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A B S T R A C T   

Theoretical modeling of thermal conduction in a multilayer cylinder has been studied in multiple past papers due 
to its significance in engineering applications such as nuclear engineering, energy storage and sensing. Most past 
papers have assumed a constant convective heat transfer coefficient on the outer surface of the cylinder. How-
ever, a circumferentially varying heat transfer coefficient may be appropriate in several applications due to the 
distributed nature of fluid flow around the cylinder. This paper presents a theoretical model for steady-state 
thermal conduction in a multilayer cylinder with circumferentially-varying convective heat transfer coefficient 
on the cylinder surface. The theoretical model is presented for both solid and annular cylinders. A series solution 
is derived for the temperature distribution in each layer by using the convective boundary condition(s) to derive 
a set of linear algebraic equations for the coefficients of the inner-most layer. Results are shown to be in good 
agreement with numerical simulations and with closed-form solutions for special cases. The impact of various 
problem parameters, such as internal heat generation rate and thermal contact resistances on the temperature 
distribution is analyzed. It is expected that the results presented in this work will improve the theoretical un-
derstanding of multilayer heat transfer and be of practical use in multiple engineering applications.   

1. Introduction 

Heat transfer in a multilayer cylinder is a problem of significant 
engineering interest [1,2]. The use of a combination of materials with 
varying thermal/mechanical properties often helps provide desired 
performance characteristics for engineering structures and systems. For 
example, nuclear fuel rods in a nuclear reactor are often structured in 
the form of a multilayer cylinder, with the nuclear fuel packed in the 
annular region between two cylinders [3]. Other applications where 
thermal conduction in a multilayer cylinder is relevant include com-
pressed hydrogen storage [4], superconducting cables [5], piezoelectric 
transducers [6] and civil engineering structures [7]. 

In each of these scenarios, heat generation in one or more concentric 
cylinders leads to temperature rise and stress development. Under-
standing the nature of thermal conduction in the multilayer cylinder is 
important for ensuring the performance, safety and reliability of such 
systems. 

A significant body of literature already exists on the analysis of 
thermal conduction in multilayer cylinders. While numerical simula-
tions offer the capability to rapidly compute the temperature 

distribution in a multilayer cylinder, analytical modeling is important 
for fully understanding the nature of thermal transport and for under-
standing the dependence of temperature field on various parameters of 
the problem. A number of theoretical methods have been presented for 
this purpose. The separation of variables (SOV) method has been used 
for modeling thermal conduction in cylindrical and spherical composite 
laminates [8,9]. Analytical solution for transient heat conduction in 
cylindrical multilayer composite laminates has been derived by 
combining the Laplace transformation method with the Thomas algo-
rithm [10] and the separation of variable method [11]. The eigenfunc-
tion expansion method has been used to derive the general analytical 
solution for one-dimensional transient heat conduction in a three-layer 
cylinder [12]. A double-series solution for time-dependent asymmetric 
heat conduction in a multilayer annulus has been derived [13]. An 
analytical solution for transient heat conduction in hollow composite 
cylinders with an arbitrary number of layers and subject to general 
boundary conditions using the distributed transform function formula-
tion has been derived [14]. The asymmetric thermal conduction prob-
lem in a multilayer annulus with time-dependent boundary conditions 
has been solved using the finite integral transform method [15]. Green’s 
function method has been used to derive an analytical solution for 
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thermal conduction in a two-layer hollow cylinder [16]. Fourier series 
expansion has also been used to obtain the temperature field for heat 
conduction in multilayer cylindrical composites [17,18]. In addition, 
enthalpy-based 3D hybrid finite element method has been used for 
solving anisotropic thermal conduction problems characterized by a set 
of tensors of thermal conductivity in different coordinate systems [19] 
and applied in a multi-layer material with multiple orientations of the 
thermal conductivity tensors [20]. In such problems, a linear coordinate 
transformation has been used to convert the anisotropic multi-layered 
heat conduction problem to the equivalent isotropic one, followed by 
Fourier transformation and series expansion technique to derive the 
closed-form solution [21]. 

Most of the literature relevant to thermal conduction in a multilayer 
cylinder applies a convective heat transfer boundary condition on the 
outer surface of the cylinder. This facilitates the modeling of, for 
example, heating or cooling due to the fluid flow external to the cylin-
der. However, in most papers, the convective heat transfer coefficient 
has been treated to be constant, whereas, there may be significant 
spatial variation in the convective heat transfer coefficient around the 
cylinder surface. For example, when considering cross-flow of a fluid 
past the cylinder, it is well-known [22,23] that the local Nusselt number 
Nu is a function of the circumferential location θ, in addition to being 
dependent on the Reynolds number, Re. The impact of the cross-flow is 
highest at the stagnation point θ = 0 that directly faces the flow. As one 
traverses around the cylinder, boundary layer growth causes a reduction 
in h, followed by an increase due to onset of turbulence. Further changes 
occur in h with increasing θ due to separation and wake formation. The 
exact nature of the variation of h with θ, including the transition loca-
tions, depends on the value of Re, and has been widely studied [22,23]. 
It is important for accurate modeling of thermal conduction inside the 
multilayer cylinder to account for the variation of h with θ. Modeling a 
constant convective heat transfer coefficient around the cylinder is not 
accurate, and is likely to result in significant error in the predicted 
temperature distribution. 

Unfortunately, treating the convective heat transfer coefficient to be 
a function of θ adds significant analytical complications. In the recent 
past, an analytical solution of thermal conduction with circumferentially 
varying convective heat transfer coefficient on the outer surfaces of a 
cylinder [24] and a sphere [25] has been presented. In this paper, the 
solution was written in the form of an infinite series – similar to the SOV 
approach for a constant h problem – and the coefficients for the series 
were shown to be governed by a set of coupled linear algebraic equa-
tions involving various integrals of h(θ). The results presented in this 
paper were applicable only to a homogeneous cylinder. It is of both 
theoretical and practical interest to extend this method to a multi-layer 
cylinder. Such a result would be directly relevant for several engineering 
applications involving heat transfer in a multilayer cylinder, such as 
those summarized earlier in this section. 

This paper presents an analytical solution for the two-dimensional 
temperature distribution in a multilayer cylinder subject to convective 
heat transfer coefficient on the outer surface that varies circum-
ferentially around the cylinder. Results are derived for two specific cases 
– a solid, multilayer cylinder and an annular multilayer cylinder. In both 
cases, results are found to be in good agreement with numerical simu-
lations and with standard solutions for simplified special cases. The 
impact of various problem parameters on the temperature distribution is 
analyzed using this model. 

2. Analytical modeling 

2.1. Solid cylinder 

Consider thermal conduction in an M-layer, composite cylinder with 
circumferentially varying heat convective coefficient hout(θ) on its outer 
surface, as shown in Fig. 1(a). The convective boundary condition could 
be a result of, for example, cross-flow of a fluid past the cylinder. Top- 
bottom symmetry in the imposed convective heat transfer coefficient, 
and therefore, in the resulting temperature distribution is assumed, as is 
expected to be the case for cross-flow of fluid past the cylinder. There-
fore, only the top half of the cylinder (0 ≤ θ ≤ π) is considered. 

The radial size and thermal conductivity of each layer are (ri+1-ri) 
and ki, respectively. Note that due to the solid nature of the cylinder, 
r1=0. Uniform heat generation Qi occurs in each layer. Further, an inter- 
layer thermal contact resistance Ri exists between the (i-1)th and ith 

layers. In a cylindrical coordinate system, the governing steady state 
energy conservation equation for the ith layer is expressed as: 

ki

r
∂
∂r

(

r
∂Ti

∂r

)

+
ki

r2
∂2Ti

∂θ2 + Qi = 0 (i = 1, 2,…,M) (1) 

Boundary conditions for this problem are 

∂Ti

∂θ
= 0 at θ = 0 (2a)  

∂Ti

∂θ
= 0 at θ = π (2b)  

− kM
∂TM

∂r
= hout(θ)TM at r = rM+1 (2c) 

Interfacial boundary conditions accounting for temperature and heat 
flux continuity are 

Ti− 1(r, θ) = Ti(r, θ) − kiRi
∂Ti

∂r
at r = ri (2d)  

ki− 1
∂Ti− 1

∂r
= ki

∂Ti

∂r
at r = ri (i= 2, 3,&,M) (2e) 

Equation (2d) represents temperature drop at the interface and is 
given by the product of the heat flux and thermal contact resistance. 
Equation (2e) represents conservation of heat flux at each interface. In 
addition to the boundary and interface conditions listed above, the 
temperature must also be finite at r=0. 

The temperature field is first split into two parts as follows 

Ti(r, θ) =φi(r, θ) −
Qir2

4ki
(3) 

By substituting Eq. (3) into Eqs. (1)-(2e), the following equations are 
derived for φi(r, θ): 

1
r

∂
∂r

(

r
∂φi

∂r

)

+
1
r2

∂2φi

∂θ2 = 0 (4)  

∂φi

∂θ
= 0 at θ = 0 (5a)  

Nomenclature 

hin convective heat transfer coefficient at the inner surface 
(W/m2K) 

hout convective heat transfer coefficient at the outer surface 
(W/m2K) 

k thermal conductivity (W/mK) 
M number of layers 
N number of eigenvalues 
Q internal heat generation rate (W/m3) 
R thermal contact resistance (Km2/W) 
r radial coordinate (m) 
T temperature rise (K) 
θ circumferential coordinate (rad)  
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∂φi

∂θ
= 0 at θ = π (5b)  

kM
∂φM

∂r
+ hout(θ)φM(rM+1, θ) =F(θ) at r = rM+1 (5c)  

φi− 1(ri, θ)=φi(ri, θ) +
r2

i

4

(
Qi− 1

ki− 1
−

Qi

ki

)

+
riQi

2
Ri − kiRi

∂φi

∂r
at r = ri (5d)  

ki− 1
∂φi− 1

∂r
= ki

∂φi

∂r
+

ri

2
(Qi− 1 − Qi) at r = ri (5e)  

where 

F(θ) =
QMrM+1

2

[

1+
hout(θ)rM+1

2kM

]

(6) 

The solution for φi(r, θ) is derived next. Using Eqs. (4), (5a) and (5b), 
φi(r, θ) may be expressed as follows: 

φ1(r, θ) = C1 +
∑∞

n=1
A1,ncos(nθ)

(
r

rM+1

)n

(7)   

Coefficients C1, Ci, Di, A1,n, Ai,n and Bi,n must be determined in order 
to satisfy the outer boundary and interfacial conditions (5c), (5d) and 
(5e). 

By substituting equations (7) and (8) into equations (5d) and (5e), 
one may obtain   

Di =
1

2ki

∑i

j=2
r2

j

(
Qj − Qj− 1

)
(10) 

Further, Ai,n and Bi,n can be expressed using the following recursive 
relationship 

Ai,n =
1
2

[

1+
(
1+ϕi,n

) ki− 1

ki

]

Ai− 1,n +
1
2

[

1 −
(
1+ϕi,n

) ki− 1

ki

]

Bi− 1,n

(
ri

rM+1

)− 2n

(11a)  

Bi,n =
1
2

[

1 −
(
1 − ϕi,n

) ki− 1

ki

]

Ai− 1,n

(
ri

rM+1

)2n

+
1
2

[

1+
(
1 − ϕi,n

) ki− 1

ki

]

Bi− 1,n

(11b)  

where ϕi,n = nkiRi
ri 

and B1,n = 0. 
The two equations above can be further simplified to write Ai,n and 

Bi,n purely in terms of A1,n as follows 

Ai,n = ηi,AA1,n (12a)  

Bi,n = ηi,BA1,n (12b)  

where the coefficients are given by the following coupled, recursive 
relationships: 

ηi,A =
1
2

[

1+
(
1+ϕi,n

) ki− 1

ki

]

ηi− 1,A +
1
2

[

1 −
(
1+ϕi,n

) ki− 1

ki

](
ri

rM+1

)− 2n

ηi− 1,B

(13a)  

Fig. 1. Schematic of multilayer cylinder geometry: (a) Solid cylinder, (b) Annular cylinder.  

Ci = C1 +
1
4
∑i

j=2
r2

j

(
Qj

kj
−

Qj− 1

kj− 1

)

−
1
2
∑i

j=2
rjRjQj− 1 −

1
2
∑i

j=2

r2
j

kj

(
Qj − Qj− 1

)
ln
(

rj

rM+1

)

−

1
2
∑i

j=3

(
1
kj
−

1
kj− 1

)

ln
(

rj

rM+1

)
∑j− 1

m=2
r2

m(Qm − Qm− 1) +
1
2
∑i

j=3

Rj

rj

∑j− 1

m=2
r2

m(Qm − Qm− 1)

(9)   

φi(r, θ) = Ci + Di ln
(

r
rM+1

)

+
∑∞

n=1

[

Ai,n

(
r

rM+1

)n

+ Bi,n

(
r

rM+1

)− n ]

cos(nθ) (i = 1, 2,…,M) (8)   
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ηi,B =
1
2

[

1 −
(
1 − ϕi,n

) ki− 1

ki

](
ri

rM+1

)2n

ηi− 1,A +
1
2

[

1+
(
1 − ϕi,n

) ki− 1

ki

]

ηi− 1,B

(13b) 

Note that η1,A = 1 and η1,B = 0 

Coefficients for the Mth layer are of particular interest. Setting i = M 
in equations (9), (10), (12a) and (12b) yields 

CM =C1 + g (14)  

DM =
1

2kM

∑M

j=2
r2

j

(
Qj − Qj− 1

)
(15)  

AM,n = ηM,AA1,n (16a)  

BM,n = ηM,BA1,n (16b)  

where 

g=
1
4
∑M

j=2
r2

j

(
Qj

kj
−

Qj− 1

kj− 1

)

−
1
2
∑M

j=2
rjRjQj− 1 −

1
2
∑M

j=2

r2
j

kj

(
Qj − Qj− 1

)
ln
(

rj

rM+1

)

−

1
2
∑M

j=3

(
1
kj
−

1
kj− 1

)

ln
(

rj

rM+1

)
∑j− 1

m=2
r2

m(Qm − Qm− 1)+
1
2
∑M

j=3

Rj

rj

∑j− 1

m=2
r2

m(Qm − Qm− 1)

(17) 

Equations (9)–(12b) express all the coefficients needed to define the 
temperature solution – Ci, Di, Ai,n and Bi,n – in terms of C1 and A1,n for 
each n. 

In order to determine C1 and A1,n, and thus complete the solution, the 
temperature distribution in the outermost layer given by equation (8) is 
substituted into the boundary condition for the spatially varying heat 
transfer coefficient, equation (5c). Using expressions (14), (16a) and 
(16b), one can obtain 

kMDM

rM+1
+

kM

rM+1

∑∞

n=1
n
(
ηM,A − ηM,B

)
A 1,n cos(nθ) + C1hout(θ) + ghout(θ)+

∑∞

n=1

(
ηM,A + ηM,B

)
A1,nhout(θ)cos(nθ) = F(θ)

(18) 

The unknown coefficients C1 and A1,n all appear in equation (18). 
If the convective heat transfer coefficient was uniform, these co-

efficients can be easily determined using the principle of orthogonality. 

In the present case, while the summations in equation (18) involve, in 
principle, an infinite number of eigenvalues, the series are truncated at 
n = N for computation. Integrating equation (18) from θ = 0 to θ = π 
and rearranging, one may obtain   

Also, multiplying both sides of equation (18) by cos(iθ) for i = 1,2,…,

N, and then integrating from θ= 0 to θ= π and rearranging results in   

Note that derivation of equation (20) used the orthogonality of the 
eigenfunctions 

∑∞

n=1

∫ π

0
cos(nθ)cos(iθ)dθ=

{
0 i ∕= n

π/2 i = n (21) 

Equations (19) and (20) represent (N + 1) linear algebraic equations 
involving (N + 1) unknowns, C1 and A1,i (i = 1,2, …,N). These equations 
can be easily solved using well-known methods such as matrix inversion 
based on LU factorization. Once these coefficients are determined, 
equation (3), along with equations (7), (8), (9), (10), (12a) and (12b) 
represents the final solution for temperature distribution in the com-
posite body. 

2.2. Annular cylinder 

In this section, the thermal conduction problem is considered for a 
multilayer annular cylinder. Fig. 1(b) shows a schematic of the geometry 
for this problem. In this case, the convective heat transfer coefficients on 
the outer and inner surfaces – hout(θ) and hin(θ)– are both spatially 
varying. The methodology for solving this problem is similar to the 
previous sub-section. The temperature distributions in each layer are 
written in series form. Using the interfacial conditions, coefficients for 
each layer are written in terms of the coefficients for the inner-most 
layer. Finally, the coefficients for the inner-most layer are determined 
through the use of the two spatially varying convective boundary con-
ditions. This problem is still governed by equation (1) and boundary 
conditions (2a), (2b), (2c), (2d) and (2e). The convective boundary 
condition on the inner surface may be written as 

k1
∂T1

∂r
= hin(θ)T1 at r = r1 (22a) 

To start with, the non-homogeneity in the governing equation is 
removed using the same transformation used in the previous sub- 
section, resulting in Eqs. (3), (4) and (5a), (5b), (5d) and (5e). 

C1

∫ π

0
hout(θ)dθ+

∑N

n=1

(
ηM,A + ηM,B

)
A1,n

∫ π

0
hout(θ)cos(nθ)dθ=

∫ π

0
F(θ)dθ −

πkMDM

rM+1
− g

∫ π

0
hout(θ)dθ (19)   

C1

∫ π

0
hout(θ)cos(iθ)dθ +

iπkM

2rM+1

(
ηM,A − ηM,B

)
A1,i +

∑N

n=1

(
ηM,A + ηM,B

)
A1,n

∫ π

0
hout(θ)cos(nθ)cos(iθ)dθ =

∫ π

0
F(θ)cos(iθ)dθ − g

∫ π

0
hout(θ)cos(iθ)dθ

(20)   
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Substituting Eq. (3) into Eqs. (22a) and (2b) results in 

k1
∂φ1

∂r
− hin(θ)φ1(r1, θ)=F1(θ) at r= r1 (23a)  

kM
∂φM

∂r
+ hout(θ)φM(rM+1, θ) =FM(θ) at r= rM+1 (23b)  

where 

F1(θ) =
Q1r1

2

[

1 −
hin(θ)r1

2k1

]

(24a)  

FM(θ)=
QMrM+1

2

[

1+
hout(θ)rM+1

2kM

]

(24b) 

The temperature distribution in each layer may be expressed as   

Note that since r1 > 0, a separate equation for the temperature dis-
tribution in the inner-most layer – similar to the previous sub-section – is 
not needed here. The coefficients, CiCi, Di, Ai,n and Bi,n must be deter-
mined in order to satisfy the boundary conditions (5d), (5e), (23a) and 
(23b). 

By substituting equation (25) into equations (5d) and (5e), one may 
obtain   

Di =
k1

ki
D1 +

1
2ki

∑i

j=2
r2

j

(
Qj − Qj− 1

)
(27) 

Also, the coefficients Ai,n and Bi,n may be expressed in terms of A1,n 

and B1,n as follows 

Ai,n = ηi,AA1,n + μi,AB1,n (28a)  

Bi,n = ηi,BA1,n + μi,BB1,n (28b)  

where the coefficients are given by Eqs. (13a) and (13b) as well as the 
following two expressions: 

μi,A =
1
2

[

1+
(
1+ϕi,n

) ki− 1

ki

]

μi− 1,A +
1
2

[

1 −
(
1+ϕi,n

) ki− 1

ki

](
ri

rM+1

)− 2n

μi− 1,B

(29a)  

μi,B =
1
2

[

1 −
(
1 − ϕi,n

) ki− 1

ki

](
ri

rM+1

)2n

μi− 1,A +
1
2

[

1+
(
1 − ϕi,n

) ki− 1

ki

]

μi− 1,B

(29b) 

Starting values for these recursive relationships are given by η1,A = 1 
μ1,A = 0, η1,B = 0 and μ1,B = 1. 

The coefficients for the Mth layer are of particular interest. Setting i =
M in equations (2), (26) and (27)8a) and (28b) yields 

CM =C1 + f1D1 + f2 (30)  

DM =
k1

kM
D1 + g (31)  

AM,n = ηM,AA1,n + μM,AB1,n (32a)  

BM,n = ηM,BA1,n + μM,BB1,n (32b)  

where 

f1 = k1

∑M

j=2

Rj

rj
− k1

∑M

j=2

(
1
kj
−

1
kj− 1

)

ln
(

rj

rM+1

)

(33a)    

φi(r, θ) = Ci + Di ln
(

r
rM+1

)

+
∑∞

n=1

[

Ai,n

(
r

rM+1

)n

+ Bi,n

(
r

rM+1

)− n ]

cos(nθ) (i = 1, 2,…,M) (25)   

Ci = C1 + D1k1

∑i

j=2

Rj

rj
− D1k1

∑i

j=2

(
1
kj
−

1
kj− 1

)

ln
(

rj

rM+1

)

−
1
2
∑i

j=3

(
1
kj
−

1
kj− 1

)

ln
(

rj

rM+1

)
∑j− 1

m=2
r2

m(Qm − Qm− 1)+

1
2
∑i

j=3

Rj

rj

∑j− 1

m=2
r2

m(Qm − Qm− 1) +
1
4
∑i

j=2
r2

j

(
Qj

kj
−

Qj− 1

kj− 1

)

−
1
2
∑i

j=2

r2
j

kj

(
Qj − Qj− 1

)
ln
(

rj

rM+1

)

−
1
2
∑i

j=2
rjRjQj− 1

(26)   

f2 = −
1
2
∑M

j=3

(
1
kj
−

1
kj− 1

)

ln
(

rj

rM+1

)
∑j− 1

m=2
r2

m(Qm − Qm− 1) +
1
2
∑M

j=3

Rj

rj

∑j− 1

m=2
r2

m(Qm − Qm− 1)+

1
4
∑M

j=2
r2

j

(
Qj

kj
−

Qj− 1

kj− 1

)

−
1
2
∑M

j=2

r2
j

kj

(
Qj − Qj− 1

)
ln
(

rj

rM+1

)

−
1
2
∑M

j=2
rjRjQj− 1

(33b)   
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g=
1

2kM

∑M

j=2
r2

j

(
Qj − Qj− 1

)
(33c) 

Equations (13a), (13b), (26)-(29b) express all the coefficients needed 
to define the temperature solution – Ci, Di, Ai,n and Bi,n – in terms of C1, 
D1, A1,n and B1,n. 

In order to determine C1, D1, A1,n and B1,n, and thus complete the 
solution, equation (25) is separately substituted into the two boundary 
conditions involving spatially varying heat transfer coefficient, equa-
tions (23a) and (23b). Using expressions (30), (31), (32a) and (32b), one 
may obtain 

Fig. 2. Effect of number of eigenvalues: (a) Radial temperature distribution at θ = π/2; (b) Circumferential temperature distribution on the outer surface for different 
number of eigenvalues for a five-layer problem. Problem parameters are shown in Table 1 . hout(θ) is taken from Nu measurements around the cylinder for cross-flow 
of room temperature air at Re = 15,550 [23]. 

Fig. 3. Comparison of analytical model with numerical simulations for a five-layer solid cylinder: (a) Radial temperature distribution at θ = 0 and θ = π/2; (b) 
Circumferential temperature distribution on the outer surface. In both (a) and (b), results from analytical model (curves) and numerical simulation (symbols) are 
plotted. Problem parameters are the same as in Problem 2, with thermal contact resistance of R = 0.01 Km2/W. 

Table 1 
List of problem parameters for the five-layer problem.  

Layer # Radial location (mm) k (W/mK) Q (W/m3) R (Km2/W) 

1 0–10 1 2 × 105  

2 10–20 2 6 × 104 2 × 10− 4 

3 20–30 1 5 × 103 3 × 10− 4 

4 30–40 3 2 × 104 10–4 

5 40–50 1 1 × 103 2 × 10− 4  

Fig. 4. Comparison of analytical model with numerical simulations for a five-layer annular cylinder: (a) Radial temperature distribution at θ = 0 and θ = π/2; (b) 
Circumferential temperature distribution on the outer surface. In both (a) and (b), results from analytical model (curves) and numerical simulation (symbols) are 
plotted. Problem parameters are the same as in Problem 2, with thermal contact resistance of R = 0.01 Km2/W and hin(θ) = 40 W/m2K. 
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Similar to the previous problem, the series sums in the equations 
above are truncated up to n = N for the purpose of computation. Inte-
grating equations (34) and (35) from θ = 0 to θ = π and rearranging, one 
may obtain   

Also, multiplying both sides of equations (34) and (35) by cos(iθ) for 
i = 1,2,…,N, and then integrating from θ = 0 to θ = π and rearranging 
results in 

− C1

∫

0

πhin(θ)cos(iθ)dθ − D1 ln
(

r1

rM+1

)∫ π

0
hin(θ)cos(iθ)dθ+

iπk1

2r1
A1,i

(
r1

rM+1

)i

−
iπk1

2r1
B1,i

(
r1

rM+1

)− i

−
∑N

n=1
A1,n

(
r1

rM+1

)n ∫ π

0
hin(θ)cos(nθ)cos(iθ)dθ

−
∑N

n=1
B1,n

(
r1

rM+1

)− n ∫ π
0 hin(θ)cos(nθ)cos(iθ)dθ

=

∫ π

0
F1(θ)cos(iθ)dθ

(38)   

Equations 36–39 represent (2 N + 2) linear algebraic equations 
involving (2 N + 2) unknowns, C1, D1, A1,i and B1,i (i = 1,2, …,N). Similar 
to the previous problem, a solution of these coefficients through matrix 

inversion or a similar technique results in the final solution for tem-
perature distribution in the multilayer annular cylinder, as given by 
equation (3), along with equations (25), (26), (27) (28a) and (28b). 

3. Results and discussion 

The effect of number of eigenvalues on the computed temperature 
distribution is examined first. This is important to do since the number of 
eigenvalues considered directly affects the computational time. On the 
other hand, the number of eigenvalues must be large enough to ensure 
accuracy. In general, the solution must converge as the number of ei-
genvalues increases. The threshold number of eigenvalues beyond 
which there is no significant change in the solution by considering 
further eigenvalues must be determined. 

Fig. 2 plots the temperature distribution for a representative five- 
layer solid cylinder problem as a function of number of eigenvalues. 

− C1

∫ π

0
hin(θ)dθ+

πk1

r1
D1 − D1 ln

(
r1

rM+1

)∫ π

0
hin(θ)dθ −

∑N

n=1
A1,n

(
r1

rM+1

)n ∫ π

0
hin(θ)cos(nθ)dθ −

∑N

n=1
B1,n

(
r1

rM+1

)− n ∫ π

0
hin(θ)cos(nθ)dθ=

∫ π

0
F1(θ)dθ

(36)  

C1

∫ π

0
hout(θ)dθ +

πk1

rM+1
D1 + f1D1

∫ π

0
hout(θ)dθ +

∑N

n=1

(
ηM,A + ηM,B

)
A1,n

∫ π

0
hout(θ)cos(nθ)dθ+

∑N

n=1

(
μM,A + μM,B

)
B1,n

∫ π

0
hout(θ)cos(nθ)dθ =

∫ π

0
FM(θ)dθ −

πkM

rM+1
g − f2

∫ π

0
hout(θ)dθ

(37)   

k1

r1
D1 +

k1

r1

∑∞

n=1
n
[

A1,n

(
r1

rM+1

)n

− B1,n

(
r1

rM+1

)− n]

cos(nθ) − C1hin(θ) − D1 ln
(

r1

rM+1

)

hin(θ)−

hin(θ)
∑∞

n=1

[

A1,n

(
r1

rM+1

)n

+ B1,n

(
r1

rM+1

)− n]

cos(nθ) = F1(θ)

(34)  

k1

rM+1
D1 +

kM

rM+1
g +

kM

rM+1

∑∞

n=1
n
(
ηM,A − ηM,B

)
A1,n cos(nθ) +

kM

rM+1

∑∞

n=1
n
(
μM,A − μM,B

)
B1,n cos(nθ)+

C1hout(θ) + f1D1hout(θ) + f2hout(θ) +
∑∞

n=1

(
ηM,A + ηM,B

)
A1,nhout(θ)cos(nθ)+

∑∞

n=1

(
μM,A + μM,B

)
B1,nhout(θ)cos(nθ) = FM(θ)

(35)   

C1

∫ π

0
hout(θ)cos(iθ)dθ + f1D1

∫ π

0
hout(θ)cos(iθ)dθ +

iπkM

2rM+1

(
ηM,A − ηM,B

)
A1,i+

iπkM

2rM+1

(
μM,A − μM,B

)
B1,i +

∑N

n=1

(
ηM,A + ηM,B

)
A1,n

∫ π

0
hout(θ)cos(nθ)cos(iθ)dθ+

∑N

n=1

(
μM,A + μM,B

)
B1,n

∫ π

0
hout(θ)cos(nθ)cos(iθ)dθ =

∫ π

0
FM(θ)cos(iθ)dθ − f2

∫ π

0
hout(θ)cos(iθ)dθ

(39)   
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The values of layer radii, thermal conductivities, heat generation rates 
and thermal contact resistances with neighboring layers are summarized 
in Table 1. The convective heat transfer coefficient on the outer surface 
is taken from past work by Schmidt & Wenner [23] that reported 
measurements of Nusselt number on the surface of a cylinder as a 
function of θ for a number of different values of Reynolds number. Re =
15,550 is assumed. Standard properties of air at room temperature are 
used to convert Nu into h. The outer diameter of the cylinder in the 
present work is the same as the one used in the past work. Note that 
while the Nusselt number measurements were presented by Schmidt & 
Wenner [23] as discrete data, a 17-term harmonic fit is used to represent 
h as a function of θ for different values of Re and evaluate the various 

integrals needed in the theoretical model. Equations for these harmonic 
fits are presented in Appendix A. 

For these problem parameters, Fig. 2(a) and (b) plot the radial dis-
tribution of temperature rise at θ = π/2 and the circumferential distri-
bution on the outer surface, r = rM+1, respectively. Results are plotted for 
1, 2, 5, 10 and 20 eigenvalues. Both radial and circumferential plots 
show that while the results with only one eigenvalue are not accurate, 
there is rapid convergence thereafter. Even with two or five eigenvalues, 
the maximum error compared to the converged solution is less than 
4.3% and 1.7%, respectively. Results with 10 and 20 eigenvalues nearly 
coincide with each other. This shows good convergence of the series 
solutions discussed in this work, and indicates that around ten eigen-
values provide sufficient accuracy and that use of additional eigenvalues 
is not necessary. All subsequent analysis in this work is carried out with 
ten eigenvalues. 

In order to further validate the theoretical models developed in this 
work, results from the models are compared with finite-volume nu-
merical simulations. The geometry of a five-layer body is created and 
meshed. A mesh with approximately 500000 elements is used for com-
parison with the theoretical model. The simulation uses 200 iterations 
and a residual target of 10− 7. Accuracy of the simulation is verified 
through mesh independence study. Further, it is verified that making the 
number of iterations or residual target more stringent does not affect the 
computed temperature distribution. All parameters in the simulation are 
the same as the theoretical model for Fig. 2, except the thermal contact 
resistance, for which, a value of 10− 2 Km2/W is considered at each 
interface. For this problem, Fig. 3(a) plots radial temperature distribu-
tion at θ = 0 and θ = π/2, while Fig. 3(b) plots the circumferential 
temperature distribution on the outer surface. In both Figures, results 
from the theoretical model in Section 2.1 are compared with numerical 
simulations. Fig. 3(a) and (b) show excellent agreement between the 
theoretical model and numerical simulations. The theoretical model is 
able to correctly capture the radial temperature distribution, including 

Fig. 5. Comparison of analytical model with standard solution for a special case with constant h, Q and R. Radial temperature distribution predicted by the analytical 
model and standard solution are plotted for (a) a solid cylinder and (b) an annular cylinder. For the annular cylinder, the inner-most radius is 5 mm and hin = 20 
W/m2K. 

Fig. 6. Effect of Reynolds number on temperature distribution in a five-layer 
solid cylinder: Circumferential temperature distribution on the outer surface 
for five different values of Re. Other problem parameters are the same as Fig. 2. 

Fig. 7. Effect of thermal contact resistance on temperature distribution in a five-layer solid cylinder: (a) Radial temperature distribution at θ = π/3, and (b) 
Circumferential temperature distribution on the outer surface for four different values of thermal contact resistance at each interface for the problem discussed 
in Fig. 2. 
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discontinuities at interfaces for both θ = 0 and θ = π/2 directions. 
Similarly, the variation in the circumferential direction on the outer 
surface is correctly predicted by the theoretical model. As expected, 
Fig. 3(b) follows the expected trend in the temperature distribution 
based on the hout(θ) function, which is shown in the inset. Temperature 
goes up when hout(θ) goes down, and exhibits a maximum close to θ =
π/2, consistent with the minima in hout(θ) at the same location. 

A similar comparison between theoretical model and numerical 
simulation is carried out for the annular cylinder. In this case, the ge-
ometry and other problem parameters are identical to those considered 
in Fig. 3, except that the inner-most cylinder lies between r = 5 mm and 

r = 10 mm. A constant heat transfer coefficient hin = 40 W/m2K is 
modeled on the inner surface at r = 5 mm. The resulting radial and 
circumferential temperature distributions based on the theoretical 
model are shown in Fig. 4(a) and (b), respectively, and compared with 
numerical simulations. These Figures show excellent agreement be-
tween the two. Similar to Fig. 3(b), the circumferential temperature 
distribution in Fig. 4(b) also shows the expected trends based on the 
hout(θ) distribution. A key difference between the solid cylinder and 
annular cylinder results shown in Figs. 3 and 4, respectively, is in the 
slope of the radial temperature distribution at r = 0. While this slope is 
zero for the solid cylinder, the slope on the inner surface, r = 5 mm for 
the annular case is clearly non-zero, which is due to the presence of the 
convective boundary condition on the inner surface of the multilayer 
cylinder. 

For further validation of the theoretical model, results are compared 
with an analytical solution for a simplified case. For constant convective 
heat transfer coefficients, both the problems considered here become 
one-dimensional. The temperature rise as a function of r can be written 
for the solid cylinder as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T1(r) = −
Q1

4k1
r2 + d1

Ti(r) = −
Qi

4ki
r2 + ci ln(r) + di (i = 2, 3, 4, 5)

(40)  

where 

ci =
1

2ki

∑i

j=2
r2

j

(
Qj − Qj− 1

)
(i= 2, 3, 4, 5) (41a)     

Fig. 8. Effect of heat generation rate: Radial temperature distribution for a five-layer solid cylinder at θ = π/3 for two cases – (a) 105 W/m3 in only one layer; (b) Heat 
generation of different magnitudes in all layers. Thermal contact resistance is neglected and all other parameters are the same as in Fig. 2. 

Fig. 9. Temperature distribution on the inner surface of a two-layer annular 
cylinder due to variable heat transfer coefficient applied on both inner and 
outer surfaces. For comparison, a baseline case is also plotted where the heat 
transfer coefficient on the inner surface is uniform. 

Fig. 10. Temperature field in a cylindrical Li-ion cell surrounded by insulation material: (a) Circumferential temperature distribution on the outer surface at a 
discharge rate of 3; (b) Core temperature rise in the Li-ion cell as a function of discharge rate. 
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d5 =
Q5r2

6

4k5
+

Q5r6

2hout
− c5

[

ln(r6)+
k5

r6hout

]

(41d)  

and for the annular cylinder as 

Ti(r)= −
Qi

4ki
r2 + ci ln(r) + di (i= 1, 2, 3, 4, 5) (42)  

where 

c1 =
β2

α2
−

hout(α2β1 − α1β2)

α2(hinα2 − houtα1)
(43a)  

d1 =
α2β1 − α1β2

hinα2 − houtα1
(43b)  

ci = fic1 + gi (i = 2, 3, 4, 5) (43c)  

di = uic1 + d1 + wi (i= 2, 3, 4, 5) (43d)  

here 

α1 = hin ln(r1) −
k1

r1
(44a)  

β1 = −
Q1r1

2
+

hinQ1r2
1

4k1
(44b)  

α2 = houtf5 ln(r6)+ houtu5 +
k5f5

r6
(44c)  

β2 =
Q5r6

2
+

houtQ5r2
6

4k5
−

k5g5

r6
− houtg5 ln(r6) − houtw5 (44d)  

fi =
k1

ki
(44e)  

gi =
1

2ki

∑i

j=2
r2

j

(
Qj − Qj− 1

)
(44f)  

ui = k1

∑i

j=2

Rj

rj
− k1

∑i

j=2

(
1
kj
−

1
kj− 1

)

ln
(
rj
)

(44g)  

wi =
1
4

∑i

j=2
r2

j

(
Qj
kj
−

Qj− 1
kj− 1

)

+ 1
2

∑i

j=2

Rj
rj

∑j

m=2
r2

m(Qm − Qm− 1) −
1
2

∑i

j=2
RjQjrj

−
1
2
∑i

j=2

ln
(
rj
)

kj

∑j

m=2
r2

m(Qm − Qm− 1)+
1
2
∑i− 1

j=2

ln
(
rj+1

)

kj

∑j

m=2
r2

m(Qm − Qm− 1)

(44h) 

Fig. 5 compares the radial temperature distribution determined from 
the theoretical models in Sections 2.1 and 2.2 with closed-form solutions 
given by equations (40) and (42) for this special case with hout = 40 W/ 
m2K for both solid and annular cylinder, and, in addition, hin = 20 W/ 
m2K for the annular cylinder. There is excellent agreement between the 
two for both cases. 

The theoretical model is then used for investigating the effect of 

various problem parameters on the predicted temperature distribution. 
Fig. 6 plots the circumferential temperature distribution on the outer 
surface of the multilayer cylinder for five different values of Re. In each 
case, the hout(θ) function is obtained from previously reported Nusselt 
number measurements around a cylinder of the same outer radius [23]. 
Standard properties of air at room temperature are used for obtaining 
hout(θ) from Nu. Fig. 6 shows, as expected, that for each Re, the tem-
perature distribution follows the expected trends in keeping with the 
distribution of the convective heat transfer coefficient around the cyl-
inder. The temperature distribution is highest for the smallest value of 
Re, for which Nu and hout(θ) are the lowest. A maxima is observed in each 
case, just prior to θ = π/2, which is consistent with a minima in hout(θ) at 
the same location. 

The effect of thermal contact resistance between the layers is 
investigated using the theoretical model. Results are shown in Fig. 7 for 
four different cases. In each case, a constant thermal contact resistance is 
assumed at each interface, including the baseline case with no thermal 
contact resistance. Other problem parameters are the same as for Fig. 2. 
The radial and circumferential distributions of temperature rise for these 
cases are shown in Fig. 7. As expected, the case with zero thermal 
contact resistance shows continuous temperature distributions in the 
five regions. As shown in Fig. 7(a), the greater the thermal contact 
resistance, the larger is the temperature discontinuity. Fig. 7(a) also 
shows that for any given case, the temperature discontinuity is the 
largest on the innermost interface and smallest on the outermost inter-
face. This is because even though the heat passing through the outermost 
interface is the largest, the heat flux is lower due to the much larger 
surface area. In contrast, heat flux across the innermost interface is the 
largest due to the lowest surface area, and therefore, the temperature 
discontinuity due to thermal contact resistance is the largest. In contrast 
to the strong dependence of radial temperature distribution on the 
thermal contact resistance, there is relatively weaker impact of the 
thermal contact resistance on temperature distribution on the outer 
surface of the cylinder. Fig. 7(b) shows around 4.3% change in the peak 
temperature rise for the highest thermal contact resistance considered 
here compared to the baseline case. This is likely because temperature 
on the outer surface is influenced more by the local convective heat 
transfer coefficient than the thermal contact resistances inside the cyl-
inder. Moreover, despite the different thermal contact resistances, the 
net outward heat flux in steady state is the same for the four cases. 

Finally, the effect of internal heat generation is investigated. Two 
specific problems of interest are solved for the five-layer geometry using 
the theoretical model. In the first problem, five different cases are 
compared in which only one specific layer generates heat at a constant 
rate of 105 W/m3. In the second case, four different cases are considered, 
in which, all five layers generate varying amounts of heat. The tem-
perature distributions for these cases are shown in Fig. 8(a) and (b), 
respectively, which plot the radial temperature distribution at θ = π/3. 
In the first case, the temperature distribution is the largest when heat 
generation is in the outermost layer. Even though the outermost layer is 
closest to the cooling surface and the heat generation rate is the same for 
all five cases considered, this is attributable to the largest volume of the 
outer-most layer. As shown in Fig. 8(b), when all layers generate heat, 
the temperature rise goes up with increasing magnitude of the heat 

d1 =
1
4
∑5

j=2
r2

j

(
Qj− 1

kj− 1
−

Qj

kj

)

+
1
2
∑5

j=2
RjQjrj −

∑4

j=2
cj ln

(
rj+1

)
+

∑5

j=2
cj

[

ln
(
rj
)
−

kjRj

rj

]

+ d5 (41b)  

di =
1
4
∑5

j=i+1
r2

j

(
Qj− 1

kj− 1
−

Qj

kj

)

+
1
2
∑5

j=i+1
RjQjrj −

∑4

j=i
cj ln

(
rj+1

)
+

∑5

j=i+1
cj

[

ln
(
rj
)
−

kjRj

rj

]

+ d5 (i= 2, 3, 4) (41c)   
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generation rate. Note that Fig. 8(a) and (b) do not show temperature 
discontinuity between layers, which is because thermal contact resis-
tance is not considered in these problems. 

Fig. 9 plots temperature distribution on the inner surface of a two- 
layer annular cylinder where variable heat transfer coefficient is 
applied on both boundaries. In this case, the heat transfer coefficient 
applied on the outer surface corresponds to the Nusselt number for Re =
15,550 given in Appendix A, whereas the heat transfer coefficient 
applied on the inner surface is a top hat function, with a value of 80 W/ 
m2K between θ = π/3 and θ = 2π/3, and 40 W/m2K elsewhere. The inner 
cylinder extends from r = 5 mm to r = 10 mm, and the outer cylinder 
from r = 10 mm to r = 20 mm. Thermal conductivities are taken to be 1 
and 2 W/mK, respectively. Heat generation rates are 2 × 105 and 6 ×
104 W/m3, respectively. Thermal contact resistance of 0.01 Km2/W is 
assumed. For comparison, temperature distribution is also plotted for a 
case with the same outer surface heat transfer coefficient and a constant 
40 W/m2K inner heat transfer coefficient (baseline case). As shown in 
Fig. 9, there is reduced temperature between θ = π/3 and θ = 2π/3 
compared to the baseline case due to the greater local heat transfer 
coefficient. Interestingly, temperature in other regions is also lower than 
the baseline case. Note that there is circumferential variation in tem-
perature even for the baseline case where the inner heat transfer coef-
ficient is constant, because the outer heat transfer coefficient still has 
θ-dependence. 

Finally, the application of the theoretical model for solving a prac-
tical thermal management problem is discussed. Specifically, tempera-
ture distribution in a cylindrical Li-ion cell of 18 mm diameter 
surrounded by a 3 mm thick insulation layer is computed. The cell is 
assumed to generate heat at a rate determined by its discharge rate [26]. 
Thermal properties of the cell are taken from past work [27] and stan-
dard properties of polypropylene are used for the insulation layer. The 
two-layer cylinder is assumed to be cooled by cross-flow of air at Re =
170,000. The circumferential variation in h is obtained from Appendix 
A. Fig. 10(a) plots the circumferential temperature distribution at the 
cell-insulation interface for a discharge rate (C-rate) of 3. Further, 
Fig. 10(b) plots peak temperature rise in the cell as a function of the 
discharge rate. As expected, temperature goes up as the discharge rate 
increases due to the quadratic dependence of heat generation rate on 
discharge rate [26]. Further, the circumferential variation in the tem-
perature distribution is clearly seen in Fig. 10(a) due to the variation in 
the local convective heat transfer coefficient around the cylinder. A 
minima in h around θ = 80◦ is seen to result in a corresponding peak in 
temperature at the same location. These Figures demonstrate the capa-
bility of the theoretical model presented here to analyze thermal con-
duction in practical engineering problems involving multilayer 
cylinders. 

4. Conclusions 

The analytical model presented in this paper addresses the important 
problem of circumferentially-varying convective heat transfer on the 
surface of a multi-layer cylinder. The solution is derived in a form of an 
infinite series for each layer. Relationships between coefficients of 
various layers are derived, and the coefficients for the inner-most layer 
are shown to be governed by a set of algebraic equations. The resulting 
temperature distribution is shown to be in agreement with numerical 
simulations. The present model is used for parametric study of thermal 
conduction in multilayer cylinders of practical relevance. This work 
improves upon past theoretical models in which the heat transfer coef-
ficient is treated to be uniform, whereas in realistic conditions, there 
may be significant spatial variation. In addition, the solution method-
ology makes it possible to account for internal heat generation and 
thermal contact resistance between layers. These models improve our 
understanding of thermal conduction in multilayer cylindrical geome-
try. In addition, the solid and annular cylinder models presented in this 

work may help understand and improve the thermal performance of a 
variety of engineering systems. 
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Appendix A. Curve fits for Nu(θ) for various values of Re 

Discrete measurement data for Nu around the cylinder reported by 
Schmidt & Wenner [23] for various values of Re are curve-fit with a 
17-term harmonic equation. The resulting equations and parameter 
values are given below: 

Nu(θ) = (a0 + a1⋅cos(θ⋅ω) + b1⋅sin(θ⋅ω) + ae⋅cos(2⋅θ⋅ω) + b2⋅sin 
(2⋅θ⋅ω) + a3⋅cos(3⋅θ⋅ω) + b3⋅sin(3⋅θ⋅ω) + a4⋅cos(4⋅θ⋅ω) + b4⋅sin(4⋅θ⋅ω) 
+ a5⋅cos(5⋅θ⋅ω) + b5⋅sin(5⋅θ⋅ω) + a6⋅cos(6⋅θ⋅ω) + b6⋅sin(6⋅θ⋅ω) + a7⋅cos 
(7⋅θ⋅ω) + b7⋅sin(7⋅θ⋅ω) + a8⋅cos(8⋅θ⋅ω) + b8⋅sin(8⋅θ⋅ω)) (A1). 

Where. 
(a) Re = 15,550 
a0 = 78.89; e = 40.47; b1 = 10.68; a2 = − 3.924; b2 = 5.205; a3 =

− 0.07861; e = − 5.816; a4 = 2.779; b4 = 5.291; a5 = − 0.8624; b5 =

− 1.182; a6 = 2.533; b6 = 0.1599; a7 = − 0.1826; b7 = − 0.1108; a8 =

0.663; b8 = − 0.9456; ω = 0.03151;  

(a) Re = 39,800 

a0 = 142.7; a1 = 64.03; b1 = 7.351; a2 = − 9.513; b2 = 3.944; a3 =

3.17; b3 = − 10.9; a4 = − 0.5481; b4 = 4.798; a5 = − 2.037; b5 = − 4.906; 
a6 = 1.165; b6 = 1.916; a7 = − 1.989; b7 = − 1.437; a8 = 1.406; b8 =

0.1572; ω = 0.03387;  

(c) Re = 64,450 

a0 = 199.7; a1 = 84.7; b1 = − 18.89; a2 = − 14.66; b2 = 5.808; a3 =

− 5.415; b3 = − 18.61; a4 = 0.1731; b4 = 5.86; a5 = − 5.586; b5 = − 1.469; 
a6 = 2.664; b6 = − 1.669; a7 = − 2.843; b7 = 1.000; a8 = − 0.3577; b8 =

− 2.404; ω = 0.03219;  

(d) Re = 101,300 

a0 = 276.4; a1 = 94.87; b1 = − 50.58; a2 = − 16.56; b2 = 12.45; a3 =

− 11.2; b3 = − 24.89; a4 = 2.457; b4 = 4.946; a5 = − 9.306; b5 = − 0.6281; 
a6 = 1.242; b6 = − 4.341; a7 = − 2.698; b7 = 3.37; a8 = − 2.892; b8 =

− 2.799; ω = 0.0316; 
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(e) Re = 170,000 

a0 = 372.4; a1 = 94.49; b1 = − 9.922; a2 = − 54.39; b2 = 1.607; a3 =

24.47; b3 = 21.48; a4 = − 3.755; b4 = − 10.97; a5 = 1.185; b5 = 6.927; a6 
= 0.4804; b6 = − 0.9187; a7 = 2.368; b7 = 1.704; a8 = − 2.087; b8 =

− 2.066; ω = 0.04103; Note that θ is in degrees. 
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