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� Presents a new thermal model to predict temperature rise in cylindrical Li-ion cells.
� Results are in excellent agreement with experimental data.
� Results help understand thermal runaway and other thermal issues in Li-ion cells.
� Results predict the importance of various design parameters for thermal performance.
� Results are is used to determine design guidelines for cell sizing.
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a b s t r a c t

While Lithium-ion batteries have the potential to serve as an excellent means of energy storage, they
suffer from several operational safety concerns. Temperature excursion beyond a specified limit for a
Lithium-ion battery triggers a sequence of decomposition and release, which can preclude thermal
runaway events and catastrophic failure. To optimize liquid or air-based convective cooling approaches, it
is important to accurately model the thermal response of Lithium-ion cells to convective cooling,
particularly in high-rate discharge applications where significant heat generation is expected. This paper
presents closed-form analytical solutions for the steady-state temperature profile in a convectively
cooled cylindrical Lithium-ion cell. These models account for the strongly anisotropic thermal conduc-
tivity of cylindrical Lithium-ion batteries due to the spirally wound electrode assembly. Model results are
in excellent agreement with experimentally measured temperature rise in a thermal test cell. Results
indicate that improvements in radial thermal conductivity and axial convective heat transfer coefficient
may result in significant peak temperature reduction. Battery sizing optimization using the analytical
model is discussed, indicating the dependence of thermal performance of the cell on its size and aspect
ratio. Results presented in this paper may aid in accurate thermal design and thermal management of
Lithium-ion batteries.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

A significant amount of research has been carried out in past few
decades on Li-ion batteries for energy storage. Despite several ad-
vantages over other energy storage technologies such as high
specific energy and energy density [1,2], the commercialization of
Li-ion battery technology has been slower than expected due to
, Arlington, TX 76019, USA.
risks associated with high temperature operation and other safety-
related concerns. Such concerns have been highlighted in several
recent incidents where Li-ion batteries and battery packs have been
found to be responsible for fire aboard aircraft [3,4]. These incidents
underscore the importance of developing a fundamental under-
standing of thermal characteristics of Li-ion cells, particularly the
capability of temperature prediction during the operation of a cell.

Similar to any other energy storage device, charging or dis-
charging a Li-ion battery results in heat generation and thus in-
crease in temperature due to exothermic electrochemical reactions
and Joule heating [5,6]. Heat generation rate is known to be a
function of depth-of-discharge, temperature and the rate at which
a cell is charged or discharged, often referred to as C-rate [7].

mailto:jaina@uta.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpowsour.2014.01.115&domain=pdf
www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
http://dx.doi.org/10.1016/j.jpowsour.2014.01.115
http://dx.doi.org/10.1016/j.jpowsour.2014.01.115
http://dx.doi.org/10.1016/j.jpowsour.2014.01.115


Fig. 1. Schematic diagram showing battery geometry and thermal parameters for the
analytical thermal model. Q may be uniform (Section 2) or may vary radially/axially
(Section 3).
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There are severe limitations to temperature rise permitted in a
Li-ion cell, particularly for military applications with high reliability
requirements. Thermal runaway at high temperature is a well-
known problem in Li-ion batteries [8,9]. While a small tempera-
ture rise is known to actually improve performance due to reduced
impedance [10], larger temperature rise results in a series of
exothermic mechanisms including decomposition of the Solid-
Electrolyte Interface (SEI) [11,12] and short circuit due to sepa-
rator layer rupture from dendrite formation, which ultimately leads
to catastrophic failure [8]. As a result, Li-ion cells must operate in a
very narrow temperature window. In addition to absolute tem-
perature rise, spatial uniformity of the temperature field is also
desirable [13], since this prevents imbalance of temperature-
dependent electrochemical reaction rates within the cell or bat-
tery pack.

Despite the clear importance of thermal management of cylin-
drical Li-ion batteries, only a limited amount of literature is avail-
able on thermal management and cooling of Li-ion batteries. Only a
few studies have reported measurement of thermophysical prop-
erties such as thermal conductivity and heat capacity of Li-ion cells
[12,14]. Early work in this direction did not recognize the strong
anisotropy in thermal conduction in a Li-ion cell. Recent measure-
ments have reported a method for rapid measurement of aniso-
tropic thermal conductivity as well as heat capacity of a Li-ion cell
[14]. These measurements indicate nearly two orders of magnitude
difference in the radial and axial thermal conductivities of a Li-ion
cell [14]. At the battery pack level, somework has been reported on
thermal simulations of cooling strategies for Li-ion cells [15,16]. The
use of solid-to-liquid phase change materials embedded around
cells in a battery pack [17], as well as two-phase flow interstitially
within the cell [18] has been proposed for absorbing heat and
reducing peak temperature rise. However, such an approach leads
to reduced energy density since the phase changematerial does not
store electrochemical energy and results in more complicated cell
design. It is important to determine the limits of air/liquid based
convective cooling approaches [7] and to develop a sound theo-
retical framework to understand the dependence of temperature
rise in a convectively cooled Li-ion cell on various parameters, such
as geometry, cooling parameters, etc. A first step towards effective
thermal management of Li-ion cells is the capability to accurately
model and predict temperature fields within an operating cell. The
temperature field resulting from the heat generation depends on a
variety of parameters including geometry, material properties, etc.
and needs to be modeled accurately. A number of models are
available for predicting volumetric heat generation rates as a
function of electrical operating parameters of the cell, ranging from
very simple, assuming uniform heat generation rate [5] to very
sophisticated [9,13]. Some papers also model volumetric heat
generation as a space dependent parameter, accounting for Joule
heating that occurs primarily at the two current collector tabs,
resulting in non-uniformity, particularly at high discharge rates [9].
Heat generation modeling is complicated by the fact that heat
generationmay varywith time in specific applications if the charge/
discharge rate changes [6]. For example, in an electric vehicle,
changes in demand on the battery due to vehicle acceleration and
other factorsmay result in the heat generation rate being a function
of time.

In contrast to heat generation modeling, limited work has been
reported on temperature field prediction [9,19e24], which is a
more critical parameter for safety and performance considerations.
While these models provide a basis for temperature prediction,
there are several shortcomings. Many past models are one-
dimensional [20] and do not account for the spirally-wound ge-
ometry of a cylindrical Li-ion cell, boundary conditions encoun-
tered in realistic applications, or the thermal conduction anisotropy
in a cylindrical cell. Several thermal models of a Li-ion cell reported
in the recent past treat the cell as a lumped body with a single
temperature [20,21], which may not be an appropriate assumption
for most applications. Three-dimensional thermal models for a Li-
ion cell have been presented [22], but this model is solved
numerically, and does not offer analytical, closed-form solutions for
the temperature field. Some recent work accounts for the spiral
nature of the electrodes in a cylindrical Li-ion cell [25], but this
work neglects the axial dimension of the cell and does not present a
closed-form analytical solution. Recent work has presented
analytical models for temperature distribution in prismatic Li-ion
cells [23,24] but these models do not readily apply to a cylindrical
geometry where heat transfer characteristics are fundamentally
different from a prismatic cell.

This paper presents a cell-level, steady-state analytical thermal
model of a cylindrical Li-ion cell being cooled on the outside surface
by convective flow. Thermal conduction anisotropy within the cell
is accounted for. Closed-form analytical solutions for both uniform
and space-dependent heat generation rates are presented. The next
two Sections present the analytical models, including assumptions,
governing equations and closed-form solutions for the temperature
field. These models are validated by comparisonwith experimental
measurements on a thermal test cell in Section 4. Section 5 dis-
cusses a number of applications of these thermal models including
thermal optimization of the convective cooling process and battery
sizing. Fundamental limitations of thermal management based on
convective cooling are discussed.

2. Analytical model: uniform heat generation

Consider a cylindrical Lithium-ion cell of radius R and height H
shown schematically in Fig. 1. Volumetric heat generation rate Q is
assumed within the cell due to electrochemical reactions and Joule
heating. In this Section, Q is assumed to be spatially uniform,
whereas Section 3 considers the case where Q may be a function of
space. It is assumed that the outside surfaces of the cell are being
cooled with heat transfer coefficients of hr and hz for the curved
surface and the end surfaces respectively. In case one particular
surface is insulated, the respective heat transfer coefficient can be
set to zero. Such a situation may arise, for example when the
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electrical interface at the anode and cathode ends results in
negligible heat loss through the surfaces at z ¼ 0 and z ¼ H. The
ambient temperature for convective cooling is assumed to be T0.
The thermal conductivities in radial and axial directions are
assumed to be kr and kz respectively. Recent measurements show
that kr and kz differ by nearly two orders of magnitude [14], thereby
indicating the importance of anisotropic modeling of thermal
conductivity in a cylindrical Li-ion cell. The governing steady state
energy conservation equation in this case is given by

kr
r

v

vr

�
r
vq

vr

�
þ kz

v2q

vz2
þ Q ¼ 0 (1)

where q(r, z) is the temperature rise above ambient, given by

qðr; zÞ ¼ Tðr; zÞ � T0 (2)

Equation (1) is a non-homogeneous partial differential equation
subject to four homogeneous boundary conditions given by

vq

vz
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kz
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vq

vr
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kr
q at r ¼ R (6)

The boundary condition in Equation (5) represents the
requirement of symmetry and finiteness of the temperature profile
at r ¼ 0, whereas boundary conditions in Equations (3), (4) and (6)
represent energy balance at the respective surfaces.

Briefly, the approach for deriving the solution to Equations
(1)e(6) is as follows: The solution is first split into two parts. The
first part, which is assumed to be a function of z alone, absorbs
the heat generation term, and can be solved by direct integration
since it is an ordinary differential equation with two well-defined
boundary conditions at z ¼ 0 and z ¼ H. The second part of the
solution, which is a function of both r and z, has three homoge-
neous boundary conditions and one non-homogeneous boundary
condition at r ¼ R. The second part of the solution is determined
using the separation of variables technique [26]. To do so, the
axial eigenvalues mn are derived from the homogeneous boundary
conditions in z direction. Radial eigenvalues ln are related to mn
through the thermal conductivity ratio [26]. Finally, the co-
efficients for the second part of the solution are determined using
the non-homogeneous boundary conditions. Details about this
solution procedure may be found in Refs. [26e28].

The final solution is given by

qðr; zÞ ¼ sðzÞ þwðr; zÞ (7)

where

sðzÞ ¼ QH2
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The eigenvalues mn are obtained from roots of the transcen-
dental equation

TanðmHÞ ¼ 2BiH$ðmHÞ
ðmHÞ2 � Bi2H

(11)

where BiH and BiR are axial and radial Biot numbers, respectively,
defined as BiH ¼ hzH/kz and BiR ¼ hrR/kr.

Finally,

ln ¼ ffiffiffi
g

p
$mn (12)

where g is the degree of anisotropy given by

g ¼ kz
kr

(13)

For the case of Li-ion batteries, g is expected to be greater than
one. Recent measurements indicate a value of g around 200 for
26650 geometry LiFePO4 cells [14].

Equations (7)e(13) show that temperature rise at any point in
the cell is a function of four non-dimensional parameters e BiH, BiR,
g, and QH2/2kz.

In addition to the peak temperature rise, another important
thermal parameter of interest is the temperature gradient within
the cell, defined as the difference between the maximum and
minimum temperature. In particular, it is desirable to reduce the
difference between maximum and minimum temperature in a cell,
since such a gradient leads to performance imbalance, etc. From
Equation (7), the temperature gradient within the cell is given by

qghqmax � qmin ¼ QH2

8kz
þ

XN
n¼1
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2
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�
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�
(14)

Equation (14) provides a means to quantify the temperature
non-uniformity within the cell as a function of various non-
dimensional parameters.

One special case of the general solution shown in Equation (7) is
of particular interest in the cooling of Li-ion cells. A limiting case for
the temperature field is one where there is no convective heat
transfer at the axial ends, and all of the heat dissipation occurs at
the radial surface. In this case, hz ¼ 0 and the temperature field
varies only in the radial direction, and is given by

qðrÞ ¼ QR2

4kr

�
1�

�r
R

�2
þ 2
BiR

�
(15)

In this case, the temperature rise at any location is a function of
BiR and QR2/4kr. The degree of anisotropy, g, does not influence the
solution since heat flows only in the radial direction, making the
axial thermal conductivity unimportant.

Another special case, likely to be of lesser interest for practical
applications is where hr ¼ 0, and heat transfer occurs only through
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the end surfaces at z ¼ 0 and z ¼ H. In this case, temperature
variation occurs only in the axial direction and is given by

qðzÞ ¼ QH2

2kz

�
z
H

�
1� z

H

�
þ 1
BiH

�
(16)

The temperature field solution discussed in this section assumes
uniform heat generation rate Q. While this is a reasonable
assumption for most cases, it is instructive to also derive the tem-
perature solution for a case where heat generation may be a
function of space. For example, high electric current discharge
through the cell may result in Joule heating occurring primarily in
themetal tabs located at the two ends of the cell [9]. This may result
in a z-dependent volumetric heat generation rate [9]. This is
exacerbated by the fact that Joule heating increases as the square of
the electric current, making the axial variation of heat generation
evenmore prominent. Section 3 next presents analytical models for
temperature distribution in a Li-ion cell with space-dependent
volumetric heat generation.

3. Analytical model: non-uniform heat generation

Since the rate of electrochemical reactions contributes to heat
generation, spatial variation in rate of electrochemical reactions
may lead to space-dependent Q. In such a case, the temperature
field in the Li-ion cell continues to be governed by Equation (1) and
boundary conditions (3)e(6), except that the Q term in Equation (1)
is a function of space. Two particular cases of interest are consid-
ered in this Section: one in which Q is a function of z only, Q(z); and
second, in which Q is a function of r only, Q(r).
A1n ¼
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3.1. Solution for axially varying heat generation rate

The solution approach for this case is similar to one described in
Section 2 following Equation (7). The temperature field q(r, z) is split
into two components, s(z) and w(r, z). The solution approach for
w(r, z) is identical to previous section, and the final solution is given
by Equations (9)e(13). Here, s(z) is obtained by twice integrating
Q(z) and using the boundary conditions in Equations (3)e(4) to
determine the constants of integration. Any given well-behaved
function Q(z) can be approximated by an N-order polynomial as
follows [29]:

QðzÞ ¼
XN
i¼0

ci
� z
H

�i
(17)

where the coefficients ci are chosen appropriately to fit the
function Q(z).

With such a polynomial approximation forQ(z), the function s(z)
is given by
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Equation (18) above, together with Equations (9)e(13)
completely define the temperature field for axially varying heat
generation.

3.2. Solution for radially varying heat generation rate

In case the heat generation rate varies in the radial direction, a
solution of the temperature field may be derived by first approxi-
mating Q(r) with a polynomial expansion,

QðrÞ ¼
XN
i¼0

ci
�r
R

�i
(19)

The solution approach for this case is similar to one described in
Section 2 following Equation (7). The solution is given by

qðr; zÞ ¼ sðrÞ þ
XN
n¼1
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where
The eigenvalues ln are determined from roots of the transcen-
dental equation

BiR J0ðlnRÞ þ lnRJ00ðlnRÞ ¼ 0 (22)

Note that mn are related to ln through the degree of anisotropy,
given by Equations (12) and (13).

Also, s(r) is given by
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Equations (20)e(23) define the temperature solution in the case
of radially varying heat generation.

The next sections discuss experimental validation of the
analytical model, and present a parametric analysis of the depen-
dence of temperature field on various parameters including the
degree of anisotropy and external convective cooling coefficient. A



Fig. 4. Variation of peak temperature rise with radial thermal conductivity of battery
material, showing significant potential for temperature reduction by improving radial
thermal conductivity.

Fig. 2. Comparison of analytical model with experimental data on temperature rise at
the outer surface of a 26650 cell at mid-height as a function of heating power.
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few design studies enabled by the analytical models are also
discussed.
4. Experimental validation

The temperature model presented in this paper is validated by
comparisonwith experimental data. A thermal test cell of the same
dimensions as a 26650 cell is fabricated. This test cell has a resistive
metal sheet heater rolled up inside. As a result, a desired Joule
heating can be produced within the cell by passing an electric
current through the sheet heater. A thermocouple is attached at the
outer surface at mid-height (r ¼ R, z ¼ H/2). Steady state temper-
ature measurements are carried out at a number of values of the
heating power. Experiments are carried out in natural convection
conditions. The analytical model presented in this paper is used to
compute the expected temperature at the thermocouple location as
a function of heating power. For these computations, thermal
properties of the test cell (kr, kz) are determined from separate
measurements using an adiabatic heating method recently re-
ported by us [14]. A value of hr¼ hz¼ 11W/m2 K is used for the heat
transfer coefficient, which is representative of natural convection
conditions [30]. Experimental data on temperature rise at different
heating powers and analytical model results are both plotted in
Fig. 2. The analytical model is in good agreement with experimental
Fig. 3. Comparison of analytical models presented in Sections 2 and 3 with finite-elemen
generation, and (b) axial temperature variation at r ¼ 0 with axially varying heat generatio
data, and captures the variation of temperature rise as a function of
heating power.

In addition, the analytical model presented in this paper is also
compared with finite-element model (FEM) simulations. A 26650
cell configuration is considered, with convective heat transfer co-
efficients of hr ¼ 1000 W/m2 K and hz ¼ 100 W/m2 K. Recently
measured radial and axial thermal conductivity values are used in
themodel [14]. In each case, the total power dissipated in the 26650
cell is 6 W, which is estimated to correspond to a 10 C (25 A)
discharge rate. Fig. 3(a) shows the radial temperature variation at
mid-cell height for uniform heat generation of 6 W over the entire
cell volume. While the analytical model presented in Section 3.1
accounts for any general polynomial, Fig. 3(b) shows the axial
temperature variation at r¼ 0 for two specific cases of z-dependent
heat generation rate: a linear variation given by Q(z) ¼ 2$Qmaxz/H
and a quadratic variation given by Q(z) ¼ 12$Qmax((z/H) � (1/2))2.
The coefficients ci in Equation (17) for the linear and quadratic
variations are given by c0 ¼ 0 and c1 ¼ 2Qmax; and c0 ¼ 3Qmax,
c1 ¼ �12Qmax, and c2 ¼ 12Qmax respectively. In each case, the
analytical model compares well with FEM results.
t simulation results for (a) radial temperature variation at z ¼ H/2 with uniform heat
n.



Fig. 5. Variation of temperature field in a 26650 cell as a function of heat transfer
coefficient for hr ¼ (i) 10 W/m2 K, (ii) 50 W/m2 K, (iii) 100 W/m2 K, (iv) 500W/m2 K, (v)
1000 W/m2 K, (vi) 1500 W/m2 K.
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The temperature solution for various cases in Sections 2 and 3
been derived in the form of an infinite series. It is found that
these series converge very quickly as the number of terms in-
creases. Considering only three eigenvalues is sufficient for tem-
perature computation with an error of less than 1%.

5. Results and discussion

5.1. Dependence of temperature field on g and hr

Fig. 4 plots the peak temperature in the 26650 Li-ion cell
generating 6 W heating power as a function of radial thermal
conductivity, kr while other parameters are held constant. Fig. 4
shows a steep increase in peak temperature at low values of
kr. The measured value of kr [14] is indicated with an arrow on the
x-axis. This figure shows that the greater the degree of anisotropy,
the larger is the peak temperature rise. There is significant potential
for reducing temperature rise by improving radial thermal con-
ductivity and, hence, reducing g. In effect, radial conduction is the
rate-limiting step in heat dissipation. In most practical cases,
convective cooling is available at the radial surface at r¼ R, whereas
the top and bottom ends are used primarily for electrical inter-
connection. Finally, since kz has beenmeasured to bemuch larger kr
[14], improvement in kr is more beneficial for temperature
reduction.

Fig. 5 shows 2D cross-section temperature color plots for various
values of hr. As the radial convective heat transfer coefficient in-
creases, the cell temperature field reduces as expected. However,
beyond approximately hr ¼ 1000 W/m2 K, there is negligible in-
cremental improvement in the temperature profile. This is further
illustrated in Fig. 6(a) which shows temperature line plots as
function of r at the cell’s mid-height. These results show that
improvement in the external convective heat transfer coefficient
helps reduce cell temperature, but this effect quickly saturates.
Beyond a specific value, there is not much further improvement.
This illustrates the limitation of radial convective cooling mecha-
nisms for cylindrical Li-ion cells. The fundamental reason behind
this is that heat flow fromwithin the cell to the ambient encounters
two thermal resistances in series e one due to thermal conduction
within the cell material, and the second due to convective heat
transfer at the outside surface of the cell. In the radial direction, it is
the conduction thermal resistance within the cell that is dominant,
which is caused by a very low value of radial thermal conductivity
[14]. As hr increases, the convective heat transfer resistance rapidly
becomes negligible compared to the conduction resistance, which
dominates the thermal response of the cell.

When considering the axial direction, Fig. 6(b) shows the tem-
perature profiles for different values of hz. As hz increases, the
temperature profiles become lower and lower, and do not saturate
similar to the radial case in Fig. 6(a). These results indicate that
there may be significant potential in cooling the Li-ion cells from
the top and bottom surfaces despite the lower surface area because
axial conduction within the cell is more effective than radial con-
duction. Convective heat transfer at the axial ends may be
complicated by the presence of electrical connections. On the other
hand, overall heat transfer in the radial direction also requires a
close examination of the conduction resistance within the cell,
which is shown to be the slower, rate-determining step in radial
conduction. Improvements in convective heat transfer at the axial
ends, and radial conduction within the cell may be effective tech-
nological tools for reducing operating temperature in Li-ion cells.

In addition to absolute temperature rise, temperature gradient
within a cell is also of interest for thermal design of cells. It is
desirable to minimize spatial variation in temperature within the
cell. Temperature variation causes an electrochemical imbalance
which may reduce cell lifetime and reliability. Fig. 7 plots the intra-
cell temperature gradient as a function of the radial convective heat
transfer coefficient hr. It is found that as hr improves, the temper-
ature gradient within the cell actually increases. This is because at
higher values of hr, heat generation in the region close to the r ¼ R
surface gets dissipated more and more effectively, whereas heat
dissipation of heat generated in the core of the cell continues to
encounter the internal thermal resistance, which remains unaf-
fected by the improved value of hr. This demonstrates that while
increasing hr may produce limited improvement in the absolute
temperature rise, it may actually increase the intra-cell tempera-
ture gradient.

5.2. Battery sizing optimization

One application of the analytical models presented in previous
Sections for battery sizing is presented next. Two particular design
optimization problems are discussed.

The first problem relates to trade-offs between cell power and
temperature rise as functions of cell size. It is of interest to under-
stand how the cell temperature changes as the cell size increases.
Fig. 8 plots the total power and temperature rise as functions of the
cell radius, assuming that the cell height and other parameters
remain constant. Fig. 8 shows that as the cell radius increases and
aspect ratio H/R decreases, the power capacity of the cell increases
in a quadratic fashion. On the other hand, the peak temperature rise
in the cell also increases, but the rate of increase with radius slows
down after a certain radius. This is because assuming constant cell
power density based on the packing density of the electrode ma-
terial inside the cell, a larger cell has more storage capacity and
hence greater total power. On the other hand, increased size also
leads to greater heat generation, which causes greater temperature



Fig. 6. Temperature as a function of r at mid-height for various values of (a) hr and (b) hz.

Fig. 7. Effect of radial heat transfer coefficient on intra-cell temperature gradient.

Fig. 8. Effect of battery size on total power and maximum temperature rise, assuming
constant power density.

K. Shah et al. / Journal of Power Sources 258 (2014) 374e381380
rise. The increase in temperature with increasing radius however is
not as rapid particularly for larger cells because a larger cell has
larger outer surface available for convective cooling. Fig. 8 dem-
onstrates the fundamental trade-off between power storage and
thermal management. Increasing the cell size makes it more
attractive from the power perspective, but also exacerbates the
thermal management problem.

While Fig. 8 examines the effect of increasing the cell size, it is
also instructive to examine the dependence of peak temperature on
the aspect ratio of the cell while maintaining the same total vol-
ume. In several applications, the cell volume is fixed due to system-
level considerations, while it might be possible to change the aspect
ratio within the fixed cell volume. The choice then is whether to
have a thin and slender cell, or a short and stout cell. For constant
total cell volume V and hence constant total power capacity, the
radius and height are related to each other. For a given radius, the
height is given byH¼ V/pR2. If convective heat transfer is limited to
only the r ¼ R boundary, then assuming uniform heat generation in
the cell, the temperature field is given by Equation (15), which
shows that the peak temperature at r ¼ 0 increases as R increases.
Thus in this case, it is thermally preferable to have thin cells of high
aspect ratio H/R. If on the other hand, convective heat transfer oc-
curs at both r¼ R and the top/bottom faces of the cell, then the peak
temperature depends on R in a more complicated fashion. Fig. 9
Fig. 9. Variation of peak temperature rise as a function of cell radius and aspect ratio
for fixed total cell volume.
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plots peak temperature rise for this case as a function of R for fixed
total volume, fixed hz, and for different values of the radial
convective heat transfer coefficient, hr. The total fixed volume is
assumed to be that of a 26650 cell. Fig. 9 shows that there is a radius
at which the temperature rise attains a maxima. This could be
considered a worst-case radius, which roughly corresponds to the
radius that minimizes the integral of heat transfer coefficient with
respect to area over all surfaces. Note that the worst-case radius is a
function of hr and hz, and that it becomes larger and larger as hr
increases over hz. Fig. 9 shows the position of the 26650 cell on the
x-axis, indicating that the 26650 geometry is far from optimal
particularly for low values of hr. Reducing the radius of the 26650
cell while increasing height to maintain constant volume may be
helpful in reducing the peak temperature rise, particularly when
the convective heat transfer coefficient hr is somewhat low.

6. Conclusions

This paper presents an analytical thermal model for predicting
the steady-state temperature field in a cylindrical Li-ion cell.
Models with uniform as well as non-uniform heat generation are
presented. Experiments are carried out to validate the model, and
there is good agreement between the two. Analysis of the
dependence of the temperature field on various physical param-
eters of the problem is presented. It is shown that there is sig-
nificant potential for temperature reduction by improving radial
thermal conductivity and axial convective heat transfer coefficient
of the Li-ion cell. Two battery sizing problems of engineering in-
terest are also discussed based on the model presented in the
paper. These examples illustrate various design trade-offs between
power storage and temperature rise. The analytical models pre-
sented in Sections 2 and 3 provide the foundation of thermal
design tools for designing safe, high performance Li-ion cells. The
analytical models discussed in this paper provide the fundamental
foundation on which thermal prediction and optimization for safe,
high performance Li-ion cells can be carried out. The capability of
fast and accurate temperature prediction of a cylindrical cell may
be helpful for rapid iterative design as well as run-time thermal
management and control.
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