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ABSTRACT

The local thermal non-equilibrium (LTNE) model has been extensively used to model convective heat
transfer in porous media. Most of the past LTNE-based models account for thermal interactions between
fluid and solid phases in the form of a constant Biot number (Bi). This work presents a local thermal
non-equilibrium model for fully developed flow in a channel filled with a porous medium where Bi itself
varies across the channel. A set of differential equations for fluid and solid phase temperature fields are
derived under this condition, which are shown to be generalizations of previously presented results for
constant Bi. Results from the present analysis are shown to reduce to and agree with past work for the
special case of constant Bi. The variable Bi model is used to investigate the effect of thermal properties
such as thermal conductivity on the fluid and solid temperature profiles. The nature of temperature dis-
tributions are correlated with the spatial variation in Bi, including for parabolic and sinusoidal variation.
Specifically, for periodic Bi, the locations of maxima and minima in temperature fields are found to be
well correlated with corresponding maxima and minima in Bi. Nusselt number (Nu) for different values
of thermal conductivities and heat generation rates are determined for variable Bi. This work accounts for
an important physical consideration in porous media and generalizes previously-presented LTNE models
for porous media in a channel.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid flow and heat transfer in a porous medium is a problem of
much theoretical and practical importance [1-4]. Thermal and fluid
transport in porous media occur in a wide variety of engineering
applications, including electronics cooling [5], oil and gas extrac-
tion [6], bioengineering [7] and energy storage [8]. A typical sce-
nario in a porous medium involves fluid flow through a two-phase
region comprising solid and fluid phases with a certain porosity,
along with heat exchange with the surroundings through appro-
priate boundary conditions. A wide variety of coupled and often
non-linear physical processes have been modeled and analyzed in
the context of heat transfer and fluid flow in a porous medium.
The comprehensive literature in this field has been summarized in
well-known handbooks [1-4].

The simplest approach for solving porous medium heat trans-
fer problems involves the assumption of local thermal equilibrium
(LTE) between the solid and liquid phases of the porous medium
[9]. The LTE assumption may be valid when the solid and fluid
phases do not locally exchange heat, or when the thermal conduc-
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tivities of the two phases are similar, leading to equal local tem-
perature of the two phases. In contrast, an alternate approach of
local thermal non-equilibrium (LTNE) has been developed in the
past few decades [10,11] to account for local heat exchange and
local temperature difference between the two phases. In the LTNE
approach, the solid and fluid temperature fields are assumed to
be distinct, and coupled with each other through a local convec-
tive heat transfer coefficient that governs the rate of local heat ex-
change between the two phases. The LTNE approach has been used
for modeling heat transfer in porous media in a variety of sce-
narios. For example, LTNE condition has been used to investigate
temperature gradient bifurcation in a channel filled with a porous
medium [11]. Analytical solutions and their limitations for different
conditions at the porous-fluid interface have been discussed heat
transfer due to natural convection in a porous media using both
LTE and LTNE conditions has been investigated [12]. Different types
of boundary conditions for transpiration cooling have been inves-
tigated using a LTNE model [13]. Exact solutions for heat transfer
and fluid flow in a partially porous parallel-plate [14] and a pipe
[15] with LTNE conditions have been presented. Results showed
that the Nusselt number is greater in partially porous channels
compared to a fully porous channel. Temperature distribution and
Nusselt number in a partially filled channel for two different in-
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Nomenclature
Bi Biot number, Bi(n) = h,ij:;
Cp specific heat of the fluid (] kg~! K-1)
h; interstitial heat transfer coefficient (W m=2 K-1)
hw wall heat transfer coefficient (W m—2 K-1)
H half height of the channel (m)
K permeability (m~2)
k ratio of thermal conductivities, k = );f—eg
S.€)
Kef effective thermal conductivity (W m~1 K-1)

Nu Nusselt number

p pressure (N m—2)

Qw heat flux at the wall (W m~2)

S internal heat generation (W m—3)

T temperature (K)

u fluid velocity (m s~1)

X horizontal coordinate (m)

y vertical coordinate (m)

o specific interfacial area in the porous medium (m~1)
B non-dimensional heat generation parameter, 8 =

SH
qw

n non-dimensional coordinate, n = %

n dynamic viscosity (kg m~1 s=1)

0 non-dimensional temperature, defined as
0= w for model A and 6 = W for
model B

Otp non-dimensional bulk mean temperature of the
fluid

w non-dimensional frequency

Subscripts

f fluid

s solid

w wall

terface heat flux conditions - equal heat flux between the two
phases and heat flux division based on the thermal conductivities
of the two phases — were investigated and compared [16,17]. Ther-
mal behavior and entropy generation rate in a channel with a par-
tially porous medium under LTNE conditions has been investigated
[18]. Heat transfer in the thermally developing region [19,20] and
in the slip regime [21] has been modeled. Exact solutions for con-
jugate heat transfer involving porous media have been presented
[22]. An exact solution has also been presented for pulsating flow
in a porous medium under the LTNE assumption [23].

The modeling of two different temperature fields for the solid
and fluid phases in the LTNE approach necessitates careful consid-
eration of the boundary condition on the domain surfaces. For ex-
ample, in flow through a channel filled with a porous medium and
heated up from the channel wall, the thermal boundary condition
is quite straightforward for the LTE approach. However, in the LTNE
approach, the distribution of the wall heat flux between the solid
and fluid phases is not clear. To address this problem, two distinct
models have been proposed [24,25]. In a model commonly referred
to as model A, the temperature of the solid and fluid phases at
the wall are assumed to be the same as the wall temperature [24].
Model B, on the other hand, assumes the heat flux into the solid
and fluid phases to both be equal to the imposed wall heat flux
[25]. Both models result in distinct temperature distributions and
temperature bifurcation between the two phases, which has been
studied in detail, including the effect of internal heat generation
and thermal properties [11,26]. The LTNE approach has also been
analyzed in the context of a channel that is filled partially with a

International Journal of Heat and Mass Transfer 164 (2021) 120538

porous medium, and the rest with a pure fluid [26], as such sce-
narios are of practical importance in microreactors and other ap-
plications [27].

A key feature of the LTNE approach is the local interstitial heat
transfer coefficient, h, that governs local heat transfer between the
two phases. This term appears in the local convective heat transfer
term in the governing energy equation for the solid and fluid tem-
peratures, typically removing heat from one equation and adding
it to the other [10,24]. When non-dimensionalizing the equations,

. 2
this term leads to the Biot number, Bi, given by Bi = 'i’“’;f
S.e.

is the interfacial area per unit volume, kq . is the effective thermal
conductivity of the solid phase and H is the channel half-width.
Most of the LTNE literature assumes Bi to be a constant parameter
[10,11,24,25], and analyzes the impact of the value of Bi on tem-
perature distribution, temperature bifurcation between the phases,
and the wall heat transfer. However, there may be practical sce-
narios where Bi may not be constant throughout the channel due
to spatial variations in one or more parameters that constitute Bi.
For example, « may vary over the channel if the porous medium
does not have uniform composition. For example, it is possible to
design functionally graded materials with spatially varying inter-
facial area per unit volume [28]. Spatial variations in Bi may also
occur due to manufacturing variations or defects. The local convec-
tive heat transfer coefficient may also vary over the channel due to
flow variations. In scenarios where such effects may be important,
the traditional LTNE approach of assuming constant Bi may need
to be generalized. Some past work is available on analysis of heat
transfer in layered porous media, where each layer may have a dis-
tinct Bi [29,30]. However, it is desirable to generalize this to a sit-
uation where Bi varies smoothly over the entire porous medium.
Specifically, periodic or polynomial spatial distribution of Bi may
be of particular interest, since distributions of other nature can be
modeled on the basis of such simpler, fundamental functions.

This paper presents theoretical analysis of temperature distri-
bution in a channel filled with a porous medium using the LTNE
approach while assuming a non-uniform distribution of the Biot
number. Fourth-order ordinary differential equations (ODEs) for
the solid and fluid temperatures are derived. These ODEs are gen-
eralizations of prior results that were based on the assumption of
constant Bi. While analytical solutions for these ODEs are difficult
to obtain for even the simplest Bi distribution, the equations can
be easily solved numerically. Solutions of the governing ODEs are
analyzed to understand the effect of Biot number distribution on
the temperatures of the two phases, the thermal bifurcation and
heat exchange with the wall as represented by the Nusselt num-
ber. The theoretical results discussed in this paper generalize the
constant Bi LTNE approach for a practically relevant scenario, and
may be of importance in multiple engineering applications.

, where

2. Mathematical modeling

Fig. 1 shows a schematic of the geometry under consideration.
A channel of half-width H and fully filled with a porous medium
subjected to steady, incompressible and laminar fluid flow across
the channel and uniform heat flux from the channel wall. Ther-
mally and hydrodynamically developed conditions are assumed. A
variation in the Biot number is assumed in the y direction, de-
scribed by a given functional form. A uniform fluid flow is as-
sumed, which is governed by Darcy model due to the small value
of the microscale Reynolds number [31]. Internal heat generation
is assumed to occur in the fluid and solid phases, which could
be due to chemical reaction, conversion of electrical energy into
heat or radiative absorption [27]. All parameters are assumed to
be temperature-independent. Thermal dispersion effects [32] are
neglected. Heat transfer due to radiation and natural convection is
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Qw

Fig. 1. Schematic of the problem comprising a porous channel with spatially-
varying Biot number. The channel is being heated with constant heat flux from the
wall.

assumed to be negligible. Viscous heat dissipation is also ignored.
Under these assumptions, the momentum equation for fluid flow
is given by the Darcy model:

Mg dp

—?U=a (1)

which simply indicates a constant fluid velocity in the porous
medium.

The solid and fluid temperatures have been shown to be gov-
erned by the following energy conservation differential equations
[11]:

92Ty Ty

kf,f_,ffa—y2 +h,»a(Tszf)+sf=pcqu (2)
82

Kseffa—s 5 —hiat(Ts = Ty) +S5=0 (3)

Symmetry about the center-line results in the following bound-
ary conditions

oT¢ _ % _
(E)J’)yo B (8}’ )yO =0 (4)

Additional boundary conditions are obtained based on the as-
sumed nature of thermal interaction between the two phases and
the wall. The solution for temperature distribution with variable Bi
is derived in the next sub-sections for two most commonly used
models for this purpose.

2.1. Model A

Model A assumes the two phases to have the same temperature
at the wall, i.e.

Tr=T=Tyaty=H (5)

To simplify, the two energy conservation equations are added
and integrated over the channel to derive an expression for the
advection term in Eq. (2) assuming that the total wall heat flux
is equal to the addition of heat fluxes of solid and liquid phase
at the wall. Doing so has been shown to result in elimination of
S;, the internal heat generation in the fluid [11]. Based on the
non-dimensionalization scheme summarized in the nomenclature
section, the following non-dimensional governing equations and
boundary conditions can be derived for the fluid and solid phase
temperature fields, 07 and 6s:

ko; +Bi(n) (65 —65) =1+ B (6)

International Journal of Heat and Mass Transfer 164 (2021) 120538

6; —Bi(n)(6s— 05) + B =0 (7)
Or(1)=0 (8)
65(1)=0 (9)
67(0)=0 (10)
6/(0) =0 (11)

where the prime signs refer to differentiation with respect to the
spatial variable 7.

The solid temperature 6s can be written explicitly as a func-
tion of 6y and its derivatives using Eq. (6). Similarly, Eq. (7) can
be rewritten to express 6y as a function of 65 and its derivatives.
Therefore, the following expressions can be obtained for 6 and 6s:

1 "
sz—ﬁ(es +B) + 65 (12)

1 "
95=5(1+,8—k0f)+9f (13)

While past work has proceeded to uncouple and solve these
equations under the assumption of a constant Bi, this work consid-
ers a generalized scenario where the Bi number varies over space,
i.e. Bi=Bi(n). In such a case, differentiating Eq. (12) with respect to
1 once and twice results in:

0/// Bi/@// Bl‘/
1 YIs /
Or=-%+ e *%+Pp (14)
9/// Bi" Bi’? Bi" Bi’2
" _ s - nr " - - - _ -
o = B +2329 +6; <l+BzZ 2313>+’3<Bi2 231,3)
(15)

where the prime signs refer to differentiation with respect to the
spatial variable 7.

Substituting Eq. (15) into Eq. (6) results in the following fourth
order ODE for 6;:

i Bl/ " : " Bl Bl
k6, —ZkEGS —Bi(1+ k)6 —k —I—ZW 0!

Bi"” Bi’2 .

_I‘B<Bl Biz) = —Bi (16)
Two boundary conditions for Eq. (16) are already available in
Eq. (9) and Eq. (11). Since Eq. (16) is a fourth-order differential
equation, two more boundary conditions are required for the prob-
lem to be completely defined. These extra equations can be derived
by using Eqs. (8)-(11) in Eq. (7). Egs. (8) and (9) can be simply sub-
stituted in Eq. (7) and the following boundary condition for 6/ is

obtained.

6/ (1) =P (17)

Moreover, Eq. (7) can be differentiated, followed by use of
Egs. (10) and (11) to obtain the following boundary condition for
0!

6" (0) — B’ (0)(65(0) — 6;(0)) =0 (18)

Note that the solid and fluid temperature boundary conditions
are still coupled in Eq. (18). However, since the channel is assumed

to be symmetric about the center-line, it is reasonable to assume
the Bi distribution to be symmetric as well. Therefore, Bi’(n) must
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be zero at n=0, and Eq. (18) can be simplified as follows:

6(0) =0 (19)

Egs. (16), (9), (11), (17) and (19) represent the fourth-order ODE
and four associated boundary conditions for the solid phase tem-
perature distribution. Note that the ODE in Eq. (16) represents a
generalization of the previously reported ODE for constant Bi case.
Eq. (16) can be shown to reduce to the constant Bi case when spa-
tial variation in Bi is neglected by setting all derivatives of Bi to
zero in Eq. (16).

Unfortunately, Eq. (16) is much more complicated than the
previously-reported ODE for the constant Bi case [11]. In the more
general case considered here, an analytical solution of Eq. (16) does
not appear to be possible, even for relatively simple Bi functions.

Similar to 6, the uncoupled ODE for 6 can be derived, starting
by differentiating Eq. (13) once and twice to result in

148, 07" Bi'Gf
’__ _ ! / _ _J
0] = — 5o B +6; k( T (20)
and

k Bi’ Bi” Bi2
n_ _Sann 28 gm 2 92t "
0y = 50 +21<Bi29f + (1 +kBi2 2k3i3 >9f
B> Bi"
+(1+ﬁ)(2Bi3—Bi2> (21)

Substituting Eq. (21) into Eq. (7) gives the fourth-order differ-
ential equation for 6¢

B . Bi" B
K6j" — 2k—6]" ~ Bi(1 + k)f — k(gi - 281'2)9}/

B> B .
- +‘B)(23i3 - Bi2> — _Bi (22)

Similar to the previous case, two boundary conditions are al-
ready available from Eq. (8) and Eq. (10). Two additional boundary
conditions needed to solve Eq. (22) can be obtained by utilizing
Egs. (8)-(10) as follows:

oyay =18 (23)
07'(0)=0 (24)

Note that, similar to 6, the assumption of symmetric Bi(n)
about the centerline is necessary for obtaining fully uncoupled
equations for 6. This assumption is justified because of the as-
sumption of symmetry in the temperature fields in this problem.
Similar to Eq. (16), Eq. (22) is a generalization of the constant Bi
case presented in the past, and can be easily shown to reduce to
the previously-presented result when all derivatives of Bi are taken
to be zero.

2.2. Model B

In Model B, the heat flux into both liquid and solid phases is
taken to be the wall flux gy, i.e.,

3Ty
qw = ks,eff() (25)
ay VH

0Ty
qw = ky, ff() (26)
€] ay y:H

The fluid and solid temperatures at the wall are no longer
equal to each other. In this case, a commonly used non-
dimensionalization scheme is [11]:
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95 = qu (27)
Kserf(Tr — Tsw
6y = ”ff(H;W) (28)

where Ty is the temperature of the solid at the wall. Based on
these definitions, the non-dimensional governing equations and
boundary conditions can be written as:

kO + Bi(n) (65 — 05) =2+ B (29)
6; —Bi(6s—0f) + B=0 (30)
65(1) =0 (31)
6 =1 (32)
0,(0)=0 (33)
07(0)=0 (34)

note that Eq. (31) results from the non-dimensionalization given
by Eq. (27). Similar to the process followed for model A, explicit
uncoupled equations for 67 and 65 can be derived for model B as
follows:

Bi’ . Bi” Bi’?
k0L — 2k=-00" — Bi(1 + k)0 k(Bi - 231’2)95”

Bi” Bi'? .
Bi’ Bi"” Bi"?
nn - i _ - " _ _ "
kOF" — 2k B 0¢" — Bi(1+k)6; k(Bi Z—Biz >9f
Bi* B .
_(2+'8)<28i3_3i2> = —2Bi (36)
In order to derive additional boundary conditions for

Eqgs. (35) and (36), Egs. (33) and (34) is substituted into
Egs. (29) and (30). Further, Egs. (31) and (32) are substituted
into Egs. (29) and (30), respectively. Using the assumption of
symmetric Bi about the center-line, this results in

6/’(0) =0 (37)

0/'(0)=0 (38)

ko7 (1) - Bi(1)0;(1) =2 + B (39)
. . 1

6/ (1) +Bi' ()9 (1) — 31(1)(9;(1) - E) =0 (40)

The ODE in Eq. (36), along with boundary conditions given
by Egs. (32), (34), (38) and (39) represents a well-defined set of
equations for 6y . Once the fluid temperature field is solved, the
solid temperature field is also well-defined by Eqs. (31), (33), (35),
(37) and (40), treating the 6(1) term in Eq. (40) as a given con-
stant based on the solution of the fluid temperature distribution.
Similar to model A, the differential equations for 6y and 65 are un-
likely to have an explicit solution even for simple Bi expressions,
and may need to be solved numerically for most practical cases.
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2.3. Nusselt number calculations

Once the temperature profile is determined, the temperature of
the fluid, 0y, can be used to calculate the Nusselt number. The
mathematical expression for calculating the Nusselt number for
Model A is given in Yang and Vafai [11] as follows:

4
k@f,b

where 6y is the non-dimensional bulk temperature defined as:

Jy=0 05 (m)udn
(u)
where (u) is the average velocity over the cross section of the
channel. Note that since the ODEs in this work are not solved
analytically, therefore, the expression for 6y is not available in a
closed form. However, once 6y is determined by numerically solv-
ing Eq. (22), the integration in Eq. (42) can be carried out in order

to determine the Nusselt number as a function of 7.

Nu = (41)

Orp = (42)

3. Results and discussion

The governing ordinary differential Eqs. (16), (22), (35) and
(36) for models A and B are solved numerically using a fourth or-
der method boundary value problem solver. In this method, the
fourth-order differential equations are re-written as a system of
coupled, first order ordinary differential equations of the form
vy = f(x,y). The solver then integrates this system of equations sub-
ject to the defined boundary conditions using a six-stage, fifth-
order Runge Kutta method.

3.1. Model validation

Results from the model presented in Section 2 are first com-
pared with past work that the present model generalizes. Yang
& Vafai have presented the temperature bifurcation for a porous
medium in a channel for the case of a constant Bi [11]. For this
comparison, a constant Bi input is provided to the numerical code
that solves the general governing equations derived in Section 2.
Fig. 2 plots temperature profile in both liquid and solid regions as a
function of n for Bi=50, k=10 and B=5. Curves show results based
on the present model for the special case of constant Bi, while
symbols show results from Yang & Vafai [11]. There is excellent

0.2 T T T T

—— Present Work
O Yang & Vafai [11]

o

0 Model A

6, Model A

>
-0.2
Gf Model B
04 1 1 1 1
0 0.2 04 0.6 0.8 1
n
Fig. 2. Validation against past work by Yang & Vafai [11]: Temperature profiles, 8¢

and 6, as a function of n for models A and B for the special case of constant Bi=50.
Values of B and k are 5 and 10, respectively.
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agreement between the two. The present model is able to correctly
predict the temperature bifurcation in the constant Bi case, as pre-
sented earlier by Yang & Vafai [11].

To further validate the present model, Nusselt number is cal-
culated as a function of Bi and k for Model A. This is shown in
Fig. 3(a) and (b) for two different values of the heat generation rate
- B=5 and B=-0.5. These values are chosen to match the problem
parameters used by Yang & Vafai [11]. Comparison of the present
result with Yang & Vafai (please refer to Fig. 6(a) and (b) in their
paper) shows that there is excellent agreement between the result
presented here and the past work.

Figs. 2 and 3 demonstrate that the variable Bi model presented
here agrees well with past work for the special case of constant Bi.

3.2. Temperature distribution for periodic and quadratic Bi

The model presented in Section 2 is used to plot solid and fluid
temperature distributions for several different functions describing
the variation of Bi within the channel. Specific functions of interest
include sinusoidal and polynomial (quadratic) functions. Sinusoidal
functions are of interest since any general well-behaved function
can be represented by a series of sine functions with different fre-
quencies.

Fig. 4 presents plots for solid and fluid temperatures in the
channel for Bi(n) = 50(1 + cos(2mrwn)), with k=1 and B=5. Re-
sults for Model A and Model B are presented in Fig. 4(a) and (b),
respectively. Three different frequencies w=1, 2 and 3 are consid-
ered. The periodic behavior of the temperature profile seen in both
Fig. 4(a) and (b) is consistent with the periodicity of Bi. For exam-
ple, for w=1, both Fig. 4(a) and (b) shows maximum 6 at n=0.55
and minimum 6¢ at n=0.46, both close to the location of the min-
ima for Bi at n=0.5. For w=2, Bi has maxima at n=0.5, and two
minima at 7=0.25 and 7=0.75. As expected, these lead to mini-
mum and maximum temperature difference between the solid and
fluid close to these locations, respectively, for both Models A and
B as shown in Fig. 4(a) and (b). Results for w=3 are similarly con-
sistent. Note that in this case, the ratio of thermal conductivities
of solid and fluid, k is 1, due to which, changes in fs and 6 are
of the same order. Also, note that the solid and fluid temperatures
at the wall are both zero for Model A. On the other hand, only
the solid temperature at the wall is zero for Model B, which is ex-
pected based on the wall boundary conditions.

Fig. 5 presents results for a similar problem with the same si-
nusoidal Bi as Fig. 4. However, in this case, k=10, which represents
significant difference in thermal conductivity of the solid and fluid
phases. Results for Models A and B are presented in Fig. 5(a) and
(b), respectively. Similar to Fig. 4, these temperature profiles are
consistent with the nature of Bi for different frequencies. Com-
pared to Fig. 4, the much larger fluid phase thermal conductivity
compared to that of the solid results in significant variation in 0
but relatively smaller changes in 0. This is particularly evident for
Model A, where the fluid temperature distribution is nearly the
same over the entire n range for each of the three frequencies
considered here. Similar to Fig. 4, solid and fluid temperatures con-
verge to a value of zero at the wall for Model A. On the other hand,
for Model B, only the solid temperature is zero at the wall.

Figs. 6 and 7 present similar analysis for a quadratically vary-
ing Bi, given by Bi(n) = Biy(1 — 12). The values of thermal conduc-
tivity ratio are k=1 and k=10 in Figs. 6 and 7, respectively. Re-
sults are presented for different values of Biy, and for both Models
A and B. Both Figures show that the slope of the solid and fluid
temperatures become zero at the centerline, which is expected
from both mathematical equations and physical considerations for
the problem. While Bi is modeled to be a function of space here,
Fig. 6 shows that as the magnitude of Bij increases, the difference
between the solid and fluid temperatures reduces. This occurs be-
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(3] Lo y/ "7 "9,
v 8 2 oo 7

Fig. 3. Nusselt number as a function of k and Bi computed using the present work for the special case of constant Bi number: (a) =5 and (b) f=-0.5.
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Fig. 5. Temperature distributions for periodic Bi: Plots of 6y and 6; as functions of 7 for Bi(n) = 50(1 + cos(2m wn)) with w=1, 2 & 3, k=10, B=>5. (a) Model A and (b) Model

B.

cause a greater value of Bij results in greater localized heat trans-
fer between the two phases and thus greater thermal homogene-
ity. For Model A, the fluid and solid curves converge towards each
other as n increases, and at the wall, the fluid and solid tempera-
tures are equal to each other for model A. This is expected since
model A explicitly requires fluid and solid temperatures to match
at the wall. There is no such requirement for model B, which is
why, the 0 and 05 curves in Figs. 6(b) and 7(b) do not converge at
the wall.

It is instructive to compare Figs. 6(a) and 7(a) that present re-
sults for model A at two different values of k. This comparison
shows that increasing the value of k results in weaker dependence
of fluid temperature on the imposed Bi. This likely occurs due to

larger fluid thermal conductivity compared to solid thermal con-
ductivity at large value of k. On the other hand, the solid temper-
ature becomes more strongly dependent on Bi as k increases. In
comparison, Figs. 6(b) and 7(b) for model B show that the solid
and fluid temperatures are not as strongly influenced by k in this
case.

3.3. Nusselt number calculations

As discussed in Section 2.3, the value of Nusselt number is
calculated for a number of scenarios involving sinusoidal and
quadratic Bi variations. Fig. 8 plots Nu as a function of k for
three different sinusoidal functions similar to ones considered in
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Figs. 4 and 5. Fig. 8(a) and (b) plot these data for Model A and for
B=0.5 and B=50, respectively. As expected, by using higher val-
ues for B that represents internal heat generation, the ability of
the system to cool down the channel decreases. As a result, the
Nusselt number decreases as f increases. Moreover, both figures
show that by increasing the frequency, the overall Biot number
becomes closer to the mean value of 50. As a result, the curves
approach the constant Bi curve, also shown in Fig. 8(a) and (b),
as frequency increases. An interesting observation is that by in-
creasing the internal heat generation parameter 8, the characteris-
tic of the system goes more toward LTNE. Consequently, the curves
shown in Fig. 8 are much more sensitive to the frequency of Biot
number variation at the larger value of 8 considered here. On the

other hand, at § =0.5, the frequency of Bi has lesser influence
on Nu.

Fig. 9 examines the impact of internal heat generation parame-
ter B on Nusselt number at two different values of thermal con-
ductivity ratio k for model A. Both Fig. 9(a) and (b) show that
increasing the internal heat generation rate decreases the overall
cooling characteristic of the system, and consequently decreases
Nu, which is as expected. The effect of frequency is also clearly
seen in these Figures. Similar to Fig. 8, the curves approach the
constant Bi curve as the frequency increases. It is interesting to
note that in both figures, for low values of B, Nu is not strongly
dependent on the frequency, whereas at larger values of B, the
curves for three values of frequency are more distinct. Similar to
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Fig. 8, increasing the thermal conductivity ratio from 1 to 10, i.e.,
increasing the effective thermal conductivity of fluid compared to
that of solid, results in reduction in Nu. This is particularly appar-
ent for low internal heat generation values.

The dependence of Nu on various problem parameters for a
quadratic Bi is presented in Figs. 10 and 11. Two specific func-
tions Bi=50(1-n?) and Bi=50(1+1?) are considered and compared
with the constant Bi=50 case. These functions increase and re-
duce the average value of Bi in the channel, respectively. Similar to
Figs. 8 and 9, Fig. 10 examines the dependence of Nu on k for two
different values of 8, and Fig. 11 presents the dependence of Nu on
B for two different values of k. These results show that the positive
quadratic function Bi=50(1+n?2) results in more homogeneous tem-
perature within the porous medium, thereby resulting in increased
value of Nu. On the other hand, temperature becomes less homo-
geneous, and therefore, Nu decreases when the negative quadratic

function Bi=50(1-n?) is used. This effect is more pronounced for
larger values of 8. Fig. 11 presents similar plots for multiple func-
tions Bi=50(1+An?), with A=1 and 2. Similar to Figs. 8 and 9, the
curves deviate more and more from the constant Bi case as the
value of A increases.

4. Conclusions

Local thermal non-equilibrium (LTNE) is an important model for
understanding and optimizing thermal and flow phenomena in a
porous medium. With the advent of functionally graded materials,
it is becoming possible to design porous materials with spatially
distributed properties. This necessitates the development of LTNE
models that account for such spatial distribution. The present work
addresses this need by accounting for spatial variation in the Biot
number, which, in past work, has always been assumed to be in-
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variant. The resulting governing equations for the fluid and solid
temperatures represent generalizations of past, constant Bi work,
and account for arbitrary variations in Bi within the channel. The
equations are solved for a variety of Bi functions. Specifically, for
periodic Bi, the locations of maxima and minima in temperature
fields are found to be well correlated with corresponding maxima
and minima in the Bi function.

This work assumes that the functional gradient in the porous
material causing the variation of Biot number does not impact the
velocity distribution. This can be achieved by choosing functionally
graded material or manufacturing the porous structure in such a
way that porosity and permeability of the porous medium would
provide the original velocity distribution. Also, if the thermal con-
ductivity of the fluid and solid phases are similar, the LTNE model
can be simplified to LTE model and hence much less complicated
equations could be considered.

In addition to improving the theoretical understanding of ther-
mal transport in porous materials, it is expected that the present
work will help improve the thermal performance of novel porous
materials with engineered properties.
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