23) is an ordinary differential equation in 6,(x), which is
difficult to solve analytically due to its non-linear nature. How-
ever, a numerical computation of Eq. (23) can be compared against
Eq. (22).
Finally, note that the solution for a flat plate with constant heat
flux is [1]

dp 1/3p,—1/2
0.453kPr Re, '“x (24)

whereas, the present work, through elimination of terms appearing
with % in Eq. (23) results in

Op(x) =

80312 00 16 05 1 06,
5k2x 7 C2xyx 15C3x2 [ 9x
B 403q; 18q,6; B 16k67 B aq8C (25)
15k2x/x =~ 35C2x2/x  45C3x3 | k>

The equations for special cases resulting from the present work
are plotted along with past results in the next section.

3.2. Model validation

The analytical model derived in this work is compared against
results from past papers that have presented theoretical analysis of
similar problems. Firstly, results are compared with Lachi, et al. [7],
who presented the analysis of unsteady convective heat transfer
with a time-dependent flat plate heat flux, g,(t). For this compar-
ison, a specific case of step change heat flux considered by Lachi,
et al. is also implemented in the present analytical model. This step
change involves a change of heat flux from ¢; to ¢, (p,. ¢;) at
time ty. Eq. (20) is solved for this specific heat flux profile in order
to compute the plate temperature as a function of x and t. Under
the same freestream conditions and fluid properties, a comparison
with Lachi, et al. [7] is presented in Fig. 2, where plate temperature
and Nusselt number at multiple locations are plotted as functions
of time in Fig. 2(a) and (b), respectively. In general, there is very
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good agreement between the present work and Lachi, et al. for the
special case of time-dependent plate heat flux. The plate tempera-
ture rises with time, including a sharp rise beyond t=t; when the
heat flux undergoes a step change. Further, the greater the value
of x, the higher is the temperature, which is due to boundary layer
growth and diminished heat transfer from the plate at large x. Sim-
ilarly, Nu reduces with time and then undergoes a large increase at
t=ty due to the increased heat flux, as expected, and then finally
reduces with increasing time. The larger the value of x, the higher
is the value of Nu, which is also expected.

Further, the present work is compared with Polidori and Padet
[6] for the special case of spatially-varying heat flux, gp(x). A spe-
cific form of gp(x) = 150 - exp(—10x)W/m? used in their work is
also implemented in the present model, Eq. (21), which pertains
to the special case of spatially-varying heat flux, q,(x). Compari-
son of the present work with Polidori and Padet is presented in
Fig. 3, which plots the spatial distribution in the plate temper-
ature at multiple times prior to steady state. At each time, the
plate temperature increases with x, and then decreases after reach-
ing a maxima. This is because the plate flux reduces exponen-
tially as x increases. At each time, there is good agreement be-
tween the past work and the present model. Please note that the
approach for numerical solution of the derived equations is differ-
ent between Polidori and Padet and the present work. Polidori and
Padet adopted an explicit finite-difference scheme [6], whereas in
the present work, the partial differential equation is discretized in
space, and the resulting system of ordinary differential equations
is solved numerically using a three-stage, third-order, Runge-Kutta
method. This difference between the two approaches may explain
the small discrepancy between the two sets of curves in Fig. 3.

The problem of spatially-varying plate temperature has also
been solved in steady state using superposition methods [1]. In
short, the solution for a problem with constant plate temperature
and an nunheated length has been derived and then superimposed
based on linearity of the problem to determine the solution for the
spatially-varying plate temperature problem. A comparison of the
present work with these results is presented in Fig. 4(a) and (b) for
two specific gp(x) profiles - linear, and one in which gp(x) reduces
proportional to /. In both cases, there is good agreement between
the two. Note that this good agreement is particularly encouraging
because the approach in the superposition-based method is dis-
tinctly different from the approach in the present work.

Finally, comparison with past work is carried out for the sim-
plest case of a constant heat flux plate. A solution for this case
has been presented in Kays and Crawford [1], and is reproduced as
Eq. (24) in the present work. Fig. 5 presents the variation in Nu as
a function of x for a constant heat flux plate, based on the present
model as well as past results. The two are in excellent agreement
with each other.

The good agreement between the present work and various
past results for special cases of qp(t), qp(x) and constant q, pro-
vides confidence in the present approach.

3.3. Plate temperature for specific qp(x,t) functions

The plate temperature distribution is determined for several
representative plate flux profiles in order to further demonstrate
the capability of the present analytical model.

In order to analyze a scenario where the plate flux changes
with both time and space, a plate flux profile given by q,(x.t) =
A + Bx + Ct is considered, where A = 200 W/m?2, B = —400 (Tg’z )/m
and C = -50 (%)/s. The freestream velocity is assumed to be 1
m/s. Room temperature properties of air are used. The resulting
plate temperature distribution determined by solving Eq. (16) is
plotted in Fig. 6. Plate temperature as a function of x at three dif-
ferent times is plotted in Fig. 6(a), while plate temperature as a
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Fig. 2. Comparison of present work with Lachi, et al. [7] for the special case of time-dependent heat flux

multiple x, and (b) Nu vs t at the plate at multiple x.

12 T T
gp(x) = 150e~"" W/m? [——=Present Work, eq. (21)

— -Polidori & Padet [6]

X (m)

Fig. 3. Comparison of present work with Polidori and Padet [6] for the special case
of spatially-varying heat flux: Plate temperature, 6, as a function of x at multiple
different times for g, (x) = 150e~1%W/m?. Note that x is in m.

function of time at four different locations is plotted in Fig. 6(b).
Fig. 6(a) shows, as expected, that the plate temperature increases
with x at any given time. A saturation effect at large values of x
is also seen, as expected, due to the saturation in boundary layer
growth. The plate temperature decreases with time due to the de-
creasing nature of g, with time. Fig. 6(b) shows that the plate tem-
perature at any specific location increases sharply first, reaches a
peak and then slowly decreases. The initial rise in temperature is

(a)

30 T T T T =
qp(z) = (=5002 + 125) W/m? -
25 .
20 =
>
215} .
10 .
v —Present Work, eq. (23) -
- -Kays & Crawford [1]
0 | | 1 1
0 0.02 0.04 0.06 0.08 0.1
X (m)

(b)

— Present Work, eq. (20)
—- -Lachi,et al. [7]

¢(t) =10W/m?,0 < t < 0.357]
@(t) = 100 W/m?,¢ > 0.3s

150
3 100

50

2
L qp(t) = {}gy@/agi%ﬂg“: (a) Plate temperature, 6, vs t at

T T T T
sof @ =0W/m’ _ o=
=5 207 = s
Z
10+ .
—Present work, eq. (23)
- —Kays & Crawford [1]
0 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1
X (m)

Fig. 5. Comparison of present work with Kays and Crawford [1] for the special case
of steady state constant heat flux: Nu as a function of x.

due to heating up of the plate, which is followed by a cool down
because the plate flux reduces with time according to the assumed
form of the plate flux distribution, while the plate continues to be
convectively cooled by the flow. Fig. 6(b) shows that the larger the
value of x, the larger is the temperature rise, which is expected
due to the increasing boundary layer thickness and therefore, di-
minishing convective cooling as x increases.

Fig. 7 presents results for a similar heat flux distribu-
tion, given by qp(x,t) = A+ Byx+Cv/t, with A =500 W/m?, B=

@(z) = I(7250\/5 i 125) W/mI2 I
251 == ]
20 .
>
> 15F -
10 A4 .
4
51 —Present work, eq. (23) |-
- —Kays & Crawford [1]
0 | | 1 |
0 0.02 0.04 0.06 0.08 0.1
x (m)

Fig. 4. Comparison of present work with Kays and Crawford [1] for the special case of steady state spatially-dependent heat flux: (a) plate temperature in the form of
Nusselt number, Nu, as a function of x for (a) linear g, (x) = —500x + 125W/m?, (b) non-linear q,(x) = —250/x + 125W/m?. Note that x is in m.
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Fig. 6. Plate temperature, 6, as
[200 — 400x — 50t]W/m?.

(a)
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o

< 20+
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Fig. 7. Plate temperature, 6, as
[500 — 400/x — 50| W/m?.

a
( ) 50 T T T T
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Fig. 8. Plate temperature, 0, as a function of (a) x at multiple times, and (b) time at multiple x for a general heat flux distribution given by g,(x, t) = [500 — 400/x] W/m?

for t < 0.3s and g, (x, t) = [500 — 1000/x] W/m? afterwards.

—400 (%)/\/ﬁ and C = -50 (%)/\/E. Here, the dependence of
plate flux of x and t is weaker than in the previous case. Other
problem parameters such as freestream velocity as the same as
the previous Figure. Fig. 7(a) and (b) plot the variation in plate
temperature as a function of x and time, respectively. Similar to
Fig. 6(a), the plate temperature distribution in Fig. 7(a) shows in-
creasing temperature with x at any time, which is consistent with
reduced convective cooling at large x. Compared to Fig. 6(a), the
three curves in Fig. 7(a) at three different times are much closer
to each other, which is likely due to the slower rate of reduction
in the plate heat flux with time compared to Fig. 6. Note that the
assumed plate flux for results shown in Fig. 7 decays as +/x and
Jt, compared to the linear decay for Fig. 6. Similar to Fig. 6(b),
there is initial rise in plate temperature at any given location, as
shown in Fig. 7(b). This is followed by a reduction in temperature,

but at a much slower rate than in the previous case. This is also
likely due to the weaker decay in the plate flux compared to the
previous case.

Finally, a step function change in the plate flux is also con-
sidered, wherein the plate flux is given by qp, =A+B;v/x for
0<t<0.3 s, and qp = A + By /x afterwards. The numerical values of
these parameters are A =500, B; = —400 (1%)/v/m and B, =
—-1000 (%)/ﬁ. This constitutes a sharp drop in the plate flux
after t=0.3 s. The resulting plate temperature distribution is plot-
ted in Fig. 8. Spatial distribution in the plate temperature at three
different times is plotted in Fig. 8(a), while plate temperature as a
function of time at three different locations is plotted in Fig. 8(b).
As expected, the plate temperature at any given location increases
first with time up to t=0.3 s, with the temperature being greater at
large values of x. This is followed by a gradual reduction due to the
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step change in the flux distribution. Eventually, the plate tempera-
ture at each location reaches a steady state. Temperature at steady
state increases with increasing value of x, which is due to reduced
convective cooling at large x. The plate temperature distribution at
three different times, shown in Fig. 8(a) indicates that the plate
temperature rises with x and eventually plateaus out. Similar to
Fig. 8(b), this occurs due to the reduced convective cooling at large
x, combined with the gradual reduction in the plate flux with x,
based on the assumed flux distribution.

Figs. 6-8 demonstrate the capability of the theoretical model
derived in this work to account for a given plate heat flux as a
function of both space and time in order to predict the resulting
temperature distribution. Experimental data on the plate heat flux,
if available, may also be inserted into Eqs. (16)-(19) to predict the

temperature distribution. In such a case, the derivatives %it” and

% appearing in Eq. (19) may need to be evaluated numerically.
4. Conclusions

Understanding the nature of temperature distribution on a flat
plate due to convective cooling in response to a plate heat flux
that varies in both space and time is important for design and op-
timization of several practical engineering systems such as latent
heat energy storage systems and thermal management of Li-ion
batteries. In the past, such problems have been solved when the
plate flux is a function of only time or only x. The present work
generalizes this by considering the plate heat flux to be a func-
tion of both space and time. The generalized solution derived in
this work is based on the integral approach and uses fourth-order
Karman-Pohlhausen polynomials, which have been shown to of-
fer reasonable accuracy. Results are shown to agree well with past
work for specific cases of the general problem discussed in this
work.

The present work does not account for second-order effects
such as thermal resistance and capacitance of the flat plate, which
may require solving a conjugate heat transfer problem, for which,
the present results may be helpful. Also, turbulent effects, which
may be important in specific applications are not accounted for in
the present work.

The present work improves our fundamental understanding of
external convective heat transfer. The results derived here may
contribute towards design and optimization of practical engineer-
ing systems.
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Appendix A. Proof that results from present work agree with
Polidori and Padet [6] for special case of qp(x)

The general equation derived in the present work for the plate
temperature due to a time- and spatially-varying heat flux qp(x,t)
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(Eq. (16)) reduces to a simpler form, Eq. (21), for the special case
of a heat flux that varies only in x, i.e., gy(x). This specific problem
has been discussed in the past by Polidori and Padet [6]. In order
to establish that Eq. (21) matches with the results in Polidori and
Padet [6], one may begin with Eq. (4) of their paper. This equation,
with variable names changed to match the present work is

30 d 268 368 18\ _ v
(6701 + Use [9”<_+18084 “ k-Pr

10 dt x 158 14083
(A1)
Introducing §(x) = Cy/x for the momentum boundary layer
thickness and &; = %. one may simplify Eq. (A.1) to
§@%+ Ooa[(s k6; 12 k'6p +£ k05 )}
5¢qp, Ot x| \15Cqivx  35Cqpxvx =~ 45 C4q3x?
= O‘T‘zl’ (A.2)

Since 6pand q, are both functions of x, the second term in
Eq. (A.2) is differentiated by parts. In addition, the entire equation

. - Cq3 L
is multiplied by %, resulting in

6%9,C 00, | 800 12 %% , 16 % 4|y 3%

57k 9t S5kVx T 7 Cx/x T 10x2 | Yoo Bx

ag, [ 16¢263 4863 8k6S ]U
o0

ox 35C2xJ/x 902,

3 | "ok R (A3)

- 40343 n 18,0, _ 16k02 U _agC
15k2x/x 35C2x2./x 45C3x3 o0 T k5

Eq. (A.3) is identical to the result from the present work for the
special case of qp(x), given by Eq. (21). Therefore, the generalized
result derived in the present work reduces to the one presented by
Polidori and Padet [6] for the special case of a plate heat flux that
varies only with x.
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