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a b s t r a c t 

The local thermal non-equilibrium (LTNE) model has been extensively used to model convective heat 

transfer in porous media. Most of the past LTNE-based models account for thermal interactions between 

fluid and solid phases in the form of a constant Biot number ( Bi ). This work presents a local thermal 

non-equilibrium model for fully developed flow in a channel filled with a porous medium where Bi itself 

varies across the channel. A set of differential equations for fluid and solid phase temperature fields are 

derived under this condition, which are shown to be generalizations of previously presented results for 

constant Bi . Results from the present analysis are shown to reduce to and agree with past work for the 

special case of constant Bi . The variable Bi model is used to investigate the effect of thermal properties 

such as thermal conductivity on the fluid and solid temperature profiles. The nature of temperature dis- 

tributions are correlated with the spatial variation in Bi , including for parabolic and sinusoidal variation. 

Specifically, for periodic Bi , the locations of maxima and minima in temperature fields are found to be 

well correlated with corresponding maxima and minima in Bi . Nusselt number ( Nu ) for different values 

of thermal conductivities and heat generation rates are determined for variable Bi . This work accounts for 

an important physical consideration in porous media and generalizes previously-presented LTNE models 

for porous media in a channel. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fluid flow and heat transfer in a porous medium is a problem of 

uch theoretical and practical importance [1–4] . Thermal and fluid 

ransport in porous media occur in a wide variety of engineering 

pplications, including electronics cooling [5] , oil and gas extrac- 

ion [6] , bioengineering [7] and energy storage [8] . A typical sce- 

ario in a porous medium involves fluid flow through a two-phase 

egion comprising solid and fluid phases with a certain porosity, 

long with heat exchange with the surroundings through appro- 

riate boundary conditions. A wide variety of coupled and often 

on-linear physical processes have been modeled and analyzed in 

he context of heat transfer and fluid flow in a porous medium. 

he comprehensive literature in this field has been summarized in 

ell-known handbooks [1–4] . 

The simplest approach for solving porous medium heat trans- 

er problems involves the assumption of local thermal equilibrium 

LTE) between the solid and liquid phases of the porous medium 

9] . The LTE assumption may be valid when the solid and fluid 

hases do not locally exchange heat, or when the thermal conduc- 
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ivities of the two phases are similar, leading to equal local tem- 

erature of the two phases. In contrast, an alternate approach of 

ocal thermal non-equilibrium (LTNE) has been developed in the 

ast few decades [10, 11] to account for local heat exchange and 

ocal temperature difference between the two phases. In the LTNE 

pproach, the solid and fluid temperature fields are assumed to 

e distinct, and coupled with each other through a local convec- 

ive heat transfer coefficient that governs the rate of local heat ex- 

hange between the two phases. The LTNE approach has been used 

or modeling heat transfer in porous media in a variety of sce- 

arios. For example, LTNE condition has been used to investigate 

emperature gradient bifurcation in a channel filled with a porous 

edium [ 11 ]. Analytical solutions and their limitations for different 

onditions at the porous-fluid interface have been discussed heat 

ransfer due to natural convection in a porous media using both 

TE and LTNE conditions has been investigated [12] . Different types 

f boundary conditions for transpiration cooling have been inves- 

igated using a LTNE model [13] . Exact solutions for heat transfer 

nd fluid flow in a partially porous parallel-plate [14] and a pipe 

15] with LTNE conditions have been presented. Results showed 

hat the Nusselt number is greater in partially porous channels 

ompared to a fully porous channel. Temperature distribution and 

usselt number in a partially filled channel for two different in- 

https://doi.org/10.1016/j.ijheatmasstransfer.2020.120538
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2020.120538&domain=pdf
mailto:jaina@uta.edu
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120538


M. Parhizi, M. Torabi and A. Jain International Journal of Heat and Mass Transfer 164 (2021) 120538 

t

p

o

m

t

[

i

j

[

i

a

e

a

h

i

a

a

m

t

t  

M

a

[

t

s

a

a

p  

n

p

t

t

t

p

i

t

i

c

M

[  

p

a

n

t

F

d

d

f

o

t

fl

t

t

t

t  

u

S

b

m

b

a

n

t

e

c

t

b

a

t

h

b

c

m

2

A

s

t

m

v

s

s

o

i

b

h

b

n

Nomenclature 

Bi Biot number, Bi (η) = 

h i αH 2 

k s, eff

c p specific heat of the fluid (J kg −1 K 

−1 ) 

h i interstitial heat transfer coefficient (W m 

−2 K 

−1 ) 

h w 

wall heat transfer coefficient (W m 

−2 K 

−1 ) 

H half height of the channel (m) 

K permeability (m 

−2 ) 

k ratio of thermal conductivities, k = 

k f, eff

k s, eff

k eff effective thermal conductivity (W m 

−1 K 

−1 ) 

Nu Nusselt number 

p pressure (N m 

−2 ) 

q w 

heat flux at the wall (W m 

−2 ) 

S internal heat generation (W m 

−3 ) 

T temperature (K) 

u fluid velocity (m s −1 ) 

x horizontal coordinate (m) 

y vertical coordinate (m) 

α specific interfacial area in the porous medium (m 

−1 ) 

β non-dimensional heat generation parameter, β = 

S s H 
q w 

η non-dimensional coordinate, η = 

y 
H 

μ dynamic viscosity (kg m 

−1 s −1 ) 

θ non-dimensional temperature, defined as 

θ = 

k s,e f f ( T −T w ) 

H q w 
for model A and θ = 

k s,e f f ( T −T s,w ) 

H q w 
for 

model B 

θ f,b non-dimensional bulk mean temperature of the 

fluid 

ω non-dimensional frequency 

Subscripts 

f fluid 

s solid 

w wall 

erface heat flux conditions – equal heat flux between the two 

hases and heat flux division based on the thermal conductivities 

f the two phases – were investigated and compared [16, 17] . Ther- 

al behavior and entropy generation rate in a channel with a par- 

ially porous medium under LTNE conditions has been investigated 

18] . Heat transfer in the thermally developing region [19, 20] and 

n the slip regime [21] has been modeled. Exact solutions for con- 

ugate heat transfer involving porous media have been presented 

22] . An exact solution has also been presented for pulsating flow 

n a porous medium under the LTNE assumption [23] . 

The modeling of two different tem perature fields for the solid 

nd fluid phases in the LTNE approach necessitates careful consid- 

ration of the boundary condition on the domain surfaces. For ex- 

mple, in flow through a channel filled with a porous medium and 

eated up from the channel wall, the thermal boundary condition 

s quite straightforward for the LTE approach. However, in the LTNE 

pproach, the distribution of the wall heat flux between the solid 

nd fluid phases is not clear. To address this problem, two distinct 

odels have been proposed [24, 25] . In a model commonly referred 

o as model A, the temperature of the solid and fluid phases at 

he wall are assumed to be the same as the wall temperature [24] .

odel B, on the other hand, assumes the heat flux into the solid 

nd fluid phases to both be equal to the imposed wall heat flux 

25] . Both models result in distinct temperature distributions and 

emperature bifurcation between the two phases, which has been 

tudied in detail, including the effect of internal heat generation 

nd thermal properties [11, 26] . The LTNE approach has also been 

nalyzed in the context of a channel that is filled partially with a 
2 
orous medium, and the rest with a pure fluid [26] , as such sce-

arios are of practical importance in microreactors and other ap- 

lications [27] . 

A key feature of the LTNE approach is the local interstitial heat 

ransfer coefficient, h , that governs local heat transfer between the 

wo phases. This term appears in the local convective heat transfer 

erm in the governing energy equation for the solid and fluid tem- 

eratures, typically removing heat from one equation and adding 

t to the other [10, 24] . When non-dimensionalizing the equations, 

his term leads to the Biot number, Bi , given by Bi = 

h i αH 2 

k s,e f f 
, where α

s the interfacial area per unit volume, k s,eff is the effective thermal 

onductivity of the solid phase and H is the channel half-width. 

ost of the LTNE literature assumes Bi to be a constant parameter 

10, 11, 24, 25] , and analyzes the impact of the value of Bi on tem-

erature distribution, temperature bifurcation between the phases, 

nd the wall heat transfer. However, there may be practical sce- 

arios where Bi may not be constant throughout the channel due 

o spatial variations in one or more parameters that constitute Bi . 

or example, α may vary over the channel if the porous medium 

oes not have uniform composition. For example, it is possible to 

esign functionally graded materials with spatially varying inter- 

acial area per unit volume [28] . Spatial variations in Bi may also 

ccur due to manufacturing variations or defects. The local convec- 

ive heat transfer coefficient may also vary over the channel due to 

ow variations. In scenarios where such effects may be important, 

he traditional LTNE approach of assuming constant Bi may need 

o be generalized. Some past work is available on analysis of heat 

ransfer in layered porous media, where each layer may have a dis- 

inct Bi [29, 30] . However, it is desirable to generalize this to a sit-

ation where Bi varies smoothly over the entire porous medium. 

pecifically, periodic or polynomial spatial distribution of Bi may 

e of particular interest, since distributions of other nature can be 

odeled on the basis of such simpler, fundamental functions. 

This paper presents theoretical analysis of temperature distri- 

ution in a channel filled with a porous medium using the LTNE 

pproach while assuming a non-uniform distribution of the Biot 

umber. Fourth-order ordinary differential equations (ODEs) for 

he solid and fluid temperatures are derived. These ODEs are gen- 

ralizations of prior results that were based on the assumption of 

onstant Bi . While analytical solutions for these ODEs are difficult 

o obtain for even the simplest Bi distribution, the equations can 

e easily solved numerically. Solutions of the governing ODEs are 

nalyzed to understand the effect of Biot number distribution on 

he temperatures of the two phases, the thermal bifurcation and 

eat exchange with the wall as represented by the Nusselt num- 

er. The theoretical results discussed in this paper generalize the 

onstant Bi LTNE approach for a practically relevant scenario, and 

ay be of importance in multiple engineering applications. 

. Mathematical modeling 

Fig. 1 shows a schematic of the geometry under consideration. 

 channel of half-width H and fully filled with a porous medium 

ubjected to steady, incompressible and laminar fluid flow across 

he channel and uniform heat flux from the channel wall. Ther- 

ally and hydrodynamically developed conditions are assumed. A 

ariation in the Biot number is assumed in the y direction, de- 

cribed by a given functional form. A uniform fluid flow is as- 

umed, which is governed by Darcy model due to the small value 

f the microscale Reynolds number [31] . Internal heat generation 

s assumed to occur in the fluid and solid phases, which could 

e due to chemical reaction, conversion of electrical energy into 

eat or radiative absorption [27] . All parameters are assumed to 

e temperature-independent. Thermal dispersion effects [32] are 

eglected. Heat transfer due to radiation and natural convection is 
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Fig. 1. Schematic of the problem comprising a porous channel with spatially- 

varying Biot number. The channel is being heated with constant heat flux from the 

wall. 
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ssumed to be negligible. Viscous heat dissipation is also ignored. 

nder these assumptions, the momentum equation for fluid flow 

s given by the Darcy model: 

μ f 

K 

u = 

dp 

dx 
(1) 

hich simply indicates a constant fluid velocity in the porous 

edium. 

The solid and fluid temperatures have been shown to be gov- 

rned by the following energy conservation differential equations 

 11 ]: 

 f,e f f 

∂ 2 T f 
∂ y 2 

+ h i α
(
T s − T f 

)
+ S f = ρC p u 

∂ T f 
∂x 

(2) 

 s,e f f 

∂ 2 T s 
∂ y 2 

− h i α
(
T s − T f 

)
+ S s = 0 (3) 

Symmetry about the center-line results in the following bound- 

ry conditions 

∂T f 

∂y 

)
y =0 

= 

(
∂T s 

∂y 

)
y =0 

= 0 (4) 

Additional boundary conditions are obtained based on the as- 

umed nature of thermal interaction between the two phases and 

he wall. The solution for temperature distribution with variable Bi 

s derived in the next sub-sections for two most commonly used 

odels for this purpose. 

.1. Model A 

Model A assumes the two phases to have the same temperature 

t the wall, i.e. 

 f = T s = T w 

at y = H (5) 

To simplify, the two energy conservation equations are added 

nd integrated over the channel to derive an expression for the 

dvection term in Eq. (2) assuming that the total wall heat flux 

s equal to the addition of heat fluxes of solid and liquid phase 

t the wall. Doing so has been shown to result in elimination of 

 f , the internal heat generation in the fluid [11] . Based on the

on-dimensionalization scheme summarized in the nomenclature 

ection, the following non-dimensional governing equations and 

oundary conditions can be derived for the fluid and solid phase 

emperature fields, θ f and θ s : 

θ
′′ 
f + Bi ( η) 

(
θs − θ f 

)
= 1 + β (6) 
3 
′′ 
s − Bi ( η) 

(
θs − θ f 

)
+ β = 0 (7) 

f ( 1 ) = 0 (8) 

s ( 1 ) = 0 (9) 

′ 
f ( 0 ) = 0 (10) 

′ 
s ( 0 ) = 0 (11) 

here the prime signs refer to differentiation with respect to the 

patial variable η. 

The solid temperature θ s can be written explicitly as a func- 

ion of θ f and its derivatives using Eq. (6) . Similarly, Eq. (7) can 

e rewritten to express θ f as a function of θ s and its derivatives. 

herefore, the following expressions can be obtained for θ f and θ s : 

f = − 1 

Bi 

(
θ

′′ 
s + β

)
+ θs (12) 

s = 

1 

Bi 

(
1 + β − kθ

′′ 
f 

)
+ θ f (13) 

While past work has proceeded to uncouple and solve these 

quations under the assumption of a constant Bi , this work consid- 

rs a generalized scenario where the Bi number varies over space, 

.e. Bi = Bi( η) . In such a case, differentiating Eq. (12) with respect to

once and twice results in: 

′ 
f = −θ ′′ ′ 

s 

Bi 
+ 

Bi ′ θ ′′ 
s 

B i 2 
+ θ ′ 

s + β
Bi ′ 
B i 2 

(14) 

′′ 
f = −θ ′′ ′ 

s 

Bi 
+ 2 

Bi ′ 
B i 2 

θ ′′ ′ 
s + θ ′′ 

s 

(
1 + 

Bi ′′ 
B i 2 

− 2 

B i ′ 2 
B i 3 

)
+ β

(
Bi ′′ 
B i 2 

− 2 

B i ′ 2 

B i 3 

)

(15) 

here the prime signs refer to differentiation with respect to the 

patial variable η. 

Substituting Eq. (15) into Eq. (6) results in the following fourth 

rder ODE for θ s : 

θ ′′ ′′ 
s − 2 k 

Bi ′ 
Bi 

θ ′′ ′ 
s − Bi ( 1 + k ) θ ′′ 

s − k 

(
Bi ′′ 
Bi 

− 2 

B i ′ 2 
B i 2 

)
θ ′′ 

s 

− kβ

(
Bi ′′ 
Bi 

− 2 

B i ′ 2 
B i 2 

)
= −Bi (16) 

Two boundary conditions for Eq. (16) are already available in 

q. (9) and Eq. (11) . Since Eq. (16) is a fourth-order differential 

quation, two more boundary conditions are required for the prob- 

em to be completely defined. These extra equations can be derived 

y using Eqs. (8) –(11) in Eq. (7) . Eqs. (8) and (9) can be simply sub-

tituted in Eq. (7) and the following boundary condition for θ ′′ 
s is 

btained. 

′′ 
s ( 1 ) = −β (17) 

Moreover, Eq. (7) can be differentiated, followed by use of 

qs. (10) and (11) to obtain the following boundary condition for 
′′ ′ 
s . 

′′ ′ 
s ( 0 ) − Bi ′ ( 0 ) 

(
θs ( 0 ) − θ f ( 0 ) 

)
= 0 (18) 

Note that the solid and fluid temperature boundary conditions 

re still coupled in Eq. (18) . However, since the channel is assumed 

o be symmetric about the center-line, it is reasonable to assume 

he Bi distribution to be symmetric as well. Therefore, Bi ′ ( η) must 
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e zero at η= 0, and Eq. (18) can be simplified as follows: 

′′ ′ 
s ( 0 ) = 0 (19) 

Eqs. (16) , (9) , (11) , (17) and (19) represent the fourth-order ODE 

nd four associated boundary conditions for the solid phase tem- 

erature distribution. Note that the ODE in Eq. (16) represents a 

eneralization of the previously reported ODE for constant Bi case. 

q. (16) can be shown to reduce to the constant Bi case when spa-

ial variation in Bi is neglected by setting all derivatives of Bi to 

ero in Eq. (16) . 

Unfortunately, Eq. (16) is much more complicated than the 

reviously-reported ODE for the constant Bi case [11] . In the more 

eneral case considered here, an analytical solution of Eq. (16) does 

ot appear to be possible, even for relatively simple Bi functions. 

Similar to θ s , the uncoupled ODE for θ f can be derived, starting 

y differentiating Eq. (13) once and twice to result in 

′ 
s = −1 + β

Bi 2 
Bi ′ + θ ′ 

f − k 

(
θ ′′ ′ 

f 

Bi 
−

Bi ′ θ ′′ 
f 

Bi 2 

)
(20) 

nd 

′′ 
s = − k 

Bi 
θ ′′ ′′ 

f + 2 k 
Bi ′ 
B i 2 

θ ′′ ′ 
f + 

(
1 + k 

Bi ′′ 
B i 2 

− 2 k 
B i ′ 2 
B i 3 

)
θ ′′ 

f 

+ ( 1 + β) 

(
2 

B i ′ 2 

B i 3 
− Bi ′′ 

B i 2 

)
(21) 

Substituting Eq. (21) into Eq. (7) gives the fourth-order differ- 

ntial equation for θ f 

θ ′′ ′′ 
f − 2 k 

Bi ′ 
Bi 

θ ′′ ′ 
f − Bi ( 1 + k ) θ ′′ 

f − k 

(
Bi ′′ 
Bi 

− 2 

B i ′ 2 
B i 2 

)
θ ′′ 

f 

− ( 1 + β) 

(
2 

B i ′ 2 

B i 3 
− Bi ′′ 

B i 2 

)
= −Bi (22) 

Similar to the previous case, two boundary conditions are al- 

eady available from Eq. (8) and Eq. (10) . Two additional boundary 

onditions needed to solve Eq. (22) can be obtained by utilizing 

qs. (8) –(10) as follows: 

′′ 
f ( 1 ) = 

1 + β

k 
(23) 

′′ ′ 
f ( 0 ) = 0 (24) 

Note that, similar to θ s , the assumption of symmetric Bi( η) 

bout the centerline is necessary for obtaining fully uncoupled 

quations for θ f . This assumption is justified because of the as- 

umption of symmetry in the temperature fields in this problem. 

imilar to Eq. (16) , Eq. (22) is a generalization of the constant Bi

ase presented in the past, and can be easily shown to reduce to 

he previously-presented result when all derivatives of Bi are taken 

o be zero. 

.2. Model B 

In Model B, the heat flux into both liquid and solid phases is 

aken to be the wall flux q w 

, i.e., 

 w 

= k s, eff

(
∂T f 

∂y 

)
y = H 

(25) 

 w 

= k f, eff

(
∂T f 

∂y 

)
y = H 

(26) 

The fluid and solid temperatures at the wall are no longer 

qual to each other. In this case, a commonly used non- 

imensionalization scheme is [11] : 
4 
s = 

k s,e f f ( T s − T s,w 

) 

H q w 

(27) 

f = 

k s,e f f 

(
T f − T s,w 

)
H q w 

(28) 

here T s,w 

is the temperature of the solid at the wall. Based on 

hese definitions, the non-dimensional governing equations and 

oundary conditions can be written as: 

θ ′′ 
f + Bi ( η) 

(
θs − θ f 

)
= 2 + β (29) 

′′ 
s − Bi 

(
θs − θ f 

)
+ β = 0 (30) 

s ( 1 ) = 0 (31) 

′ 
f ( 1 ) = 

1 

k 
(32) 

′ 
s ( 0 ) = 0 (33) 

′ 
f ( 0 ) = 0 (34) 

ote that Eq. (31) results from the non-dimensionalization given 

y Eq. (27) . Similar to the process followed for model A, explicit 

ncoupled equations for θ f and θ s can be derived for model B as 

ollows: 

θ ′′ ′′ 
s − 2 k 

Bi ′ 
Bi 

θ ′′ ′ 
s − Bi ( 1 + k ) θ ′′ 

s − k 

(
Bi ′′ 
Bi 

− 2 

B i ′ 2 
B i 2 

)
θ ′′ 

s 

− kβ

(
Bi ′′ 
Bi 

− 2 

B i ′ 2 
B i 2 

)
= −2 Bi (35) 

θ ′′ ′′ 
f − 2 k 

Bi ′ 
Bi 

θ ′′ ′ 
f − Bi ( 1 + k ) θ ′′ 

f − k 

(
Bi ′′ 
Bi 

− 2 

B i ′ 2 
B i 2 

)
θ ′′ 

f 

− ( 2 + β) 

(
2 

B i ′ 2 

B i 3 
− Bi ′′ 

B i 2 

)
= −2 Bi (36) 

In order to derive additional boundary conditions for 

qs. (35) and (36) , Eqs. (33) and (34) is substituted into 

qs. (29) and (30) . Further, Eqs. (31) and (32) are substituted 

nto Eqs. (29) and (30) , respectively. Using the assumption of 

ymmetric Bi about the center-line, this results in 

′′ ′ 
s ( 0 ) = 0 (37) 

′′ ′ 
f ( 0 ) = 0 (38) 

θ ′′ 
f ( 1 ) − Bi ( 1 ) θ f ( 1 ) = 2 + β (39) 

′′ ′ 
s ( 1 ) + Bi ′ ( 1 ) θ f ( 1 ) − Bi ( 1 ) 

(
θ ′ 

s ( 1 ) − 1 

k 

)
= 0 (40) 

The ODE in Eq. (36) , along with boundary conditions given 

y Eqs. (32) , (34) , (38) and (39) represents a well-defined set of 

quations for θ f . Once the fluid temperature field is solved, the 

olid temperature field is also well-defined by Eqs. (31) , (33) , (35) ,

37) and (40) , treating the θ f (1) term in Eq. (40) as a given con- 

tant based on the solution of the fluid temperature distribution. 

imilar to model A, the differential equations for θ f and θ s are un- 

ikely to have an explicit solution even for simple Bi expressions, 

nd may need to be solved numerically for most practical cases. 



M. Parhizi, M. Torabi and A. Jain International Journal of Heat and Mass Transfer 164 (2021) 120538 

2

t

m

M

N

w

θ

w

c

a

c

i  

t

3

(

d

f

c

y

j

o

3

p

&

m  

c

t

F

f  

o

s

F

a

V

a

p

s

c  

F

–

p

r

p

p

h

3

t

t

i

f

c

q

c  

s  

r

e

F  

p  

a

i  

m

m

fl

B  

s

o  

o

a

t

p

.3. Nusselt number calculations 

Once the temperature profile is determined, the temperature of 

he fluid, θ f , can be used to calculate the Nusselt number. The 

athematical expression for calculating the Nusselt number for 

odel A is given in Yang and Vafai [11] as follows: 

u = − 4 

k θ f,b 

(41) 

here θ f is the non-dimensional bulk temperature defined as: 

f,b = 

∫ 1 η=0 θ f ( η) udη

〈 u 〉 (42) 

here 〈 u 〉 is the average velocity over the cross section of the 

hannel. Note that since the ODEs in this work are not solved 

nalytically, therefore, the expression for θ f is not available in a 

losed form. However, once θ f is determined by numerically solv- 

ng Eq. (22) , the integration in Eq. (42) can be carried out in order

o determine the Nusselt number as a function of η. 

. Results and discussion 

The governing ordinary differential Eqs. (16) , (22) , (35) and 

36) for models A and B are solved numerically using a fourth or- 

er method boundary value problem solver. In this method, the 

ourth-order differential equations are re-written as a system of 

oupled, first order ordinary differential equations of the form 

 

′ = f(x,y) . The solver then integrates this system of equations sub- 

ect to the defined boundary conditions using a six-stage, fifth- 

rder Runge Kutta method. 

.1. Model validation 

Results from the model presented in Section 2 are first com- 

ared with past work that the present model generalizes. Yang 

 Vafai have presented the temperature bifurcation for a porous 

edium in a channel for the case of a constant Bi [11] . For this

omparison, a constant Bi input is provided to the numerical code 

hat solves the general governing equations derived in Section 2 . 

ig. 2 plots temperature profile in both liquid and solid regions as a 

unction of η for Bi = 50, k = 10 and β= 5. Curves show results based

n the present model for the special case of constant Bi , while 

ymbols show results from Yang & Vafai [11] . There is excellent 
ig. 2. Validation against past work by Yang & Vafai [11] : Temperature profiles, θ f 

nd θ s , as a function of η for models A and B for the special case of constant Bi = 50. 

alues of β and k are 5 and 10, respectively. 
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5 
greement between the two. The present model is able to correctly 

redict the temperature bifurcation in the constant Bi case, as pre- 

ented earlier by Yang & Vafai [11] . 

To further validate the present model, Nusselt number is cal- 

ulated as a function of Bi and k for Model A. This is shown in

ig. 3 (a) and (b) for two different values of the heat generation rate 

β= 5 and β= -0.5. These values are chosen to match the problem 

arameters used by Yang & Vafai [11] . Comparison of the present 

esult with Yang & Vafai (please refer to Fig. 6(a) and (b) in their 

aper) shows that there is excellent agreement between the result 

resented here and the past work. 

Figs. 2 and 3 demonstrate that the variable Bi model presented 

ere agrees well with past work for the special case of constant Bi . 

.2. Temperature distribution for periodic and quadratic Bi 

The model presented in Section 2 is used to plot solid and fluid 

emperature distributions for several different functions describing 

he variation of Bi within the channel. Specific functions of interest 

nclude sinusoidal and polynomial (quadratic) functions. Sinusoidal 

unctions are of interest since any general well-behaved function 

an be represented by a series of sine functions with different fre- 

uencies. 

Fig. 4 presents plots for solid and fluid temperatures in the 

hannel for Bi (η) = 50( 1 + cos ( 2 πωη) ) , with k = 1 and β= 5. Re-

ults for Model A and Model B are presented in Fig. 4 (a) and (b),

espectively. Three different frequencies ω= 1, 2 and 3 are consid- 

red. The periodic behavior of the temperature profile seen in both 

ig. 4 (a) and (b) is consistent with the periodicity of Bi . For exam-

le, for ω= 1, both Fig. 4 (a) and (b) shows maximum θ s at η= 0.55

nd minimum θ f at η= 0.46, both close to the location of the min- 

ma for Bi at η= 0.5. For ω= 2, Bi has maxima at η= 0.5, and two

inima at η= 0.25 and η= 0.75. As expected, these lead to mini- 

um and maximum temperature difference between the solid and 

uid close to these locations, respectively, for both Models A and 

 as shown in Fig. 4 (a) and (b). Results for ω= 3 are similarly con-

istent. Note that in this case, the ratio of thermal conductivities 

f solid and fluid, k is 1, due to which, changes in θs and θ f are

f the same order. Also, note that the solid and fluid temperatures 

t the wall are both zero for Model A. On the other hand, only 

he solid temperature at the wall is zero for Model B, which is ex- 

ected based on the wall boundary conditions. 

Fig. 5 presents results for a similar problem with the same si- 

usoidal Bi as Fig. 4 . However, in this case, k = 10, which represents

ignificant difference in thermal conductivity of the solid and fluid 

hases. Results for Models A and B are presented in Fig. 5 (a) and

b), respectively. Similar to Fig. 4 , these temperature profiles are 

onsistent with the nature of Bi for different frequencies. Com- 

ared to Fig. 4 , the much larger fluid phase thermal conductivity 

ompared to that of the solid results in significant variation in θ s 

ut relatively smaller changes in θ f . This is particularly evident for 

odel A, where the fluid temperature distribution is nearly the 

ame over the entire η range for each of the three frequencies 

onsidered here. Similar to Fig. 4 , solid and fluid temperatures con- 

erge to a value of zero at the wall for Model A. On the other hand,

or Model B, only the solid temperature is zero at the wall. 

Figs. 6 and 7 present similar analysis for a quadratically vary- 

ng Bi , given by Bi (η) = B i 0 ( 1 − η2 ) . The values of thermal conduc-

ivity ratio are k = 1 and k = 10 in Figs. 6 and 7 , respectively. Re-

ults are presented for different values of Bi 0 , and for both Models 

 and B. Both Figures show that the slope of the solid and fluid 

emperatures become zero at the centerline, which is expected 

rom both mathematical equations and physical considerations for 

he problem. While Bi is modeled to be a function of space here, 

ig. 6 shows that as the magnitude of Bi 0 increases, the difference 

etween the solid and fluid temperatures reduces. This occurs be- 
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Fig. 3. Nusselt number as a function of k and Bi computed using the present work for the special case of constant Bi number: (a) β= 5 and (b) β= -0.5. 

Fig. 4. Temperature distributions for periodic Bi : Plots of θ f and θ s as functions of η for Bi (η) = 50( 1 + cos ( 2 πωη) ) with ω= 1, 2 & 3, k = 1, β= 5. (a) Model A and (b) Model 

B. 

Fig. 5. Temperature distributions for periodic Bi : Plots of θ f and θ s as functions of η for Bi (η) = 50( 1 + cos ( 2 πωη) ) with ω= 1, 2 & 3, k = 10, β= 5. (a) Model A and (b) Model 

B. 
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ause a greater value of Bi 0 results in greater localized heat trans- 

er between the two phases and thus greater thermal homogene- 

ty. For Model A, the fluid and solid curves converge towards each 

ther as η increases, and at the wall, the fluid and solid tempera- 

ures are equal to each other for model A. This is expected since 

odel A explicitly requires fluid and solid temperatures to match 

t the wall. There is no such requirement for model B, which is 

hy, the θ f and θ s curves in Figs. 6 (b) and 7 (b) do not converge at

he wall. 

It is instructive to compare Figs. 6 (a) and 7 (a) that present re-

ults for model A at two different values of k . This comparison 

hows that increasing the value of k results in weaker dependence 

f fluid temperature on the imposed Bi . This likely occurs due to 
t

6 
arger fluid thermal conductivity compared to solid thermal con- 

uctivity at large value of k . On the other hand, the solid temper- 

ture becomes more strongly dependent on Bi as k increases. In 

omparison, Figs. 6 (b) and 7 (b) for model B show that the solid 

nd fluid temperatures are not as strongly influenced by k in this 

ase. 

.3. Nusselt number calculations 

As discussed in Section 2.3 , the value of Nusselt number is 

alculated for a number of scenarios involving sinusoidal and 

uadratic Bi variations. Fig. 8 plots Nu as a function of k for 

hree different sinusoidal functions similar to ones considered in 
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Fig. 6. Temperature distributions for parabolic Bi : Plots of θ f and θ s as functions of η for Bi (η) = B i 0 ( 1 − η2 ) with different values of Bi 0 and k = 1, β= 5. (a) Model A and (b) 

Model B. 

Fig. 7. Temperature distributions for parabolic Bi : Plots of θ f and θ s as functions of η for Bi (η) = B i 0 ( 1 − η2 ) with different values of Bi 0 and k = 10, β= 5. (a) Model A and 

(b) Model B. 

Fig. 8. Nusselt number as a function of k for Bi (η) = 50( 1 + cos ( 2 πωη) ) with ω= 1,2 & 3: (a) β= 0.5, (b) β= 50. Both sub-plots are for Model A. The dashed line represents 

constant Bi = 50 case for comparison. 
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igs. 4 and 5 . Fig. 8 (a) and (b) plot these data for Model A and for

= 0.5 and β= 50, respectively. As expected, by using higher val- 

es for β that represents internal heat generation, the ability of 

he system to cool down the channel decreases. As a result, the 

usselt number decreases as β increases. Moreover, both figures 

how that by increasing the frequency, the overall Biot number 

ecomes closer to the mean value of 50. As a result, the curves 

pproach the constant Bi curve, also shown in Fig. 8 (a) and (b), 

s frequency increases. An interesting observation is that by in- 

reasing the internal heat generation parameter β , the characteris- 

ic of the system goes more toward LTNE. Consequently, the curves 

hown in Fig. 8 are much more sensitive to the frequency of Biot 

umber variation at the larger value of β considered here. On the 
7 
ther hand, at β = 0.5, the frequency of Bi has lesser influence 

n Nu . 

Fig. 9 examines the impact of internal heat generation parame- 

er β on Nusselt number at two different values of thermal con- 

uctivity ratio k for model A. Both Fig. 9 (a) and (b) show that 

ncreasing the internal heat generation rate decreases the overall 

ooling characteristic of the system, and consequently decreases 

u , which is as expected. The effect of frequency is also clearly 

een in these Figures. Similar to Fig. 8 , the curves approach the 

onstant Bi curve as the frequency increases. It is interesting to 

ote that in both figures, for low values of β , Nu is not strongly 

ependent on the frequency, whereas at larger values of β , the 

urves for three values of frequency are more distinct. Similar to 
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Fig. 9. Nusselt number as a function of β for Bi (η) = 50( 1 + cos ( 2 πωη) ) with ω= 1,2 & 3: (a) k = 1, (b) k = 10. Both sub-plots are for Model A. The dashed line represents 

constant Bi = 50 case for comparison. 

Fig. 10. Nusselt number as a function of k for Bi (η) = 50 , Bi (η) = 50( 1 − η2 ) and Bi (η) = 50( 1 + η2 ) for (a) β= 0.5 and (b) β= 50. 

Fig. 11. Nusselt number as a function of β for Bi (η) = 50 , Bi (η) = 50( 1 − η2 ) , Bi (η) = 50( 1 + η2 ) , Bi (η) = 50( 1 − 2 η2 ) and Bi (η) = 50( 1 + 2 η2 ) for: (a) k = 1 and (b) k = 10. 
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ig. 8 , increasing the thermal conductivity ratio from 1 to 10, i.e., 

ncreasing the effective thermal conductivity of fluid compared to 

hat of solid, results in reduction in Nu. This is particularly appar- 

nt for low internal heat generation values. 

The dependence of Nu on various problem parameters for a 

uadratic Bi is presented in Figs. 10 and 11 . Two specific func- 

ions Bi = 50(1- η2 ) and Bi = 50(1 + η2 ) are considered and compared

ith the constant Bi = 50 case. These functions increase and re- 

uce the average value of Bi in the channel, respectively. Similar to 

igs. 8 and 9 , Fig. 10 examines the dependence of Nu on k for two

ifferent values of β , and Fig. 11 presents the dependence of Nu on 

for two different values of k . These results show that the positive 

uadratic function Bi = 50(1 + η2 ) results in more homogeneous tem- 

erature within the porous medium, thereby resulting in increased 

alue of Nu . On the other hand, temperature becomes less homo- 

eneous, and therefore, Nu decreases when the negative quadratic 
n

8 
unction Bi = 50(1- η2 ) is used. This effect is more pronounced for 

arger values of β . Fig. 11 presents similar plots for multiple func- 

ions Bi = 50(1 ±A η2 ) , with A = 1 and 2. Similar to Figs. 8 and 9 , the

urves deviate more and more from the constant Bi case as the 

alue of A increases. 

. Conclusions 

Local thermal non-equilibrium (LTNE) is an important model for 

nderstanding and optimizing thermal and flow phenomena in a 

orous medium. With the advent of functionally graded materials, 

t is becoming possible to design porous materials with spatially 

istributed properties. This necessitates the development of LTNE 

odels that account for such spatial distribution. The present work 

ddresses this need by accounting for spatial variation in the Biot 

umber, which, in past work, has always been assumed to be in- 
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ariant. The resulting governing equations for the fluid and solid 

emperatures represent generalizations of past, constant Bi work, 

nd account for arbitrary variations in Bi within the channel. The 

quations are solved for a variety of Bi functions. Specifically, for 

eriodic Bi , the locations of maxima and minima in temperature 

elds are found to be well correlated with corresponding maxima 

nd minima in the Bi function. 

This work assumes that the functional gradient in the porous 

aterial causing the variation of Biot number does not impact the 

elocity distribution. This can be achieved by choosing functionally 

raded material or manufacturing the porous structure in such a 

ay that porosity and permeability of the porous medium would 

rovide the original velocity distribution. Also, if the thermal con- 

uctivity of the fluid and solid phases are similar, the LTNE model 

an be simplified to LTE model and hence much less complicated 

quations could be considered. 

In addition to improving the theoretical understanding of ther- 

al transport in porous materials, it is expected that the present 

ork will help improve the thermal performance of novel porous 

aterials with engineered properties. 
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