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Real-time State of Charge (SoC) estimation of a Li-ion cell is necessary for an accurate estimation of the state of the cell, and to
ensure safety and efficient performance by avoiding overcharge or overdischarge. While past papers have presented analytical
models for predicting voltage and SoC for constant-current conditions, there is a need for analytical models that account for time-
varying charge/discharge currents representative of realistic conditions. This paper presents an analytical SPM-based model to
predict the terminal voltage and SoC of a Li-ion cell operating under a general time-dependent current profile. Concentration
distributions in the positive and negative electrodes are determined analytically using Green’s function approach, followed by
determination of the electrode voltages as functions of time using the Butler–Volmer kinetic equation. The analytical model is
validated through good agreement with numerical simulations and past experimental data for a number of different operating
conditions. Cell voltage and SoC are predicted for a variety of time-varying currents, including drive cycles representative of
realistic driving conditions. It is expected that the analytical model developed here will help improve the performance of battery
management systems by obtaining more accurate information about the internal state of the cell in realistic charge/discharge
conditions.
© 2020 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
abb34d]
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List of symbols

c concentration (mol m−3)
cinitial initial concentration (mol m−3)
cmax maximum concentration (mol m−3)
ce electrolyte concentration (mol m−3)
D diffusion coefficient (m2s−1)
F Faraday constant (96485 C mol−1)
I current (A)
J molar flux (mol m−2 s−1)
k reaction rate constant (m2.5 mol−0.5 s−1)
r radial spatial coordinate (m)
R particle radius (m)
Ru universal gas constant (8.314 J mol−1 K−1)
Rcell cell resistance (Ω)
S total electroactive area (m2)
t time (s)
U open circuit potential (V)
V total volume of the electrodes (m3)
Vcell Cell Voltage (V)
x stoichiometric or scaled concentration
ε volume fraction of the active material in electrode
η overpotential (V)
λ eigenvalue (m−1)
ω frequency (hr−1)
φ potential (V)

Li-ion cells are an attractive candidate for electrochemical energy
storage and conversion in electric vehicles (EVs) and power grids.1

In such applications, managing the health and safety of Li-ion cells
is very important, particularly for high power applications with
significant demand variability. Battery Management Systems (BMS)
using battery models of varying levels of complexity are commonly
used to monitor and control the state of the cells, and to fulfill system
design requirements.2–4

The State of Charge (SoC) of a cell is one of the most important
variables that needs to be estimated frequently by the BMS. SoC has
been defined in several different ways, such as an indication of the
fraction of energy left in the battery at a given time, or the ratio of

the available capacity to the maximum capacity of the cell at a given
time.2,5 An accurate estimate of the SoC helps infer useful informa-
tion about the vehicle range, remaining energy and health of the
battery pack.5,6 Unlike electric parameters such as voltage and
current, SoC cannot be measured directly and other methods must be
implemented to obtain an accurate estimate of SoC.7 Due to the
coupled and non-linear nature of the electrochemical phenomena
that occurs in Li-ion cells, SoC estimation is always a challenging
task.5 While SoC estimation for constant current processes may be
relatively easier, it is a much more complicated task under dynamic
load conditions, as one would expect, for example, in an electric
vehicle.
A variety of techniques have been proposed in the literature to

evaluate SoC of Li-ion cells. State of charge estimation techniques
can be broadly divided into the categories of non-model based
techniques, data-driven (machine learning) approaches and model-
based techniques.5,8,9

One example of non-model based techniques is the open-circuit
voltage (OCV) method that uses a look-up table based on a
monotonic relationship between SoC and open-circuit voltage.10

This method is not suitable for SoC estimation in electric vehicles
since an accurate real-time measurement of OCV is not
straightforward.5,11 Also, the flat nature of OCV behavior of certain
cathode chemistries used in Li-ion batteries, such as Lithium Iron
Phosphate makes it unsuitable to accurately estimate the SoC at all
times. In the Ampere-hour integral method, also known as the
Coulomb counting method, SoC is estimated by integrating the
current over time.8,12 This method can be fairly accurate as long as
the initial SoC, cell maximum capacity and electric current are
precisely known.5,13 However, any inaccuracy in the initial SoC
along with noise in the current measurements can significantly affect
the accuracy of SoC prediction.
Data-driven methods use large sets of experimental data obtained

under different operating conditions to build a pattern and demon-
strate a relationship—often non-linear—between different input and
output variables.5,14 Fuzzy logic,15 autoregressive moving average
(ARMA),16 artificial neural network (ANN)17 and support vector
machine (SVM)18 are key data-driven methods.14 Data-driven
methods are often computationally expensive, and the accuracy
depends strongly on the size and quality of the statistical population.
Model-based methods can be broadly divided into equivalent

circuit models (ECMs) and electrochemical models. ECM uses azE-mail: jaina@uta.edu
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circuit network comprising of capacitors, resistors and other
electrical circuit components to simulate battery behavior.5,19

Compared to electrochemical models, ECMs are simpler and faster,
but do not provide insights on electrochemical processes occurring
inside the cell.2 Estimation algorithms such as Kalman filter,20–23

extended Kalman filter,24 voltage inversion technique,25 sliding
mode observer,26 and Luenberger observer27 have been used with
ECM techniques.
Electrochemical models, on the other hand, provide a robust and

detailed solution by solving reaction kinetics, mass and charge
transport equations under appropriate assumptions. Pseudo-two
dimensional model (P2D) proposed by Doyle et al.28 has been
used widely in modeling of Li-ion batteries,29,30 particularly for
understanding the effect of design parameters on cell energy and
power.31 1-D electrochemical model has been also used to predict
the SoC of Li-ion cells.32–34 Due to the coupled and non-linear
nature of the partial differential equations (PDEs) that the P2D
models solve, the equations usually need to be solved numerically,
which is computationally expensive. Several researchers have
proposed reduced-order models to simplify the computational
complexity. Recently, a lumped electrochemical model for lithium-
ion batteries called Tank-in-Series approach has been introduced, in
which the governing equations of the P2D model are volume-
averaged over each region of the cell.35 One of the most commonly
used simplifications is the single particle model (SPM),36 in which
each electrode is replaced by a representative single, spherical
particle, and the concentration distribution in the particle due to
the imposed current is solved analytically or numerically. Compared
to P2D, this results in only one PDE for each electrode. The current
density is assumed to fully contribute towards the pore wall flux that
is uniformly distributed throughout the surface of the electrode.37,38

Moreover, concentration and potential gradients in the electrolyte is
neglected. SPM is a valid approach only for low to moderate C-rate,
where the concentration gradient in the electrolyte can be
neglected.37,38 At high current densities, the Li-ion concentration
gradient and potential gradient in the electrolyte cannot be ignored
and SPM results in inaccurate potential predictions.39 A number of
modifications of SPM have been proposed to overcome some of
these limitations. For example, extended SPM model has been
proposed to account for energy balance37 and the effect of electro-
lyte concentration and potential.8,40,41 Moreover, state estimation
techniques such as an extended Kalman filter (EKF)42 and
Luenberger observer34 has been applied to traditional and extended
SPM to estimate the SoC of a Lithium ion cell.42

Regardless of the estimation technique, solving the concentration
field in the spherical particle is a key step for SPM-based SoC
estimation. Most analytical solutions for the diffusion equation
governing the concentration field are applicable only for galvano-
static (constant current) operating conditions,38 although a few
papers have presented analytical solutions for time-dependent
current density using Green’s functions43 and an approximate
eigenfunction expansion with estimation of truncation error.44

Even though step-wise changes in current can, in principle, be
addressed by successively solving the concentration field in each
galvanostatic time period, doing so is very difficult for rapidly
changing current profiles encountered in vehicle drive cycles, or
when the current changes smoothly over time, such as in alternating
current (AC) systems. Previous studies have implemented a variety
of numerical procedures and algorithms to predict the voltage and
consequently SoC under dynamic discharge current conditions.3,4

However, an analytical solution for determining the SoC during
time-varying charge/discharge conditions is very desirable since it
may offer the capability of rapid, in-line SoC estimation that
integrates well with other BMS functions.
A Green’s function based analytical solution for the concentra-

tion field in a single particle undergoing time-varying charge/
discharge has recently been presented.43 In the present paper, this
analytical model is used to determine the voltage profile of the cell
and the SoC as a function of time under a general, time-dependent

current profile. The approach presented in this study results in an
analytical expression for the voltage and SoC that can be used for
any arbitrary time-dependent current profile. The analytical solution
presented in this study is validated against past numerical simula-
tions and experimental data under different operating conditions.
The model is then used to predict the voltage and SoC of a Li-ion
cell operating under realistic conditions such as drive cycles with
rapidly changing charge/discharge current, as well as stepwise or
periodically varying charge/discharge. While recognizing that the
model presented here is valid only under the assumptions associated
with the use of SPM, it is expected that the present study may
contribute towards improved SoC estimation in a wide variety of
applications containing extremely low-memory computational plat-
forms where numerical solutions are impractical.

Mathematical Modeling

Solid phase diffusion.—Figure 1 shows a schematic of a unit Li-
ion cell comprising of negative and positive electrodes, separator
and current collectors. Also, a single spherical particle, representa-
tive of each electrode and the flow of ions during discharge process
is shown. Single particle model (SPM) is used in the present study to
predict the concentration profile in the electrodes. SPM neglects the
concentration gradient in the solution phase and assumes the
electrodes to comprise of spherical particles. Further, the assumption
of a uniform current distribution results in identical conditions for
each particle, so that a single spherical particle is representative of
the entire electrode. It is important to note that these assumptions are
valid for low current densities where the concentration gradient in
the electrolyte can be neglected and the cell is dominated by solid
phase diffusion. Under these assumptions, the governing equation
for concentration diffusion for the positive and negative electrodes
can be written as38:
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where the subscript j = p,n represents the positive and negative
electrodes respectively. D is the solid phase diffusion coefficient and
J(t) is the time-dependent molar flux at the surface of the particle.
The molar flux for the cathode and anode can be written as38:
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Where I(t) is the current that is assumed to be time-dependent in this
work, Rj is the radius of the particle electrode j. εj is the volume
fraction of the active material in the electrode, Vj is the total volume,
and F is the Faraday’s constant. Note that the sign of the current, I, is
negative for discharge and positive for charge.
Equations 1–6 have been recently solved analytically using

Green’s function approach for the case of time-dependent current.
A detailed description of the solution procedure for solid phase
diffusion under time-dependent boundary conditions can be found in
a recent publication,43 which results in the following equation for the
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concentration distribution in the electrode particle43:
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Specifically, concentration on the surface of the particle, which is
important for calculating the potential can be determined by
substituting r = Rj in Eq. 7, resulting in:
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Potential and state of charge (SoC).—Once the concentration
profile is determined for an arbitrarily varying charge/discharge
current, the cell voltage and SoC can be computed as functions of

time using Butler-Volmer kinetics approach that has been widely
used in past papers.
The state of charge of the electrode at any time can be written

using the average concentration of the electrodes as follows:
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Where x tj ave,¯ ( ) is the volume-averaged scaled concentration in
electrode j at time t, which can be obtained through integration as
follows:
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By applying a total mass balance of Lithium in the full cell, the SoCs
of the individual electrodes can easily be related to the overall
capacity and correspondingly SoC of the cell. However, we only
explore the variation of SoC of the negative electrode in this work to
demonstrate the capability of this approach.
In order to calculate the electrode potential, the Butler–Volmer

kinetics equation is used38:
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Where xj s
c

c,
j s

j

,

, max
is the stoichiometry or scaled concentration

at the surface of electrode j, k is the reaction rate constant, ce is the
electrolyte concentration, Ru is the universal gas constant, T is the

Figure 1. Schematic of a Li-ion cell comprising two electrodes, separator and current collectors. Two spherical particles representative of the two electrodes
during discharge are also shown.
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surface temperature and ηj is the overpotential that can be written as:

U 13j j j j1, 2, [ ]

Here, U is the open circuit potential, which, in general, depends
on the electrode material in the cell, and is obtained from the
expressions presented in previous papers.38 The solid phase and
liquid phase potentials can be written as:

V 14p n cell1, 1, [ ]

IR 15p n cell2, 2, [ ]

Note that the potential difference in the solution phase is modeled
as a resistor in this model. Equations 13–15 can be combined and
substituted in Eq. 12. Finally, Eq. 12 can be inverted38 to result in the
following equation for the voltage of the cell as a function of time:
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and Sj = 3εjVj/Rj is the total electroactive area of the electrodes.
Equation 16 provides an analytical expression for the cell voltage as

a function of time during a charge/discharge process with time-varying
current. Note that the concentration field in Eq. 16 comes from Eq. 9,
which represents the Green’s function solution for the concentration
field under time-dependent flux. These equations make it possible to
predict the cell voltage as a function of time for any arbitrary charge/
discharge current profile, which could comprise both smooth and
discontinuous variations of current with time. In addition, the time-
dependence of current could be provided to the model either in the
form of analytical equations, or discrete experimental data.

Results and Discussion

Model validation.—The analytical model for predicting SoC and
voltage curves for time-varying current presented in the mathematical

section is validated by comparison against predictions based on
numerical simulations as well as experimental data reported in the
past. These results are discussed in sub-sections below.

Validation against SPM numerical simulation.—Voltage profile
predicted by the analytical model is compared against numerical
models for a special case of constant current as well as other time-
dependent current profiles. For constant current, a previously
reported SPM-based numerical computation tool for constant current
charge/discharge (S. Kolluri & V. Subramanian, personal commu-
nication, May 17, 2020) is used for comparison. For time-dependent
current, a finite-difference based code originally written for solving
heat transfer problems is modified and used. In both cases, the
governing equation and boundary conditions for solid phase diffu-
sion in a spherical electrode particle (Eqs. 1–4) are discretized in
time and space. The concentration at the surface of the electrodes is
determined and used to calculate the cell voltage using Eq. 16.
For validation in constant current conditions, a LiCoO2 cell is

considered with nominal capacity of 1.78 A-hr. The cutoff voltage
for charge and discharge are set to be 4.2 V and 2.8 V, respectively.
Values of cell parameters used for comparison against the numerical
simulation are taken from Refs. 28, 45 and summarized in Table I.
Comparison is carried out for charge and discharge at four different
C-rates, as shown in Figs. 2a and 2b, respectively. There is excellent
agreement between the analytical model and numerical simulation at
each C-rate for both charge and discharge. In each case, the curves
for analytical model and numerical simulation are nearly indis-
tinguishable from each other.
Validation of the analytical model is then carried out for time-

dependent currents. Two specific current profiles are used—the first
one has two cycles of a discharge-rest-charge process, and the
second one is a part of the US06 drive cycle commonly used for
automotive benchmarking.46,47 The US06 drive cycle features
significant fluctuations in currents representative of realistic driving
behavior. Figures 3a and 3b present comparison of the analytical
model against numerical simulation for these two current profiles,
respectively. In each case, the variation in current with time is also
plotted for comparison. Plots show that the analytical model and the
numerical simulation are in very good agreement even for compli-
cated time-dependent current profiles.

Validation against other models.—This subsection presents a
comparison of the model developed in this paper with other past
approaches for calculating the voltage curve. Two past models
developed by Smith, et al.33 and Cen & Kubiak48 are considered
here. Smith, et al.33 presented a linear Kalman filter approach based
on a reduced-order electrochemical model for voltage and SoC
estimation. Cen & Kubiak,48 on the other hand, presented an
adaptive observer based on a simplified single particle model
(SPM) to predict the voltage and SoC of a Li-ion cell. The

Figure 2. Validation of the analytical model against SPM-based numerical simulations for constant current processes: Voltage as a function of time for
(a) discharge, and (b) charge for multiple C-rates.
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electrochemical parameters used for these comparison plots can be
found in the corresponding papers.33,48 Figure 4a plots voltage as a
function of time obtained from the analytical model presented here
and the past study by Smith, et al.33 The current profile used for this
comparison is also shown on the right axis. Results show good
agreement between the two models, with a worst-case disagreement
of only around 0.4%. Note that the model presented by Smith,
et al.33 accounts for electrochemical dynamics of the electrolyte,
while the present model considers the electrolyte dynamic as a fixed
film resistance, which may explain the difference in the voltage
peaks between the two models. Similarly, Fig. 4b plots voltage as a
function of time for the present analytical model and the past study
by Cen & Kubiak48 for a constant current-constant voltage (CC-CV)
process, also shown in the figure. There is a reasonable agreement
between the two models. The slight disagreement between the two
models is likely due to lack of clarity about the values of initial SoC
and stoichiometry for this specific plot used by Cen & Kubiak.48

Validation against past experimental data.—Finally, validation
of the analytical model is also carried out by comparison with
previously reported experimental measurements by Guo, et al.38 and
Smith & Wang.34 Guo, et al.38 presented experimental measurement
of voltage under a constant discharge rate of C/33 for a pouch cell
with a nominal capacity of 1.656 A-hr. Smith and Wang,34 on the
other hand, presented experimental data for a HPPC drive cycle
profile for multiple values of initial state of charge. Both papers
listed electrochemical properties of the cell used in experiments.34,38

Using these cell parameters, the analytical model is used to compute
the voltage curve for both experiments. Figure 5a presents a
comparison between measurements and analytical model for con-
stant current discharge measurements by Guo, et al.38 There is
excellent agreement between the two throughout the entire measure-
ment period. Figure 5b shows a similar comparison for a more
complicated current profile used for voltage measurements by Smith
and Wang34 for two different values of the initial SoC. Figure 5b
shows that the analytical model is able to successfully predict the
voltage profile for the pulsed current profile.
Taken together, the comparison against numerical computation,

other past models as well as experimental measurements in a variety of
constant and time-varying current conditions provides very good
validation of the analytical model presented in the mathematical section.

Applications of the model.—In this section, the Green’s function
based analytical model is used to predict the voltage and SoC
profiles of a cell in a number of operating conditions. Step-function
and sinusoidal changes in current over time are considered. In
addition, current profiles for two drive cycles—ECE-15 and US06—
that represent realistic driving conditions are analyzed. Cell para-
meters used in all the figures in this section are same as those used in
Figs. 2 and 3, and are summarized in Table I.

Step-function current profile.—Cell performance is analyzed under
two different step-function current profiles—successive discharge at
multiple C-rates (0.5C, 1.5C and 3C) and discharge-charge-discharge

Figure 3. Validation of the analytical model against SPM-based numerical simulations for time-dependent current processes: Voltage as a function of time for
(a) discharge-rest-discharge, and (b) dynamic current profile.

Figure 4. Validation of the analytical model against past numerical models for variable current processes: Voltage as a function of time for (a) discharge-charge
process,33 and (b) discharge-rest-charge process.48
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process. To illustrate the electrochemical phenomena that occurs
inside the cell operating under step-function current profiles, surface
concentrations on the positive and negative electrodes are computed
using Eq. 9 and plotted as a function of time for the two current
profiles in Figs. 6a and 6b, respectively. In both cases, the current
profile is shown as an inset. As expected, during discharge, concen-
tration on the surface of the negative electrode decreases while
concentration on the surface of the positive electrode increases.
Further, the rate of change of the concentration goes up as the
discharge rate increases. Figure 6b presents a similar plot for a
discharge-charge-discharge current profile, also shown as an inset.
It is seen that concentration in the positive electrode increases for
t < 1500 s while the cell discharges, then decreases for 1500 s < t <
3000 s while the cell charges, and finally increases again for t >
3000 s while the cell discharges. Concentration on the surface of the
negative electrode shows similar behavior that is consistent with the
current profile. As expected, the slopes of the curves are larger for the
second discharge than the first one due to the greater rate of the second
discharge.
Based on the concentration fields computed by the Green’s

function approach, as illustrated in Fig. 6, the voltage and SoC as
functions of time are computed using Eqs. 16 and 10, respectively.
Figures 7a and 7b present voltage and average SoC at the negative
electrode for the two current profiles discussed in Fig. 6. It is seen
from Fig. 7a that the voltage decreases continuously due to the
discharge process, and shows a change in the rate of reduction when
the discharge rate changes from 0.5C to 1.5C, and then to 3C at
500 s and 1000 s, respectively. This is consistent with both the
current profile as well as the concentration profile shown in Fig. 6a.

The volume-averaged SoC of the negative electrode given by Eq. 10,
also shown in Fig. 6a, is consistent with the current and voltage
profiles. The SoC decreases throughout, as expected, and at the
greatest rate for the highest C-rate, also as expected.
A similar plot for the discharge-charge-discharge profile is shown

in Fig. 7b. In this case, as expected, both voltage and SoC decrease
in the discharge period, increase in the charge period and finally
decrease in the last period of discharge at a greater rate due to the
greater C-rate.
These plots demonstrate the capability of the Green’s function

based analytical model to predict the voltage and SoC variation in the
cell over time due to current profiles comprising of step functions.

Sinusoidal current profile.—The analytical model is used next
to investigate the voltage/SoC behavior of a Li-ion cell operating
under two sinusoidal current profiles, which may be the case for
Electrochemical Impedance Spectroscopy (EIS), or for alternating
current (AC) charging/discharging of the cell. Two different sinusoidal
current profiles are considered. Figure 8 presents plots for voltage and
SoC of a Li-ion cell under a sinusoidal discharge current profile of
I t I t1 sin ,0( ) ( ) where I0 = −1.76 A corresponds to 1C
discharge. This current profile is a combination of AC and DC that
discharges the cell throughout the time period. This specific current
profile is chosen in this study to demonstrate the applicability of this
approach for complicated dynamic current profiles. Such profiles have
been recently used for battery diagnostics.49 Figures 8a and 8b plot
cell voltage and SoC, respectively, as functions of time for three
different values of frequency, . The current profiles are also shown as
an inset. While both voltage and SoC decrease over time, as expected,

Figure 5. Validation of the analytical model against past experimental measurements: Voltage as a function of time for (a) constant current discharge,38 and
(b) HPPC drive cycle.34

Figure 6. Application of the analytical model for a step-function current profile: Concentration as a function of time for (a) discharge at multiple C-rates,
(b) discharge-charge-discharge process.
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periodicity in the voltage and SoC is also seen, with the number of
crests and troughs being consistent with the current profile for each
frequency. At each crest, when the discharge current becomes zero for
an instant, the voltage curve becomes flat momentarily. It is interesting
that for each frequency considered here, the cell fully discharges at
about the same time, which is because the integral of the current
profile over the time period remains the same for all three frequencies
considered here and the DC component of the current primarily causes
the reduction in voltage and SoC. Figure 8b presents a plot of average
SoC at the negative electrode as a function of time for different values
of frequency. The sinusoidal footprint of the current profile is also
easily seen in the SoC curve, where, similar to voltage, the SoC curve
flattens momentarily when the current becomes zero.
A second type of sinusoidal current profile I t I tsin0( ) is

also considered. This profile is representative of AC charge/
discharge, which is commonly used in EIS measurements for
investigating the electrochemical processes that occur inside the
cell. Based on this current profile, the cell is periodically subjected to
both charge and discharge. Figures 9a and 9b plot voltage and SoC,
respectively, as functions of time for this current profile with
multiple values of frequency. The current profile is also shown as
an inset. Unlike the previous case where the voltage and SoC
gradually reduce over time due to the discharge-only nature of the
process, in this case, both voltage and SoC oscillate harmonically
due to the charge-discharge nature of the current profile. As the
current frequency increases, the number of times that voltage and
SoC plots oscillate also increases. EIS typically uses a very low
current amplitude to probe only the linear response of the physical
processes inside the cell, whereas a large amplitude of current used
here causes a corresponding large amplitude of voltage and SoC.

ECE-15 and US06 current profiles.—The current profiles con-
sidered so far are ideal ones, whereas current profiles may be a lot

more complicated in realistic charge/discharge conditions, for
example in automotive applications. The Green’s function based
analytical model presented in the mathematical section is next used
to predict the behavior of a Li-ion cell operating under two dynamic
load cycles—ECE-15 and US06. Both are representative of condi-
tions that may be encountered in a realistic electric vehicle battery
pack and are commonly used as benchmarks for studying battery
performance. Figures 10a and 10b present voltage and SoC plots for
an ECE-1550 current profile, which is also plotted in both Figures for
comparison. Both voltage and SoC plots closely follow the changes
in the current profile. In general, the voltage and SoC curves are
smoother than the current profile due to the diffusion time constants
—it takes a finite time for voltage and SoC curves to respond to
fluctuations in current. In some instances, such as around t = 140 s,
the voltage and SoC continue to drop even after the magnitude of the
discharge current has passed its peak, which is likely because the cell
is still being discharged even though the magnitude of the discharge
current is reducing with time. Higher discharge current causes a
larger voltage drop due to cell polarization. Voltage drop due to cell
polarization continues to decrease as the magnitude of the current
decreases, leading to an increase in the voltage of the cell after 145 s.
It is interesting to see that whenever the current becomes zero, the
voltage still changes for a little while, but SoC becomes flat almost
instantaneously, which is expected as the cell reverts back to its open
circuit potential.
The second drive cycle is even more complicated, and illustrates

the capability of the Green’s function based analytical model to
predict voltage and SoC for very complicated and dynamic drive
profiles. The US06 drive cycle is commonly used to represent
current profile for an electric vehicle battery pack for realistic
driving conditions.46,47 The drive profiles are scaled for an 1.78Ah
cell, used in the analytical model. Figures 11a and 11b plot voltage
and SoC, respectively, as functions of time for the US06 current

Figure 7. Application of the analytical model for a step-function current profile: Voltage and SOC as functions of time for (a) discharge at multiple C-rates,
(b) discharge-charge-discharge process.

Figure 8. Application of the analytical model for a combination of AC-DC profile, I(t) = I0 (1 + sin ωt): (a) Voltage and (b) SOC as functions of time.
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profiles, also shown in these Figures. While the current profile is
very dynamic and includes multiple, sharp changes, including
between charge and discharge, Figs. 11a and 11b demonstrate the
capability of the analytical model to follow the current profile and
predict the cell voltage and SoC as functions of time. The cell
voltage and SoC are seen to follow the fluctuations in current, and
generally decrease over time because the applied current is negative
(discharge) for most of the duration. Note that the concentration
profile and consequently the voltage and SoC are determined
analytically even for these very complicated profiles, which results
in fast computation without the need for mesh generation.

Conclusions

The voltage and SoC computation presented here is carried out
using a Green’s function based exact analytical solution for the

concentration profile in the electrodes for an arbitrary time-depen-
dent current profile. This analytical approach agrees well with
numerical simulations for a variety of conditions and may be easier
to implement in practical battery management systems, especially
with controllers containing limited memory. The individual elec-
trode SoC can easily be related to the overall capacity/SoC of the
cell. Even for very complicated current profiles, the analytical model
is shown to be able to accurately predict the voltage and SoC
changes in the cell over time. It should be noted that the model
presented here is based on a single spherical particle model, and
therefore is valid within the range of validity of the SPM model, i.e.
low to moderate C-rates. Also note that the Green’s function
approach is inherently valid only for linear systems. Non-linearities
such as concentration-dependent diffusivities, which may be sig-
nificant for modeling of certain battery chemistries, sizes and form
factors are not accounted for by the model. Finally, the model is

Figure 9. Application of the model for a harmonic current profile I(t) = I0(sin ωt): (a) Voltage and (b) SOC as functions of time.

Figure 10. Cell response predicted by the analytical model for a realistic process based on ECE-15 drive cycle49: (a) Voltage and (b) SoC as functions of time.

Figure 11. Cell response predicted by the analytical model for a realistic process based on US06 drive cycle: (a) Voltage and (b) SoC as functions of time.
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isothermal, and does not account for the impact of temperature on
diffusion or kinetic processes. Note that the analytical solution
presented here can be used as a basis for state estimation algorithms
such as Kalman filter approach for SoC estimation. Furthermore, the
solution can also be coupled with the energy balance equation to
account for thermal effects. This work is expected to contribute
towards the improvement of battery management systems (BMS) for
a variety of applications.

Acknowledgments

This material is based upon work supported by CAREER Award
No. CBET-1554183 from the National Science Foundation. Authors
would like to gratefully acknowledge Dr Suryanarayana Kolluri and
Prof. Venkat Subramanian for sharing their constant current SPM
code for validation of the present model.

ORCID

Ankur Jain https://orcid.org/0000-0001-5573-0674

References

1. H. Rahimi-Eichi, U. Ojha, F. Baronti, and M. Y. Chow, “Battery management
system: an overview of its application in the smart grid and electric vehicles.” IEEE
Ind. Electron. Mag., 7, 4 (2013).

2. T. R. Tanim, C. D. Rahn, and C. Y. Wang, “State of charge estimation of a lithium
ion cell based on a temperature dependent and electrolyte enhanced single particle
model.” Energy, 80, 731 (2015).

3. Y. Xing, E. W. Ma, K. L. Tsui, and M. Pecht, “Battery management systems in
electric and hybrid vehicles.” Energies, 4, 1840 (2011).

4. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-
ion battery management in electric vehicles.” J. Power Sources, 226, 272 (2013).

5. R. Xiong, J. Cao, Q. Yu, H. He, and F. Sun, “Critical review on the battery state of
charge estimation methods for electric vehicles.” IEEE Access, 6, 1832 (2017).

6. M. Corno, N. Bhatt, S. M. Savaresi, and M. Verhaegen, “Electrochemical model-
based state of charge estimation for Li-ion cells.” IEEE Trans. Control Syst.
Technol., 23, 117 (2014).

7. Y. Xiao, C. Lin, and B. Fahimi, “Online state of charge estimation in electro-
chemical batteries: application of pattern recognition techniques.” 2013 Twenty-
Eighth Annual IEEE Applied Power Electronics Conference and Exposition
(APEC) (IEEE) p. 2474 (2013).

8. C. Lin, A. Tang, and J. Xing, “Evaluation of electrochemical models based battery
state-of-charge estimation approaches for electric vehicles.” Appl. Energy, 207, 394
(2017).

9. F. Yang, Y. Xing, D. Wang, and K. L. Tsui, “A comparative study of three model-
based algorithms for estimating state-of-charge of lithium-ion batteries under a new
combined dynamic loading profile.” Appl. Energy, 164, 387 (2016).

10. Y. Xing, W. He, M. Pecht, and K. L. Tsui, “State of charge estimation of lithium-
ion batteries using the open-circuit voltage at various ambient temperatures.” Appl.
Energy, 113, 106 (2014).

11. H. He, R. Xiong, and H. Guo, “Online estimation of model parameters and state-of-
charge of LiFePO4 batteries in electric vehicles.” Appl. Energy, 89, 413 (2012).

12. K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, “Enhanced coulomb counting
method for estimating state-of-charge and state-of-health of lithium-ion batteries.”
Appl. Energy, 86, 1506 (2009).

13. X. Hu, S. Li, H. Peng, and F. Sun, “Robustness analysis of State-of-Charge
estimation methods for two types of Li-ion batteries.” J. Power Sources, 217, 209
(2012).

14. J. Zhang and J. Lee, “A review on prognostics and health monitoring of Li-ion
battery.” J. Power Sources, 196, 6007 (2011).

15. A. J. Salkind, C. Fennie, P. Singh, T. Atwater, and D. E. Reisner, “Determination of
state-of-charge and state-of-health of batteries by fuzzy logic methodology.”
J. Power Sources, 80, 293 (1999).

16. J. D. Kozlowski, “Electrochemical cell prognostics using online impedance
measurements and model-based data fusion techniques.” 2003 IEEE Aerospace
Conference Proceedings (Cat. No. 03TH8652) (IEEE), 7, 3257 (2003).

17. L. Kang, X. Zhao, and J. Ma, “A new neural network model for the state-of-charge
estimation in the battery degradation process.” Appl. Energy, 121, 20 (2014).

18. J. C. A. Anton, P. J. G. Nieto, C. B. Viejo, and J. A. V. Vilán, “Support vector
machines used to estimate the battery state of charge.” IEEE Trans. Power
Electron., 28, 5919 (2013).

19. B. Y. Liaw, G. Nagasubramanian, R. G. Jungst, and D. H. Doughty, “Modeling of
lithium ion cells—a simple equivalent-circuit model approach.” Solid State Ionics,
175, 835 (2004).

20. R. Xiong, F. Sun, Z. Chen, and H. He, “A data-driven multi-scale extended Kalman
filtering based parameter and state estimation approach of lithium-ion polymer
battery in electric vehicles.” Appl. Energy, 113, 463 (2014).

21. G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-
based HEV battery packs: Part I. Background.” J. Power Sources, 134, 252 (2004).

22. G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-
based HEV battery packs: Part II. Modeling and identification.” J. Power Sources,
134, 262 (2004).

23. G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-
based HEV battery packs: Part III. State and parameter estimation.” J. Power
Sources, 134, 277 (2004).

24. J. Lee, O. Nam, and B. H. Cho, “Li-ion battery SOC estimation method based on
the reduced order extended Kalman filtering.” J. Power Sources, 174, 9 (2007).

25. M. Verbrugge and E. Tate, “Adaptive state of charge algorithm for nickel metal
hydride batteries including hysteresis phenomena.” J. Power Sources, 126, 236
(2004).

26. I. S. Kim, “The novel state of charge estimation method for lithium battery using
sliding mode observer.” J. Power Sources, 163, 584 (2006).

27. X. Hu, F. Sun, and Y. Zou, “Estimation of state of charge of a lithium-ion battery
pack for electric vehicles using an adaptive Luenberger observer.” Energies, 3,
1586 (2010).

28. M. Doyle, T. F. Fuller, and J. Newman, “Modeling of galvanostatic charge and
discharge of the lithium/polymer/insertion cell.” J. Electrochem. Soc., 140, 1526
(1993).

29. M. Rashid and A. Gupta, “Mathematical model for combined effect of SEI
formation and gas evolution in Li-ion batteries.” ECS Electrochem. Lett., 3, A95
(2014).

30. M. Rashid and A. Gupta, “Effect of relaxation periods over cycling performance of
a Li-ion battery.” J. Electrochem. Soc., 162, A3145 (2015).

31. W. Du, A. Gupta, X. Zhang, A. M. Sastry, and W. Shyy, “Effect of cycling rate,
particle size and transport properties on lithium-ion cathode performance.” Int. J.
Heat Mass Transfer, 53, 3552 (2010).

32. K. A. Smith, C. D. Rahn, and C. Y. Wang, “Control oriented 1D electrochemical
model of lithium ion battery.” Energy Convers. Manage., 48, 2565 (2007).

33. K. A. Smith, C. D. Rahn, and C. Y. Wang, “Model-based electrochemical
estimation and constraint management for pulse operation of lithium ion batteries.”
IEEE Trans. Control Syst. Technol., 18, 654 (2009).

34. K. Smith and C. Y. Wang, “Solid-state diffusion limitations on pulse operation of a
lithium ion cell for hybrid electric vehicles.” J. Power Sources, 161, 628 (2006).

35. A. Subramaniam, S. Kolluri, C. D. Parke, M. Pathak, S. Santhanagopalan, and
V. R. Subramanian, “Properly Lumped Lithium-ion battery models: a Tanks-in-
Series approach.” J. Electrochem. Soc., 167, 013534 (2020).

36. A. Jokar, B. Rajabloo, M. Désilets, and M. Lacroix, “Review of simplified Pseudo-
two-Dimensional models of lithium-ion batteries.” J. Power Sources, 327, 44
(2016).

37. M. Doyle and J. Newman, “Analysis of capacity–rate data for lithium batteries
using simplified models of the discharge process.” J. Appl. Electrochem., 27, 846
(1997).

38. M. Guo, G. Sikha, and R. E. White, “Single-particle model for a lithium-ion cell:
thermal behavior.” J. Electrochem. Soc., 158, A122 (2011).

39. X. Han, M. Ouyang, L. Lu, and J. Li, “Simplification of physics-based electro-
chemical model for lithium ion battery on electric vehicle. Part I: diffusion
simplification and single particle model.” J. Power Sources, 278, 802 (2015).

40. T. R. Tanim, C. D. Rahn, and C. Y. Wang, “A reduced order electrolyte enhanced
single particle lithium ion cell model for hybrid vehicle applications.” 2014
American Control Conference (IEEE) p. 141 (2014).

41. W. Luo, C. Lyu, L. Wang, and L. Zhang, “A new extension of physics-based single
particle model for higher charge–discharge rates.” J. Power Sources, 241, 295
(2013).

42. S. Santhanagopalan and R. E. White, “Online estimation of the state of charge of a
lithium ion cell.” J. Power Sources, 161, 1346 (2006).

43. M. Parhizi and A. Jain, “Analytical modeling of solid phase diffusion in single-layer
and composite electrodes under time-dependent flux boundary condition.”
J. Electrochem. Soc., 167, 060528 (2020).

44. M. Guo and R. E. White, “An approximate solution for solid-phase diffusion in a
spherical particle in physics-based Li-ion cell models.” J. Power Sources, 198, 322
(2012).

45. P. Ramadass, B. Haran, P. M. Gomadam, R. White, and B. N. Popov,
“Development of first principles capacity fade model for Li-ion cells.”
J. Electrochem. Soc., 151, A196 (2004).

46. P. Keil, M. Englberger, and A. Jossen, “Hybrid energy storage systems for electric
vehicles: an experimental analysis of performance improvements at subzero
temperatures.” IEEE Trans. Veh. Technol., 65, 998 (2015).

47. G. Zhang, S. Ge, X. G. Yang, Y. Leng, D. Marple, and C. Y. Wang, “Rapid
restoration of electric vehicle battery performance while driving at cold tempera-
tures.” J. Power Sources, 371, 35 (2017).

48. Z. Cen and P. Kubiak, “Lithium-ion battery SOC/SOH adaptive estimation via
simplified single particle model.” Int. J. Energy Res., available at (2020).

49. L. Teo, M. Pathak, S. Kolluri, N. Dawson-Elli, D. T. Schwartz, and V. R. Subramanian,
An analysis of transient impedance-like diagnostic signals in batteries, ECS Meeting
Abstract Volume MA2018–02 (2018), available at https://iopscience.iop.org/article/
10.1149/MA2018-02/25/872, last accessed 07/09/2020.

50. T. Sarıkurt, M. Ceylan, and A. Balikçi, “An analytical battery state of health
estimation method.” 2014 IEEE 23rd International Symposium on Industrial
Electronics (ISIE) (IEEE) p. 1605 (2014).

Journal of The Electrochemical Society, 2020 167 120544


