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a b s t r a c t 

Diffusion in a multi-layer body is a common problem in heat and mass transfer, with applications 

in multiple engineering systems, such as Li-ion battery packs and first-order chemical reactions oc- 

curring in a multilayer body. Development of analytical models to describe diffusion in such systems 

is helpful for both heat and mass transfer. This paper addresses a multi-layer one-dimensional dif- 

fusion problem, in which, generation/consumption in each layer is proportional to the local temper- 

ature/concentration. This could occur, for example, due to temperature-dependent heat generation or 

species generation/consumption associated with a first-order chemical reaction. It is shown that eigen- 

values of this problem may become imaginary under two distinct conditions. A physical interpretation of 

these conditions is discussed, and a mathematical requirement for existence of imaginary eigenvalues is 

derived. The relationships between imaginary eigenvalues and various non-dimensional problem param- 

eters are discussed. It is also shown that the computed temperature in the multilayer body remains real 

even if some eigenvalues may become imaginary. Therefore, all eigenvalues, whether real or imaginary 

must be accounted for in temperature computation. While presented in the context of heat transfer, these 

results are also valid for multi-layer mass transfer problems involving species generation/consumption 

due to chemical reaction. This work improves the theoretical understanding of diffusion in a multilayer 

body under conditions relevant for several engineering processes and systems. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Thermal conduction in multilayer bodies is of significant theo- 

etical and practical importance [1–3] . Several multilayer engineer- 

ng systems comprise multiple heterogeneous layers, and the na- 

ure of thermal conduction through the layers directly impacts per- 

ormance and safety. A few examples of such multilayer systems 

nclude Li-ion cells [4] , microelectronics [5] , nuclear engineering 

omponents [6] and civil engineering structures [7] . 

While several methods exist for the theoretical analysis of ther- 

al conduction in a multilayer body, including complex variables 

8] and adjoint method [9] , the separation of variables method us- 

ng quasi-orthogonal eigenfunctions [10 , 11] has been used most 

ommonly. In this technique applied to a problem with homo- 

eneous boundary conditions and no heat generation, tempera- 
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ure distribution in each layer is expressed as an infinite series, 

sually with the same time term. This makes it possible to sat- 

sfy the interface conditions by appropriately choosing the coeffi- 

ients appearing in the spatial terms. Specifically, the eigenvalues 

f the problem are derived by requiring the system of homoge- 

eous equations comprising the boundary and interface conditions 

o admit a non-trivial solution, which, mathematically, requires the 

eterminant of the system of equations to be zero. The remaining 

oefficient in the solution is determined by using the initial condi- 

ion and quasi-orthogonality applied over the entire geometry, us- 

ng weighing parameters unique for each layer. Non-homogeneities 

n the boundary conditions or in the governing equation itself are 

andled by splitting the solution into multiple parts. Advanced 

roblems such as those involving thermal contact resistance be- 

ween layers [12] , spatially-dependent convective boundary con- 

itions [13] , time-dependent convective boundary conditions [14] , 

wo-dimensional multilayer bodies [15] , etc. have also been pre- 

ented. 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.120993
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2021.120993&domain=pdf
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Nomenclature 

Bi Biot number 

h convective heat transfer coefficient (Wm 

−2 K 

−1 ) 

i unit imaginary number, i = 

√ −1 

k thermal conductivity (Wm 

−1 K 

−1 ) 

k̄ non-dimensional thermal conductivity 

M number of layers 

N eigenvalue norm 

T temperature (K) 

x spatial coordinate (m) 

t time (s) 

α diffusivity (m 

2 s −1 ) 

ᾱ non-dimensional diffusivity 

β source coefficient (s −1 ) 

β̄ non-dimensional source coefficient 

γ non-dimensional interface location 

τ non-dimensional time 

θ non-dimensional temperature 

ω non-dimensional eigenvalue 

ξ non-dimensional spatial coordinate 

λ non-dimensional eigenvalue 

Subscripts 

m layer number 

0 initial value 
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Fig. 1. Schematic of the one-dimensional multilayer body with linear, temperature- 

dependent heat generation in each layer and convective boundary conditions at the 

two ends. 
Literature suggests that thermal conduction in a multi- 

imensional, multi-layer body may lead to imaginary eigenvalues 

16–18] . Imaginary eigenvalues have been reported in the past for 

D [16,17] and 3D multilayer problems [18] . A limited amount of 

ork on 1D multilayer bodies [19] also suggests the existence of 

maginary eigenvalues, although a detailed interpretation and anal- 

sis is missing. Past work on 2D and 3D bodies offers useful guide- 

ines for the regimes of property values in which eigenvalues may 

ecome imaginary [15 , 16] and physical interpretation of this ef- 

ect [17] . While it has generally been recognized that imaginary 

igenvalues must be included in temperature computation, a for- 

al proof that the computed temperature distribution remains real 

espite imaginary eigenvalues is missing. 

The present work considers a diffusion problem in a one- 

imensional multilayer body, in which, volumetric genera- 

ion/consumption in each layer is linearly proportional to the local 

emperature/concentration. The problem is discussed in the con- 

ext of thermal conduction, but is equally valid for mass trans- 

er involving species generation/consumption due to chemical reac- 

ion. Such scenarios may be relevant for several engineering appli- 

ations. For example, in a multilayer body where some or all lay- 

rs undergo a chemical reaction with first-order kinetics, the rate 

f generation/consumption of a species is proportional to the local 

oncentration [20] . As another example, heat generation in a Li-ion 

ell is a function of the local temperature [21] . While the general 

elationship between heat generation rate and local temperature is 

xponential in nature according to Arrhenius reaction kinetics [21] , 

 linearization is often carried out as a first-order approximation 

22] . In such a case, the energy conservation equation contains a 

eat generation term that is proportional to the local temperature. 

n these and other related scenarios, it is critical to solve the mul- 

ilayer problem with temperature/concentration-dependent source 

erm. 

This paper shows that for a one-dimensional multilayer body 

ith linear, temperature-dependent heat generation/consumption 

n various layers, the eigenvalues of the problem may become 
2 
maginary under two specific conditions, one of which results in 

xponential temperature rise over time. The impact of various 

roblem parameters on the appearance of imaginary eigenvalues 

s analyzed. It is also proved that even when some eigenvalues 

ay become imaginary, the predicted temperature distribution re- 

ains real. As a result, it is critical to consider all eigenvalues, 

hether real or imaginary. The next section defines the problem, 

ncluding non-dimensionalization and presents an analytical solu- 

ion. The conditions under which imaginary eigenvalues may oc- 

ur and the impact on the temperature distribution is discussed in 

ubsequent sections. 

. Problem Definition and Derivation of Solution 

Consider diffusion-based, continuum thermal conduction in a 

eneral, one-dimensional, M-layer body, as shown in Figure 1 . Gen- 

ral, convective boundary conditions are considered at the two 

nds of the body. Volumetric heat generation proportional to the 

ocal temperature occurs in each layer. A non-zero initial temper- 

ture distribution is assumed. Other non-homogeneities, such as 

eat flux boundary condition or constant heat generation within 

ny layer are assumed to already have been accounted for by ap- 

ropriately splitting up the problem into multiple sub-problems, as 

iscussed in standard textbooks [1 , 2] . Mathematically, the problem 

an be defined as 

∂ T m 

∂t 
= αm 

∂ 2 T m 

∂ x 2 
+ βm 

T m 

( m = 1 , 2 , 3 . . . M ) (1) 

here βm 

T m 

represents a source term that is proportional to the 

ocal temperature. βm 

is referred to as the source coefficient and 

as units of s −1 . Positive or negatives values of βm 

correspond to 

eat generation or consumption, respectively. The case of positive 

m 

is of particular interest because it represents positive feedback 

etween temperature and heat generation – as temperature goes 

p, so does heat generation, which further increases temperature, 

otentially leading to thermal runaway. 

The associated boundary conditions are 

k 1 
∂ T 1 
∂x 

+ h A T 1 = 0 at x = 0 (2) 

 M 

∂ T M 

∂x 
+ h B T M 

= 0 at x = x M 

(3) 

It is assumed that at least one of the convective heat transfer 

oefficients h A and h B is non-zero. In addition, based on perfect 

hermal contact and heat flux conservation between layers, the fol- 

owing interface conditions are assumed to exist between layers: 

 m 

= T m +1 at x = x m 

(4) 

 m 

∂ T m 

∂x 
= k m +1 

∂ T m +1 

∂x 
at x = x m 

(5) 
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Eqs. (4) and (5) apply for m = 1,2,3..M-1. The initial condition is 

iven by T m 

= T m , 0 (x) at t = 0. 

The governing equations are scaled prior to seeking a solution. 

he following variables are introduced: θm 

= 

T m 
T re f 

, ·ξ = 

x 
x M 

, ·τ = 

αM t 

x 2 
M 

, ·γm 

= 

x m 
x M 

, ·k̄ m 

= 

k m 
k M 

, ·ᾱm 

= 

αm 
αM 

, ·β̄m 

= 

βm x 
2 
M 

αM 
, ·θm, 0 = 

T m, 0 

T re f 
, ·B i A = 

h A x M 
k M 

, ·B i B = 

h B x M 
k M 

The non-dimensional set of governing equations obtained by in- 

roducing these scaling parameters is 

∂ θm 

∂τ
= ᾱm 

∂ 2 θm 

∂ ξ 2 
+ β̄m 

θm 

( m = 1 , 2 , 3 . . . M ) (6) 

Subject to 

k̄ 1 
∂ θ1 

∂ξ
+ B i A θ1 = 0 at ξ = 0 (7) 

∂ θM 

∂ξ
+ B i B θM 

= 0 at ξ = 1 (8) 

m 

= θm +1 at ξ = γm 

(9) 

¯
 m 

∂ θm 

∂ξ
= k̄ m +1 

∂ θm +1 

∂ξ
at ξ = γm 

(10) 

The initial condition is given by 

m 

= θm, 0 ( ξ ) at τ= 0 · ( m = 1 , 2 , · · · M ) (11) 

Note that β̄m 

= 0 reduces this to a standard multilayer thermal 

onduction problem, with a solution based on quasi-orthogonal 

igenfunctions available in textbooks [1 , 2] . 

A solution for Eqs. (6) - (11) may be obtained by assuming the 

ollowing series form: 

m 

( ξ , τ ) = 

∞ ∑ 

n =1 

c n [ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] 

exp 

(
−λ2 

n τ
)
( m = 1 , 2 ..M ) (12) 

here the same exponential term is chosen in each layer in order 

o help satisfy the interface conditions. Substituting Eq. (12) in the 

overning equation given by Eq. (6) , the eigenvalues ω m , n and λn 

re shown to be related to each other as follows: 

 m,n = 

√ 

λ2 
n + β̄m 

ᾱm 

( m = 1 , 2 . . . M ) (13) 

In general, β̄m 

can be either negative or positive, represent- 

ng consumption or generation, respectively. Therefore, when λn 

s real, Eq. (13) indicates that the eigenvalues ω m , n may become 

maginary if β̄m 

is negative and large in magnitude, specifically if 
2 
n < −β̄m 

. Further, as shown in Section 3 , λ1 itself may become 

maginary under certain conditions, which may also result in imag- 

nary ω m , n if β̄m 

is positive and small in magnitude, such that 
¯
m 

< −λ2 
1 
. 

It is particularly important to understand the implications of 

maginary eigenvalues in the present problem. An imaginary value 

f λ1 will result in exponentially increasing temperature at large 

imes due to divergence of the exponential term in Eq. (12) . There- 

ore, it is important to predict the conditions in which λ1 may be- 

ome imaginary for better understanding thermal runaway in sys- 

ems such as Li-ion cells. In order to understand when imaginary 

igenvalues may occur in the present problem and how the solu- 

ion may be affected, the eigenequation and subsequent solution 

or θm 

( ξ , τ ) is derived next. A special case of the resulting equa- 

ions for a two-layer body is discussed in the next section. 

Eq. (12) is inserted in the boundary and interface conditions 

iven by Eqs. (7) - (10) to obtain 

k 1 ω 1 ,n B 1 ,n + Bi A A 1 ,n = 0 (14) 
3 
¯
 M 

ω M,n [ −A M,n sin ω M,n + B M,n cos ω M,n ] 

+ B i B [ A M,n cos ω M,n + B M,n sin ω M,n ] = 0 (15) 

 m,n cos ( ω m,n γm 

) + B m,n sin ( ω m,n γm 

) 

= A m +1 ,n cos ( ω m +1 ,n γm 

) + B m +1 ,n sin ( ω m +1 ,n γm 

) (16) 

¯
 m 

ω m,n [ −A m,n sin ( ω m,n γm 

) + B m,n cos ( ω m,n γm 

) ] 

= k̄ m +1 ω m +1 ,n [ −A m +1 ,n sin ( ω m +1 ,n γm 

) + B m +1 ,n cos ( ω m +1 ,n γm 

) ] 

(17) 

here the relationship between ω m , n and λn is given by Eq. (13) . 

In general, Eqs. (14) - (17) represents a set of 2M homogeneous 

quations in 2M variables. In order to ensure a non-trivial solu- 

ion, the determinant of this set of equations must be zero, which 

rovides the eigenequation to determine the eigenvalues λn . Due 

o the subsequent redundancy in the set of equations, one of the 

oefficients, usually A 1,n is chosen to be 1 [1 , 2] , while the other

oefficients are determined from Eqs. (14) -( 16 ). Finally, the coeffi- 

ients c n in the temperature distribution given by Eq. (12) can be 

etermined from the initial condition using quasi-orthogonality of 

he eigenfunctions, i.e., 

 n = 

1 

N n 

M ∑ 

m =1 

k̄ m 

ᾱm 

γm ∫ 
γm −1 

θ0 ,m 

( ξ ) 

[ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] dξ (18) 

here the norm N n is given by 

 n = 

M ∑ 

m =1 

k̄ m 

ᾱm 

γm ∫ 
γm −1 

[ A m,n cos ( ω m,n ξ ) + B m,n sin ( ω m,n ξ ) ] 
2 
dξ (19) 

Note that the key difference between the approach outlined 

bove and the standard procedure for the case of no heat gener- 

tion ( ̄βm 

= 0 ) [1 , 2] is that in this case, the spatial and temporal

igenvalues are related to each other through Eq. (12) . This rela- 

ionship is, in part, responsible for imaginary eigenvalues to exist 

n this problem. Further, it can be shown that the usual orthog- 

nality relationship for multi-layer diffusion [1 , 2] applies for this 

roblem, with no impact due to the source terms. 

In general, the existence of imaginary eigenvalues must be eval- 

ated by examining the roots of the determinant of Eqs. (14) - (17) .

or a general, M-layer body, it is difficult to express the determi- 

ant explicitly. Several aspects related to the existence of imagi- 

ary eigenvalues for both positive and negative β̄m 

are examined 

n the next section for a special case of a two-layer body. The sub- 

equent impact of imaginary eigenvalues on the computed temper- 

ture distribution is discussed in Section 4. 

. Special Case – two-layer one-dimensional body 

A special case of a two-layer one-dimensional body with 

inear, temperature-dependent heat generation/consumption in 

oth layers is considered. Such two-layer problems occur in 

everal engineering applications. For example, the species dif- 

usion problem encountered in a Li-ion half cell [20 , 24] in- 

olves generation/consumption term in the electrode layer due 

o charge/discharge processes. Thermal transport in a stack of 

losely-packed Li-ion cells can also be modeled by this prob- 

em. In this problem, heat removal from the boundaries is repre- 

ented by Bi A and Bi B , while temperature-dependent heat gener- 

tion/consumption within the layers is represented by β̄1 and β̄2 . 

hese are the key dimensionless parameters of the problem, in ad- 

ition to property ratios k̄ and ᾱ , and the geometrical ratio γ . 
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or simplicity, the same cooling conditions are assumed to exist on 

oth ends, i.e., Bi A = Bi B = Bi. Note that k̄ 2 = ᾱ2 = 1 by definition. 

For a two-layer body under conditions stated above, the eigen- 

alues λn are given by roots of the determinant of Eqs. (14) - (17) ,

hich can be simplified to 

f 
(
λ2 

)
= k 1 ω 1 

−k 1 ω 1 sin ω 1 γ1 + Bi cos ω 1 γ1 

k 1 ω 1 cos ω 1 γ1 + Bi sin ω 1 γ1 

+ ω 2 
−ω 2 sin ( ω 2 ( 1 − γ1 ) ) + Bi cos ( ω 2 ( 1 − γ1 ) ) 

ω 2 cos ( ω 2 ( 1 − γ1 ) ) + Bi sin ( ω 2 ( 1 − γ1 ) ) 
= 0 

(20) 

Where ω 1 and ω 2 are given by Eq. (13) . 

.1. Imaginary λ1 at large values of β̄m 

While eigenequations for most thermal conduction problems 

dmit only real roots, it is shown here that an imaginary value of 

may also satisfy Eq. (20) . The existence of an imaginary root for 

is important, because it leads to exponentially increasing tem- 

erature, as predicted by Eq. (12) . 

In order to determine if Eq. (20) admits an imaginary root, and 

f so, determine that root, ˆ λ2 = −λ2 is substituted in Eq. (20) . With 

ome algebraic simplification, one may obtain 

f 

(
ˆ λ2 

)
= k 1 ̂  ω 1 

k 1 ̂  ω 1 + Bi coth ˆ ω 1 γ1 

k 1 ̂  ω 1 coth ˆ ω 1 γ1 + Bi 

+ ̂  ω 2 

ˆ ω 2 + Bi coth 

(
ˆ ω 2 ( 1 − γ1 ) 

)
ˆ ω 2 coth 

(
ˆ ω 2 ( 1 − γ1 ) 

)
+ Bi 

= 0 (21) 

here, ˆ ω m 

= 

√ 

ˆ λ2 −β̄m 

ᾱm 

= i ω m 

for m = 1,2. Note that i = 

√ −1 is 

he unit imaginary number. Eq. (21) may be interpreted as the 

igenequation for imaginary eigenvalues of the two-layer problem, 

f one exists. 

Appendix A shows that f( ̂ λ2 
n ) is a monotonically increasing 

unction for positive values of ˆ λ2 , and therefore, imaginary values 

f λ. Therefore, a requirement for this equation to admit a root is 

hat the function f( ̂ λ2 ) must be less than zero at ˆ λ2 = 0 . In addi-

ion, due to the monotonically increasing nature of f, there will be, 

t most, one imaginary root. Therefore, a condition for an imagi- 

ary root to exist can be derived by substituting ˆ λ2 = 0 in Eq. (21) ,

esulting in 

¯
 1 

−β̄1 / ̄α1 ̄k 1 + Bi 
√ 

β̄1 / ̄α1 cot 

(√ 

β̄1 / ̄α1 γ1 

)
k̄ 1 

√ 

β̄1 / ̄α1 cot 

(√ 

β̄1 / ̄α1 γ1 

)
+ Bi 

+ 

−β̄2 + Bi 
√ 

β̄2 cot 

(√ 

β̄2 ( 1 − γ1 ) 

)
√ 

β̄2 cot 

(√ 

β̄2 ( 1 − γ1 ) 

)
+ Bi 

< 0 (22) 

For given values of Bi and geometrical and property parame- 

ers k̄ 1 , ᾱ1 and γ1 , Eq. (22) represents a condition on the heat 

eneration coefficients β̄1 and β̄2 in order for an imaginary eigen- 

alue λ1 to exist. Eq. (22) may be interpreted as a balance between 

eat generation/consumption in each layer ( ̄β1 and β̄2 ) and heat 

emoval from the boundaries (Bi), for a given set of properties and 

elative thicknesses of the two layers. 

As an illustration, Fig. 2 (a) and 2(b) plot f( λ2 ) for a represen-

ative problem with k̄ 1 = 0 . 5 , ᾱ1 = 2 . 0 , γ1 = 0 . 667 , β̄1 = 0 , Bi = 10

ver the ranges −10 < λ2 < 0 and 0 < λ2 < 120 respectively, cor-

esponding to imaginary and real values of λ, respectively. In both 

ases, curves are plotted for two different values of β̄2 . Plots in the 

maginary and real ranges of λ are shown separately in Fig. 2 (a) 

nd 2(b) due to the difference in scaling of the two plots. The x 
4 
xis is denoted by a dotted line. These plots show that for real λ, 

.e. λ2 > 0 , the eigenfunction is non-monotonic and admits an in- 

nite number of real roots, as is usual for eigenvalue problems in 

hermal conduction. On the other hand, Fig. 2 (a) shows that f is 

onotonic when λ2 < 0 , which indicates that in addition to the 

nfinite number of real roots, one imaginary root may also exist. 

ince f increases with decreasing λ2 , therefore, one – and only one 

imaginary root exists if f is negative at λ2 = 0 . This is indeed

he case for the β̄2 = 18 curve, but not the β̄2 = 12 curve plotted 

n Fig. 2 (a). Consequently, one imaginary root is found to exist for 
¯
2 = 18 and none for β̄2 = 12 , as shown in Fig. 2 (a). Physically, this

eans that convective cooling at the boundary is sufficient to pre- 

ent thermal runaway β̄2 = 12 at but at β̄2 = 18 , the internal heat- 

ng overwhelms boundary cooling, resulting in imaginary eigen- 

alue, and therefore, exponentially increasing temperature. On the 

ther hand, both cases considered here admit an infinite number 

f real roots, some of which can be seen in Fig. 2 (b). 

Fig. 3 plots the magnitude of the imaginary root, λ1 , as a func- 

ion of β̄2 for three different values of Bi . Other problem parame- 

ers are k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; γ1 = 0 . 667 ; β̄1 = −5 . Fig. 3 shows that

he magnitude of λ1 increases rapidly at first, and then linearly, 

ith increasing β̄2 . Note that β̄2 represents how rapidly heat gen- 

ration rate increases with temperature. The higher the value of 
¯
2 , the more aggressive is the heating, and therefore, it is expected 

hat the magnitude of the imaginary eigenvalue will increase with 

¯
2 . The greater the value of λ1 , the greater is the divergence in 

emperature at large times, as seen in the exponential term in 

q. (12) . For each Bi plotted in Fig. 3 , there is a threshold value

f β̄2 , below which, there is no imaginary eigenvalue. This is be- 

ause β̄1 is negative, and therefore, the system is able to withstand 

 small positive value of β̄2 without divergence at large times. As 

xpected, the greater the value of Bi, representing heat removal 

rom the boundaries, the greater is this threshold value of β̄2 . 

A physical interpretation of the existence of an imaginary eigen- 

alue is that it results in exponentially increasing temperature 

ith time by changing the sign within the exponential transient 

erm in Eq. (12) . This occurs because of the positive relationship 

etween heat generation rate and temperature. As temperature 

ncreases, heat generation rate also increases, which further in- 

reases the temperature. Beyond a certain limit, the boundary is 

nable to remove sufficient heat to keep the increasing temper- 

ture in check, resulting in thermal runaway, which is a serious 

oncern for the safety of Li-ion cells [22 , 25] . It is of much inter-

st to proactively predict the onset of such thermal runaway. In 

his case, Eq. (22) represents a limit on the heat generation coef- 

cients in the two layers such that an exponentially growing tem- 

erature is averted. It is clear that when β̄1 and β̄2 are both neg- 

tive, Eq. (22) is not satisfied under any conditions. As a result, 

here is no imaginary eigenvalue, and therefore, the temperature 

istribution is not expected to diverge. This is expected because 

egative β̄1 and β̄2 result in damping of the heat generation rate. 

n the other hand, when one or both of β̄1 and β̄2 are positive, 

hen an imaginary root may exist if β̄1 and β̄2 satisfy Eq. (22) . 

Several special cases of Eq. (22) are of interest. The condition 

or imaginary λ1 in case of isothermal boundaries may be obtained 

y setting Bi → ∞ in Eq. (22) , which results in 

¯
 1 

√ 

β̄1 / ̄α1 cot 

(√ 

β̄1 / ̄α1 γ1 

)
+ 

√ 

β̄2 cot 

(√ 

β̄2 (1 − γ1 ) 

)
< 0 

(23) 

The isothermal boundary condition results in greatest-possible 

eat removal from the boundaries, and therefore, it is expected 

hat the condition for divergence will be more relaxed, i.e., diver- 

ence will occur at greater values of β̄1 and β̄2 than with a finite 

alue of Bi. 
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Fig. 2. Plot of the eigenequation for the two-layer problem ( Eq. (21) ) for (a) imaginary and (b) real values of λ. Two cases with β̄2 = 12 and β̄2 = 18 are shown. Other 

parameter values are k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; γ1 = 0 . 667 ; Bi = 10 ; β̄1 = 0 . Note that there are infinite real eigenvalues in each case, but zero or one imaginary eigenvalue for the 

two cases, respectively. 

Fig. 3. Plot of the magnitude of the imaginary eigenvalue for a two-layer problem 

as a function of β̄2 for three different values of Bi. Other parameter values are k̄ 1 = 

0 . 5 ; ᾱ1 = 2 . 0 ; γ1 = 0 . 667 ; β̄1 = −5 . 
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On the other extreme, heavily insulated boundaries ( Bi → 0 ) do 

ot permit any heat removal, and therefore, divergence of the tem- 

erature distribution may be expected when β̄1 and β̄2 are both 

ositive. A condition of divergence for very small Bi can be ob- 

ained by setting Bi → 0 in the general condition given by Eq. (22) .

his results in 

k̄ 1 

√ 

β̄1 

ᾱ1 

tan 

( √ 

β̄1 

ᾱ1 

γ1 

) 

−
√ 

β̄2 tan 

(√ 

β̄2 (1 − γ1 ) 

)
< 0 (24) 

It can be easily shown that Eq. (24) is satisfied when β̄1 

nd β̄2 are both positive. This is indeed the worst-possible case 

n terms of avoiding thermal runaway, because even a small pos- 

tive feedback between temperature and heat generation is bound 

o result in divergence in temperature with time since no heat is 

llowed to escape. 

As another special case, the two-layer relationships above can 

e reduced to a single-layer body by setting k̄ 1 = ᾱ1 = 1 , γ1 = 0 . 5

nd β̄1 = β̄2 = β̄ in Eq. (22) . This substitution, followed by math- 

matical rearrangement results in the following expression for the 

imiting value of β̄ for a single-layer body 

−β̄ + Bi 
√ 

β̄ cot 

(√ 

β̄/ 2 

)
√ 

β̄ cot 

(√ 

β̄/ 2 

)
+ Bi 

= 0 (25) 

hich implies that in order for an imaginary eigenvalue to exist, 

nd therefore, divergence at large times, β̄ must equal the first 
5 
oot of the equation x tan x − Bi 
2 = 0 , which is indeed the Carte- 

ian equivalent of the condition derived in a past paper for diver- 

ence in a single-layer cylindrical body [22] . This shows that the 

esults presented here correctly reduce to the previously-presented 

esult for the special case of a single-layer body. Similar treatment 

f Eq. (23) for isothermal boundaries shows that the single-layer 

imiting condition for β̄ is β̄ = π2 . 

As an illustration of the limits on various problem parameters 

or keeping the temperature field within bounds at large times, 

ig. 4 identifies regions in the β̄1 − β̄2 space in which the tem- 

erature is bounded or not, based on the existence of the imag- 

nary eigenvalue λ1 . Plots are presented for two different values 

f Bi , and other problem parameters are k̄ 1 = 0 . 5 , γ1 = 0 . 667 and

¯ 1 = 2 . 0 . Fig. 4 shows that temperature remains bounded when 

oth β̄1 and β̄2 are negative, which is expected because negative 

alues result in heat absorption, and therefore, damping of the 

emperature field over time. In fact, in such a case, the tempera- 

ure field is expected to decay to zero at large times. On the other 

and, when both β̄1 and β̄2 are positive, the two must both be rea- 

onably small in magnitude in order for the temperature to not di- 

erge. Further, a large positive value of either β̄1 or β̄2 is tolerable, 

rovided that the other parameter is sufficiently negative. This cor- 

esponds to consumption in one layer counteracting generation in 

he other in order to keep the temperature distribution bounded. If 

ne of the parameters is positive and too large, it is nearly impos- 

ible to keep temperature within bounds because it requires the 

ther parameter to be negative and extremely large in magnitude. 

ig. 4 (a) and 4(b) also illustrate the impact of Bi on these char- 

cteristics. As Bi increases, the capability of the system to sustain 

eneration improves due to greater heat removal from the bound- 

ries. This is the reason why the converge region is larger at Bi = 1.5

 Fig. 4 (b)) than at Bi = 0.5 ( Fig. 4 (a)), particularly in the first quad-

ant. 

In practical applications, it is often of interest to predict the 

aximum tolerable source coefficient before thermal runaway oc- 

urs. Since this limit is a function of the cooling co+nditions, 

ig. 5 presents a plot of maximum value of β̄2 to ensure con- 

erged temperature as a function of Bi . Other parameter values are 

 1 = 0 . 5 , α1 = 2 . 0 , γ1 = 0 . 667 , β̄1 = 0 . 5 . Based on Eq. (22) , it is

ound that for small values of Bi , β̄2 max is small and nearly in- 

ariant of Bi . As cooling conditions improve, the system is able 

o tolerate greater and greater values of the source coefficient in 

he second layer. Eventually, this effect saturates as Bi increases 

nd the boundary condition becomes closer and closer to isother- 

al. In this regime, β̄2 max approaches the isothermal limit given 

y Eq. (23) , also shown in Fig. 5 as a dashed line. Note that for
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Fig. 4. Colormap showing regimes in the β̄1 − β̄2 space in which temperature at large times converges or diverges. Both negative and positive values of β̄1 and β̄2 are 

plotted. Other problem parameters are k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; γ1 = 0 . 667 . Plots are presented for (a) Bi = 0 . 5 and (b) Bi = 1 . 5 . 

Fig. 5. Maximum tolerable value of β̄2 to avoid divergence in temperature field at 

large times as a function of Bi . Other parameter values are k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; γ1 = 

0 . 667 ; β̄1 = 0 . 5 . For Bi values lower than plotted, no positive value of β̄2 is tolerable 

due to the presence of a positive β̄1 . The dashed line shows the isothermal limit 

obtained from Eq. (23) . 
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i smaller than plotted in Fig. 5 , no positive value of β̄2 ensures 

onverged temperature, because when Bi is small, even if β̄2 is as 

mall as 0, there is still divergence due to the positive value of β̄1 

ue to insufficient heat removal from the boundaries. 

.2. Imaginary ω m , n at large negative values of β̄m 

The discussion above shows that imaginary eigenvalues for 

1 may exist for large positive values of β̄1 or β̄2 . In addition, 

q. (13) indicates that imaginary values of spatial eigenvalues ω m , n 

ay occur when β̄m 

is negative and large in magnitude, even 

hen λn is real. Unlike the λ1 case considered in section 3.1 , an 

maginary value of ω m , n does not result in divergence in temper- 

ture at large times because it does not cause any change in the 

ign of the term within the exponential transient term in Eq. (12) . 

 condition for such imaginary eigenvalues to occur in any layer 

s simply that β̄m 

must be negative and of a magnitude greater 

han the square of the first real root of the eigenequation given by 

q. (20) . An explicit expression for the real roots of the eigenequa- 

ion is not available for the present problem, as is the case for 

everal thermal conduction problems [1 , 2] . The eigenvalues are de- 

ermined numerically by identifying intervals where the function f 

hanges signs over the interval, and then carrying out successive 

ewton-Raphson iterations in that interval to compute the root. 

ccuracy of the numerical approach is verified by ensuring accu- 

ate determination of roots of functions with well-known roots. 
6 
Sections 3.1 and 3.2 illustrate the existence of two distinct types 

f imaginary eigenvalues in this problem when the heating co- 

fficients β̄m 

are of large magnitude, either positive or negative. 

n order to illustrate when such imaginary eigenvalues occur, a 

wo-layer problem with generation/consumption only in the sec- 

nd layer is considered. For this problem, Fig. 6 presents a plot 

howing regions in the β̄2 − Bi space where either ω 2 , 1 is imagi- 

ary, based on Eq. (13) , or λ1 is imaginary, based on Eq. (21) . These

wo types of imaginary eigenvalues occur for large magnitudes of 
¯
2 when negative or positive, respectively. Other problem param- 

ters are β̄1 = 0 , k̄ 1 = 0 . 5 , γ1 = 0 . 667 . Fig. 6 (a) and 6(b) present

lots for ᾱ1 = 2 . 0 , and ᾱ1 = 1 . 0 , respectively. For a given value of

i, ω 2 , 1 is imaginary for low values of β̄2 . As β̄2 increases, there 

s a region where all eigenvalues are real. Once the heating co- 

fficient becomes positive and exceeds a threshold, λ1 becomes 

maginary. The larger the value of Bi, corresponding to more effec- 

ive cooling at the boundaries, the greater is the threshold mag- 

itude of β̄2 in order to result in imaginary ω 2 , 1 . On the other 

and, at higher values of Bi, the upper threshold for β̄2 in order 

o result in imaginary λ1 increases. This is because more effective 

ooling at the boundary moves the system away from divergence, 

hus requiring a larger value of β̄2 to result in an imaginary value 

f λ1 . These characteristics partly depend on other parameters as 

ell. For example, with a lower value of ᾱ1 = 1 . 0 , corresponding

o more effective thermal diffusion in the heat-generating second 

ayer, Fig. 6 (b) shows a much flatter threshold for imaginary ω 2 , 1 . 

his indicates a lower tolerance for negative values of β̄2 before 

 2 , 1 turns imaginary. On the other hand, the threshold for imagi- 

ary λ1 remains largely independent of ᾱ1 . 

Note that the theoretical results derived in Sections 2 and 

 are valid for diffusion-based, continuum heat/mass transfer. Sub- 

ontinuum effects occurring in bodies of very small lengthscales 

nd/or over very short timescales are not accounted for in this 

ork. 

. Impact of Imaginary Eigenvalues on Temperature Solution 

The previous section showed that eigenvalues in one or more 

ayers may become imaginary if β̄m 

is sufficiently large in magni- 

ude, whether positive or negative. It is of interest to determine 

f the existence of imaginary eigenvalues, for example, as shown 

n Fig. 6 , may impact the computation of temperature distribution 

n a multilayer body. While past work has emphasized the impor- 

ance of accounting for imaginary eigenvalues in 2D and 3D mul- 

ilayer problems, a formal proof that temperature remains real de- 

pite imaginary eigenvalues – an important practical matter – is 

issing. This section investigates the impact of imaginary eigen- 
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Fig. 6. Colormap showing regimes in the Bi − β̄2 space where ω 2 , 1 or λ0 may be real or imaginary. (a) ᾱ1 = 2 . 0 ; (b) ᾱ1 = 0 . 5 . Other problem parameters are k̄ 1 = 0 . 5 ;γ1 = 

0 . 667 , β̄1 = 0. 
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alues on the predicted temperature distribution, and proves that 

espite any imaginary eigenvalues that may exist, the predicted 

emperature distribution, given by Eq. (12) remains real. 

Firstly, it is clear that the temperature distribution remains real 

or an imaginary value of λ1 , because the exponential term in 

q. (12) includes −λ2 
1 
. Therefore, while an imaginary value of λ1 

auses exponentially growing temperature, it does not cause tem- 

erature to become imaginary. 

On the other hand, the impact of ω m , n turning imaginary on the 

emperature distribution is more difficult to observe, since ω m , n 

ppears in multiple terms inside the spatial term in Eq. (12) , in- 

luding implicitly in the coefficients. In order to prove that tem- 

erature distribution remains real even when ω m , n may be imag- 

nary, it is important to first note that based on Eq. (13) , ω m , n , if

maginary, will be purely imaginary. Further, the cosine and sine 

f a purely imaginary number is purely real and purely imaginary, 

espectively. Therefore, referring to Eq. (12) , in order to prove that 

he temperature distribution remains purely real for any layer, it 

s sufficient to prove that the following two statements are correct 

or each layer, m = 1,2…M: 

Statement A: If ω m , n is purely imaginary, then A m , n is purely 

eal and B m , n is purely imaginary. 

Statement B: If ω m , n is purely real, then A m , n is purely real and 

 m , n is purely real. 

Statements A and B are proved recursively, i.e., assuming that 

tatements A and B are true for m = m 

∗, it is proved that State-

ents A and B are also true for m = m 

∗+ 1. Further, it is proved that

tatements A and B are true for m = 1, thereby proving Statements 

 and B for each layer. 

Based on the interfaces conditions given by Eq. (16) and (17) , 

he coefficients A m 

∗+1 , n and B m 

∗+1 , n can be written in terms of 

 m ∗, n and B m ∗, n as follows: 

 m 

∗+1 ,n = p m 

∗ A m 

∗,n + q m 

∗ B m 

∗,n (26) 

 m 

∗+1 ,n = r m 

∗ A m ∗,n + s m 

∗ B m 

∗,n (27) 

here 

p m ∗ = 
[

cos ω m ∗ ,n γm ∗ cos ω m ∗+1 ,n γm ∗ + k̄ m ∗ ω m ∗ ,n 

k̄ m ∗+1 ω m +1 ,n 

sin ω m ∗+1 ,n γm ∗ sin ω m ∗ ,n γm ∗

]
(28) 

 m ∗ = 
[

sin ω m ∗ ,n γm ∗ cos ω m ∗+1 ,n γm ∗ − k̄ m ∗ ω m ∗ ,n 

k̄ m ∗+1 ω m ∗+1 ,n 

sin ω m ∗+1 ,n γm ∗ cos ω m ∗ ,n γm ∗

]
(29) 

 m ∗ = 
[

cos ω m ∗ ,n γm ∗ sin ω m ∗+1 ,n γm ∗ − k m ∗ ω m ∗ ,n 

k m ∗+1 ω m ∗+1 ,n 

sin ω m ∗ ,n γm ∗ cos ω m ∗+1 ,n γm ∗

]
(30) 
7 
 m ∗ = 
[

sin ω m ∗ ,n γm ∗ sin ω m ∗+1 ,n γm ∗ + k̄ m ∗ ω m ∗ ,n 

k̄ m ∗+1 ω m ∗+1 ,n 

cos ω m ∗ ,n γm ∗ cos ω m ∗+1 ,n γm ∗

]
(31) 

Now, when ω m 

∗, n is purely imaginary (Statement A), ω m 

∗+1 , n 

ay be either purely real or purely imaginary. In the former 

ase, p m 

∗ and r m 

∗ are both purely real, while q m 

∗ and s m 

∗ are 

oth purely imaginary. Since A m 

∗, n and B m 

∗, n are purely real and 

urely imaginary, respectively, under Statement A, it follows from 

q. (26) and (27) that A m 

∗+1 , n and B m 

∗+1 , n are both purely real. 

n the other hand, when ω m 

∗+1 , n is purely imaginary, p m 

∗ and 

 m 

∗ are both purely real, while q m 

∗ and r m 

∗ are both purely imag- 

nary. Therefore, it follows from Eq. (26) and (27) that A m 

∗+1 , n 

nd B m 

∗+1 , n are both purely real and purely imaginary, respec- 

ively. These considerations prove that when Statement A is true 

or m = m 

∗, it is true for m = m 

∗+ 1 as well. A similar set of argu-

ents prove that when Statement B is true for m = m 

∗, it is true

or m = m 

∗+ 1 as well. 

In order to complete the recursion-based proof, it must be 

roved that Statements A and B are true for m 

∗= 1. In this case,

 1 , n is always pure real since it is chosen to be equal to 1. From 

q. (14) , B 1 , n is purely real when ω 1 , n is purely real, and B 1 , n is 

urely imaginary when ω 1 , n is purely imaginary. This proves State- 

ents A and B for m = 1. Therefore, Statements A and B are proved

o be true for each layer through recursion. 

Statements A and B, in turn, establish that, based on Eq. (12) , 

egardless of whether the eigenvalues of a layer, ω m , n , are purely 

eal or purely imaginary, the temperature distribution in that layer 

ill always be real. When ω m , n is real, all quantities within the 

quare bracket in Eq. (12) are real. When ω m , n is purely imaginary, 

he two terms in the first product in the square bracket ( A m , n and 

os ω m , n ξ ) in Eq. (12) are both real, while the two terms in the sec- 

nd product ( B m , n and sin ω m , n ξ ) are both purely imaginary, lead- 

ng to an overall purely real temperature. 

While it is clearly expected that the temperature distribution 

n a well-defined problem must be real, the discussion above pro- 

ides a formal mathematical proof even for a scenario where some 

ignevalues may be imaginary. 

Since the temperature distribution based on Eq. (12) remains 

urely real regardless of whether some or all of the eigenvalues are 

maginary, therefore, it is important when computing the temper- 

ture to include all eigenvalues, whether real or imaginary. Ignor- 

ng imaginary eigenvalues is likely to result in inaccurate temper- 

ture prediction. To illustrate this, Fig. 7 (a) and 7(b) plot temper- 

ture distributions at multiple times when either all eigenvalues 

real and imaginary – are considered, or when imaginary eigen- 

alues are ignored. For comparison, results from a finite-difference 
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Fig. 7. Importance of accounting for all imaginary eigenvalues: Temperature distribution in the multi-layer body at different times starting with an initial uniform temper- 

ature θ0 ,m = 1 . (a) Two-layer body with k̄ 1 = 0 . 5 ; ᾱ1 = 2 . 0 ; γ1 = 0 . 667 ; Bi = 0 . 1 ; β̄1 = 0 , β̄2 = 10 ; (b) Three-layer body with k̄ 1 = 0 . 5 , k̄ 2 = 0 . 6 , ᾱ1 = 2 . 0 , ᾱ1 = 3 . 0 , γ1 = 0 . 333 , 

γ2 = 0 . 667 , Bi = 0.1, β̄1 = 0 , β̄2 = −3 , β̄3 = −2. In each case, temperature distribution is computed by ignoring or keeping all imaginary eigenvalues. For comparison, results 

from a finite-element simulation are also plotted. 

n

i

l

d

f

c  

B  

t

I  

k  

β  

β
e

i

t

a

t

fi

p

i

i

f

p

f

i

5

f

s

c

c

t

t

d

o

t  

s

s

c

o

a

t

d  

a

a

t

S

t

F

r

d

c

m

t

t

w

t

t

a

o

c

i  

t

s

u

w

s

t

6

c

T

p

d

I

a

l

o

p

i

p

n

m

h

m

umerical simulation are also plotted. The numerical simulation 

s carried out using a fully implicit finite difference method. Each 

ayer is divided into 500 elements and the simulation time is also 

ivided into 10 0 0 timesteps. One node is assigned to the inter- 

ace to facilitate the conservation of temperature and flux. Fig. 7 (a) 

onsiders a two-layer body with k̄ 1 = 0 . 5 , ᾱ1 = 2 . 0 , γ1 = 0 . 667 ,

i = 0.1, β̄1 = 0 , β̄2 = 10 , θ0 , m 

= 1 , for m = 1,2. In this case, tempera-

ure diverges at large times due to the large, positive value of β̄2 . 

n contrast, Fig. 7 (b) considers a three-layer body with k̄ 1 = 0 . 5 ,
¯
 2 = 0 . 6 , ᾱ1 = 2 . 0 , ᾱ2 = 3 . 0 , γ1 = 0 . 333 , γ2 = 0 . 667 , Bi = 0.1, β̄1 = 0 ,
¯
2 = −3 , β̄3 = −2, θ0 , m 

= 1 for m = 1,2,3. In this case, no value of
¯
m 

is positive, and therefore, the temperature distribution is not 

xpected to diverge at large times. Fig. 7 (a) and 7(b) show that 

gnoring imaginary eigenvalues results in a completely inaccurate 

emperature distribution in both cases. On the other hand, when 

ll real and imaginary eigenvalues are accounted for, the predicted 

emperature distribution is correct and in good agreement with 

nite-difference simulation results. In the case of diverging tem- 

erature, ignoring the imaginary eigenvalue leads to a completely 

naccurate prediction. Even when there is no divergence, ignor- 

ng imaginary eigenvalues still causes error. Note that accounting 

or imaginary eigenvalues is particularly important because in the 

resent problem, imaginary eigenvalues, if present, are the first 

ew, which are known to contribute the most to the infinite series 

n which temperature has been expressed. 

. Temperature Computation for a Practical Problem 

The theoretical methodology discussed in this paper is used 

or computing temperature distribution for a practical problem. A 

tack of two identical, prismatic Li-ion cells is considered. Abuse 

onditions such as high temperature, nail penetration or over- 

harging can lead to initiation of exothermic decomposition reac- 

ions [4] . As temperature increases, so does the rate of such reac- 

ions, due to which, heat generation rate also increases. While this 

ependence is governed by non-linear Arrhenius kinetics [26] , it is 

ften modeled as a linear relationship as a first-order approxima- 

ion [22 , 23] . It is assumed that the first cell in the stack undergoes

uch temperature-dependent heat generation. Heat transfer is as- 

umed to be one-dimensional, justified by the thin nature of the 

ells compared to lateral dimensions. No internal heat generation 

ccurs in the second cell. The two ends of the two-layer body are 

ssumed to be convectively cooled with Bi = 0.1. For this problem, 

emperature distribution is computed and plotted in Fig. 8 for two 

ifferent values of the source coefficient in the first cell, β1 = 0 . 1
8 
nd β1 = 2 . 0 , which represent mild and aggressive exothermic re- 

ctions, respectively. Fig. 8 plots temperature distributions within 

he two-cell stack at different times for these two different cases. 

ince Li-ion cells vary significantly in size and thermal properties, 

he results are presented in non-dimensional form for generality. 

ig. 8 shows that when β1 is reasonably small, i.e., heat generation 

ate increases rather slowly with temperature, the cell temperature 

oes not diverge at large time, because the convective boundary 

ondition is able to dissipate the heat generated and prevent ther- 

al runaway. On the other hand, when β1 is larger, corresponding 

o a rapid rise in heat generation rate with increasing temperature, 

he convective cooling at the boundary is no longer able to keep up 

ith the positive feedback between temperature and heat genera- 

ion, resulting in exponentially growing temperature. In addition 

o the cell being abused, the cell with no internal heat generation 

lso experiences very large temperature due to the large amount 

f heat being generated in its neighbor. This observation indeed 

orresponds to the phenomenon of thermal runaway propagation 

n a Li-ion cell [4 , 23] , where heat generated in exothermic reac-

ions increases temperature, which in turn increases the rates of 

uch reactions, resulting in thermal runaway and catastrophic fail- 

re of the Li-ion cell. The mathematical model developed in this 

ork is able to model such a phenomena in practical, multi-layer 

ystems, and contribute towards a capability for proactive predic- 

ion of thermal runaway. 

. Conclusions 

Thermal conduction in a multilayer body is a well-researched 

lass of problems with several applications in engineering systems. 

his paper analyzes imaginary eigenvalues that appear in an im- 

ortant thermal conduction problem involving linear, temperature- 

ependent heat generation in a multi-layer one-dimensional body. 

t is shown that two distinct types of imaginary eigenvalues may 

ppear in such a problem. The first type may be interpreted as 

eading to exponentially rising temperature due to change in sign 

f the term within the transient exponent. Conditions for the ap- 

earance of imaginary eigenvalues are derived. Quite importantly, 

t is shown that despite imaginary eigenvalues, the computed tem- 

erature remains real, and therefore, imaginary eigenvalues must 

ot be discarded. 

In addition to advancing the fundamental understanding of 

ultilayer heat and mass transfer, it is expected that this work 

as practical relevance for engineering applications such as ther- 

al runaway in Li-ion cells, where temperature-dependent heat 
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Fig. 8. Temperature computation for a practical application: Temperature distribution at multiple times for a stack of two Li-ion cells, with temperature-dependent exother- 

mic decomposition reaction in one of the cells due to abuse. Plot for two distinct values of the source coefficient show two very different thermal outcomes of the cell. 
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eneration results in catastrophic failure and explosion. The abil- 

ty to predict the thermal fate of a closely-packed stack of cells 

ased on the model developed here may be of much practical im- 

ortance. The present work may also be applicable to other multi- 

ayer energy conversion/storage systems such as fuel cells and so- 

ar cells where linear, temperature/concentration-dependent gen- 

ration may occur. In addition to heat transfer, the work described 

ere is also relevant to mass transfer problems involving first-order 

hemical reactions resulting in generation/consumption of species 

n multiple layers. Such a scenario occurs, for example, in a Li- 

on cell, where Li ion generation/consumption occurs in the elec- 

rode layers, along with no generation/consumption in the separa- 

or layer. 
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ppendix A: Proof that f defined by equation (21) is an 

ncreasing function 

Consider the function f defined by Eq. (21) as 

f 

(
ˆ λ2 

)
= f 1 + f 2 = k̄ 1 ̂  ω 1 

k̄ 1 ̂  ω 1 + Bi coth ˆ ω 1 γ1 

k̄ 1 ̂  ω 1 coth ˆ ω 1 γ1 + Bi 

+ ˆ ω 2 
ˆ ω 2 + Bi coth ˆ ω 2 ( 1 − γ1 ) 

ˆ ω 2 coth ˆ ω 1 ( 1 − γ1 ) + Bi 
(A1) 

here ˆ ω m 

= 

√ 

ˆ λ2 −β̄m 

ᾱm 

, m = 1,2. 

Consider only the first term in Eq. (A1) , denoted by f 1 . Differ-

ntiating with respect to ˆ λ, one may obtain 

∂ f 1 
∂ 

ˆ λ = k 1 
α1 

ˆ λ
k 1 ̂ ω 1 coth ̂ ω 1 γ1 + 2 k 1 Bi + k 1 γ1 ̂ ω 2 1 csch 

2 
ˆ ω 1 γ1 + Bi 2 

(
coth ̂ ω 1 γ1 − ˆ ω 1 γ1 csch 

2 
ˆ ω 1 γ1 

)
/ ̂ ω 1 [

k 1 ̂ ω 1 coth ̂ ω 1 γ1 + Bi 
]2 

(A2) 
9 
The first three terms in the numerator on the right hand side 

n Eq. (A2) are all positive. The third term can also be shown to be

ositive as follows: 

coth ̂ ω 1 γ1 − ˆ ω 1 γ1 csc h 2 ˆ ω 1 γ1 

ˆ ω 1 
= e ˆ ω 1 γ1 + e − ˆ ω 1 γ1 

e ̂ ω 1 γ1 − e − ˆ ω 1 γ1 
− 4 ̂ ω 1 γ1 [

e ̂ ω 1 γ1 − e − ˆ ω 1 γ1 

]2 
= e 2 ̂ ω 1 γ1 − e −2 ̂ ω 1 γ1 − 4 ̂ ω 1 γ1 [

e ̂ ω 1 γ1 − e − ˆ ω 1 γ1 

]2 
ˆ ω 1 

(A3) 

Using series expansion, one may simplify 

coth ̂ ω 1 γ1 − ˆ ω 1 γ1 csc h 2 ˆ ω 1 γ1 

ˆ ω 1 [
1 + 2 ̂ ω 1 γ1 + ( 2 ̂ ω 1 γ1 ) 

2 

2 
+ ( 2 ̂ ω 1 γ1 ) 

3 

6 
+ . . . 

]
−

[
1 − 2 ̂ ω 1 γ1 + ( 2 ̂ ω 1 γ1 ) 

2 

2 
− ( 2 ̂ ω 1 γ1 ) 

3 

6 
+ . . . 

]
− 4 ̂ ω 1 γ1 [

e ̂ ω 1 γ1 − e − ˆ ω 1 γ1 

]2 
ˆ ω 1 

(A4) 

Resulting in 

coth ̂  ω 1 γ1 − ˆ ω 1 γ1 csc h 

2 ˆ ω 1 γ1 

ˆ ω 1 

= 

2 

( 2 ̂ ω 1 γ1 ) 
3 

6 ̂ ω 1 
+ 2 

( 2 ̂ ω 1 γ1 ) 
5 

120 ̂ ω 1 
+ . . . [

e ̂ ω 1 γ1 − e − ˆ ω 1 γ1 

]2 
(A5) 

This shows that the numerator on the right hand side of 

q. (A2) , and therefore, 
∂ f 1 
∂ ̂ λ

is positive for positive values of ˆ λ2 . 

imilarly, one can show that 
∂ f 2 
∂ ̂ λ

is positive. This shows that f in 

q. (A1) is an increasing function. This, in turn, helps establish, in 

ection 3.1 , that a requirement for an imaginary eigenvalue to exist 

s that f (0) < 0 
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