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a b s t r a c t

Conjugate heat transfer involving convection and conduction in a fluid flow and a solid body in contact
with each other occurs commonly in engineering applications. While analytical solutions for individual
convection and conduction problems are relatively easier, it is a lot more challenging to solve the
combined conjugate heat transfer problem. In this paper, an iterative method is developed for
analytically solving conjugate heat transfer problems. Based on an initial assumption of the temperature
field at the solid–fluid interface, the temperature distributions in the fluid and solid body are determined
by separately solving the governing energy conservation equations in the two domains. These solutions
are used to improve the initial assumption of the interface temperature until convergence. It is found that
only a few iterations of this process are needed for convergence. Temperature fields computed from this
analytical approach are found to be in good agreement with finite element simulation results. The iter-
ative analytical approach is used to solve two technologically relevant problems related to internal and
external flows. Given the general nature of the iterative approach, results from this paper may be helpful
in solving a variety of conjugate heat transfer problems.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Conjugate heat transfer involving coupled conduction and
convection is of significance in many engineering systems. A large
volume of past research [1–14] has been devoted to solving tem-
perature fields for a fluid flowing in contact with a solid body,
wherein thermal convection within the fluid domain occurs in con-
junction with conduction within the solid domain. While the effect
of conduction in the solid body is important in the thermally
developing fluid region [2,15], it is also clearly important in case
of internal heat generation in the solid that is being convected by
the flowing fluid [16]. This makes it critical to develop analytical
solutions for conjugate problems involving convection in fluid flow
and conduction in a solid which is in contact with the fluid flow.
Problems involving external flow and internal flow are both of
interest.

Derivation of solutions for convection-only or conduction-only
problems is relatively straightforward. Well-known solutions exist
for specific boundary conditions such as constant temperature or
constant heat flux [1,4,5]. Similarly, theoretical solutions for a vari-
ety of conductions problems are also available [17,18]. However,
analytical derivation of temperature distribution in conjugate
problems is in general a lot more challenging [19]. A fundamental
problem underlying several conjugate heat transfer problems was
first solved by Graetz [3,4] who derived an analytical expression
for temperature in a fluid flowing through a duct with constant
temperature boundary condition, assuming that the flow is hydro-
dynamically developed and thermally developing. Analytical
expressions for eigenvalues and eigenfunctions for this solution
have been computed [7], and this solution has been used to derive
the solution for a more general problem with continuously or dis-
cretely varying wall temperature using linear superimposition
[2,7,8]. Boundary layer solution for fluid flow over a plate for ther-
mal boundary layer nonsimilarity arising from both velocity field
and streamwise variation of temperature have been analyzed [6].
The case of constant or axially varying wall heat flux has also been
analyzed. While axial conduction in the fluid is mostly neglected,
some papers have accounted for this phenomenon [9,20], which
is relevant for specific technological applications.

While the classical convection problems for internal and exter-
nal flows do not consider thermal conduction within the solid body
in contact with the fluid flow, solutions to these problems provide
the basic building block for deriving temperature distributions in
conjugate problems where thermal conduction in the solid and
thermal convection in the fluid must be considered

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2015.07.056&domain=pdf
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Nomenclature

a thermal diffusivity
h convective heat transfer coefficient
H height/thickness
k thermal conductivity
L length of the plate
Pr Prandtl number
q heat flux
Q volumetric heat generation rate
R radius
Re Reynolds number
T temperature
u velocity

Subscripts
0 initial value
e entry
f fluid
i inner
o outer
s solid
r radial coordinate
z axial coordinate
1 freestream value

Superscript
+ non-dimensional variable

Fig. 1. Schematic of a general conjugate heat transfer problem involving a fluid flow
over an arbitrarily shaped solid with internal heat generation.
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simultaneously. A number of approaches have been presented for
solving this conjugate problem. A series form of the wall tempera-
ture has been assumed, and energy conservation at the solid–fluid
interface has been used to derive expressions for coefficients of the
series form [10,11,21], resulting in analytical expressions for the
entire temperature distribution. In particular, expressions for pipe
flow [10], a plate in liquid or gas flow [11,12], flow between
parallel plates [22,23] and for turbulent flows [20] have been
presented. A solution for the conjugate problem of flow over a flat
plate has also been presented using the method of the asymptotic
solution of singular integral equations [13]. In addition to
such approaches, the integral transform technique has also been
used for solving conjugated heat transfer problems [24,25].
Semi-analytical [26–30] and purely numerical [31–33] techniques
have also been used. These papers utilize discretization based on
finite-element or finite-difference based methods.

This paper presents a solution for the conjugate heat transfer
problem using an iterative approach that utilizes analytical solu-
tions of both conduction and convection problems solved indepen-
dently. Solutions to these two sub-problems are coupled with each
other through temperature continuity and energy conservation at
the solid–fluid interface. Both internal and external flow problems
are addressed. In this method, the temperature at the solid–fluid
interface is assumed, based on which the temperature distribution
in the fluid is determined analytically. Using energy conservation
at the interface, the solid temperature distribution is then deter-
mined. The interface temperature determined from here is used
iteratively to improve the wall temperature distribution until rea-
sonable convergence. Such an approach has been used in the past
for analytical determination of temperature distribution in thermal
conduction problems in a multi-layer solid body [34–36]. In addi-
tion, a few papers have also utilized a similar iterative method for
semi-analytical solution of conjugate heat transfer problems,
wherein a finite-element or finite-difference discretization
approach is used to numerically solve the thermal conduction
problem [26,28–30]. The present approach which determines both
fluid and solid temperature distributions analytically, results in
reduced mathematical complexity compared to classical,
non-iterative approaches [10–12,20,24], without the need to resort
to discretization and numerical techniques used in past
semi-analytical approaches [26–30]. It is found that only a small
number of iterations are sufficient for reasonable convergence of
results. The iterative method is utilized to model conjugate heat
transfer in two specific problems – the cooling of a hollow heat
generating cylinder with anisotropic thermal conductivity, and
the cooling of a heat generating solid block due to fluid flow over
the block. These models represent technologically important
energy conversion processes, for example, the liquid cooling of
an annular Li-ion cell [16] during a high-rate discharge process
[37]. The next section presents the general iterative approach,
followed by derivation of specific solutions for internal and
external flow problems.
2. General solution: the iterative approach

This section presents the general approach for analytically solv-
ing a conjugate problem involving thermal conduction and convec-
tion in a solid and fluid flow respectively. Consider a solid (S) with
an arbitrary shape as shown in Fig. 1. Fluid flow (F) occurs with a
given velocity profile. The solid and fluid intersect at an interface,
denoted by S-F. In general, internal heat generation within the
solid is considered. Although Fig. 1 shows an external flow scenar-
io, in general, fluid flow may occur either over the solid (external
flow), or through the solid (internal flow).

In general, the interest is in deriving expressions for tempera-
ture distributions Ts (�x) and Tf (�x) where �x is the general spatial
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coordinate. Only the laminar, steady state problem is considered
here. The governing conservation equations that must be solved
to determine these temperature distributions are given by

ar2Tf ¼ ð~v � rÞTf þ l �Uþ �gf ð1Þ

and

kr2Ts þ gsð�xÞ ¼ 0 ð2Þ

Here, l �U is the viscous dissipation, and �gf and �gs are volumet-
ric heat generation rates in the solid and fluid respectively. The
methodology discussed in this paper for deriving analytical solu-
tions for the temperature fields in S and F is based on analytically
solving the temperature fields individually in the solid and fluid
domains, and utilizing principles of temperature compatibility
and conservation of energy at the interface to iterate until a stable
solution is obtained. To start with, the fluid temperature distribu-
tion at the interface S-F is assumed to be

Tf ð�xS�FÞ ¼ T0ð�xS�FÞ ð3Þ

Assuming the velocity field in the fluid is known in advance,
Eq. (1) can now be solved along with the assumed boundary
condition at the interface. Once Tf (�x) is known, the heat flux into
the solid at the solid–fluid interface can be obtained by
differentiating.

qs;inð�xÞ ¼ kf
@Tf

@�n
ð4Þ

where �n is the outward normal to the solid surface at the S-F.
Eq. (4) represents a boundary condition for the temperature dis-

tribution in the solid Ts (�x). The governing equation (2) can now be
solved along with Eq. (4). The solution for Ts (�x) provides a means
to determine the temperature of the solid at the interface, which
can then be used to update the interface temperature distribution
that was assumed in Eq. (3). The entire procedure can be repeated
to determine the temperature distributions over multiple itera-
tions. Eventually, the temperature distributions may be expected
to converge, with negligible change from one iteration to the next.

The analytical framework described above is used for analyzing
both internal and external flows, which are discussed in subse-
quent sub-sections.

2.1. Internal flow

Consider the laminar flow of a fluid through an annular cylin-
der, shown schematically in Fig. 2(a). The fluid flow is assumed
to be hydrodynamically fully developed when it enters the cylin-
der, with a given velocity profile u(r+) and entry temperature Te

at the entrance, z+ = 0. The solid portion of the cylinder is assumed
to generate heat with a volumetric rate of Q. Convective heat trans-
fer with coefficients hro and hz are assumed over the outer surface
and axial faces of the cylinder respectively.

This general solid–fluid problem is commonly encountered in
engineering applications, for example, in flow of a cold fluid
through a Li-ion cell that generates heat due to electrochemical
energy conversion within the cell [16,37]. The interest in is deriv-
ing expressions for cell and coolant temperature fields due to a
specific internal heat generation rate and coolant flowrate.

To start with, a temperature distribution is assumed at the wall

Tf ðzþ; rþ ¼ 1Þ ¼ TwallðzþÞ ¼ T0ðzþÞ ð5Þ

Neglecting viscous dissipation, heat transfer in the fluid domain
is governed by the following governing conservation equation [1],

@2Tþf
@rþ2 þ

1
rþ

@Tþf
@rþ
¼ ð1� rþ2Þ

@Tþf
@zþ

ð6Þ
The non-dimensional coordinates z+ and r+ are given by

zþ ¼ z=Ri

Re � Pr
ð7Þ

rþ ¼ r
Ri

ð8Þ

and temperature is non-dimensionalized as follows:

Tþf ¼
Tf

QH2=kr

ð9Þ

The temperature solution based on a given Tþf (z+, r+ = 1) is
obtained as follows [1]

Tþf ðzþ; rþÞ � Tþe ¼
Z xþ

0
½1� hðzþ � nþ; rþÞ� dTþwallðn

þÞ
dnþ

dnþ

þ
Xk

i¼1

1� hðzþ � nþi ; r
þÞ

� �
Tþwallðn

þ
i Þ � Tþe

� �
ð10Þ

The integral in Eq. (10) accounts for continuous variations in
wall temperature and summation accounts for discrete step
changes. Note that the coolant entry temperature Tþe could be
lower than zero in case the coolant fluid is precooled prior to enter-
ing the annular cylinder. This helps analyze the effect of
precooling.

The function h is given by

hðzþ; rþÞ ¼
X1
n¼0

CnRnðrþÞ expð�k2
nzþÞ ð11Þ

Tþwall ¼
Twall

QH2=kr

ð12Þ

Tþe ¼
Te

QH2=kr

ð13Þ

Here, kn are the eigenvalues, Rn are the corresponding eigenfunc-
tions and Cn are constants. Analytical expressions for kn, Rn and Cn

are given by Sellars et al. [7].
Eq. (10) defines the temperature solution within the fluid, from

which the wall heat flux can be obtained:

qþwallðzþÞ ¼ K
@Tþf
@rþ

�����
rþ¼1

¼ �K
Z zþ

0
hrþ ðzþ � nþ; rþ ¼ 1ÞdTþwallðn

þÞ
dnþ

dnþ
"

þ
Xk

i¼1

hrþ ðzþ � nþi ; r
þ ¼ 1ÞðTþwallðn

þ
i Þ � Tþe Þ

#
ð14Þ

where,

hrþ ðzþ;1Þ ¼ �2
X1
n¼0

Gn expð�k2
nzþÞ ð15Þ

qþwall ¼
qwall

QH2=Ri

K ¼ kf

kr

Analytical expression for Gn is also provided by Sellars et al. [7].
Eq. (14) provides an analytical basis for computing the heat flux
distribution at the solid–fluid interface, given an assumed temper-
ature distribution at the wall. Once the heat flux is determined, the
temperature distribution in the solid domain can be computed. In
this case, the governing equation for the temperature distribution
in the solid domain is

Hþ2 1
rþ

@

@rþ
rþ
@Tþs
@rþ

� �
þ Ks

@2Tþs
@zþ2 þ 1 ¼ 0 ð16Þ



Fig. 2. (a) Schematic of hydrodynamically fully developed flow through an annular cylinder with anisotropic thermal conductivity and volumetric internal heat generation,
(b) schematic of fluid flow with constant freestream velocity over a semi-infinite flat plate with volumetric heat generation.
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where,

Tþs ¼
Ts

QH2=kr

ð17Þ

zþ ¼ z
H

ð18Þ

Hþ ¼ H
Ri

ð19Þ

Ks ¼
kz

kr
ð20Þ

Note that thermal conductivities in the radial and axial directions
are assumed to be unequal, in order to account for the general case
of orthotropic thermal conduction in the Li-ion cell [38].

The governing equation is subject to the following boundary
conditions:

@Tþs
@zþ
¼ BizTþs at zþ ¼ 0 ð21Þ

@Tþs
@zþ
¼ �BizT

þ
s at zþ ¼ 1 ð22Þ
Aþn ¼
�
R 1

0Tþs1ðzþÞ½ðlnHÞCosðlnH � zþÞ þ BiHSinðlnH � zþÞ�dzþ

1
2 ½ðlnHÞ2 þ Bi2

H þ 2BiH� � ½IoðknRoÞ þ Bi�1
Ro
ðknRoÞ � I1ðknRoÞ þ b1ðKoðknRoÞ � Bi�1

Ro
ðknRoÞ � K1ðknRoÞÞ�

ð29Þ
@Tþs
@rþ
¼ qþwallðz

þÞ at rþ ¼ 1 ð23Þ

@Tþs
@rþ
¼ �BiRo

Rþo
Tþs at rþ ¼ Ro=Ri ð24Þ

where,

Rþo ¼
Ro

Ri
ð25Þ
Note that the wall heat flux in the boundary condition at r+ = 1
is obtained based on the solution of the fluid problem. The temper-
ature field may be determined by first splitting Ts

+(z+, r+) into two
components

Tþs ðzþ; rþÞ ¼ Tþs1ðzþÞ þ Tþs2ðzþ; rþÞ ð26Þ

Ts1
+(z+) is governed by an ordinary differential equation that

includes the heat generation term, whereas Ts2
+(z+) absorbs the

non-homogeneity in the boundary condition. These sub-problems
can be solved using standard methods [16,17] to derive the follow-
ing solutions:

Tþs1ðzþÞ ¼
1

2Ks
zþð1� zþÞ þ Bi�1

H �
h

ð27Þ

and

Tþs2ðzþ; rþÞ ¼
X1
n¼1

Aþn þ Bþn
� �

� I0ðknrþRiÞ þ Aþn b1 þ Bþn b2

� �
� K0ðknrþRiÞ

� �
� lnHCosðlnHzþÞ þ BiHSinðlnHzþÞ
� �

ð28Þ

The coefficients An
+ and Bn

+ in Eq. (28) are given by
Bþn ¼
R 1

0 qþwallðzþÞ½ðlnHÞCosðlnH � zþÞ þ BiHSinðlnH � zþÞ�dzþ

1
2 ðknRiÞ½ðlnHÞ2 þ Bi2

H þ 2BiH� � ½I1ðknRiÞ � b2ðK1ðknRiÞÞ�
ð30Þ

where,

b1 ¼
I1ðknRiÞ
K1ðknRiÞ

ð31Þ

b2 ¼
knRoð ÞI1ðknRoÞ þ BiroIoðknRoÞ

knRoð ÞK1ðknRoÞ � BiroKoðknRoÞ
ð32Þ
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The eigenvalues lnH are obtained from roots of the transcen-
dental equation

TanðlHÞ ¼ 2BiH � ðlHÞ
ðlHÞ2 � Bi2

H

ð33Þ

Further, BiH ¼ hzH
kz

, BiRo ¼ hroRo
kr

and kn ¼
ffiffiffi
kz
kr

q
ln. Finally, Twall

+(z+) is

determined from the solid temperature distribution in Eq. (26)
computed at r+ = 1. This provides an update to the initial assump-
tion of Twall

+(z+) shown in Eq. (5) and initiates the next iteration of
computing the fluid temperature field, followed by the solid tem-
perature field. In order to avoid divergence, a weighted average of
Twall

+ from the previous iteration and Twall
+ determined from the

solid temperature field may be used for updating Twall
+ for the next

iteration. Iterations are carried out until the change in Twall
+(z+)

from one iteration to the next is below a desired threshold.

2.2. External flow

The general approach outlined in Section 2 is now used for
solving an external flow problem, in which a fluid with a known
freestream velocity flows over a heated solid. The flow is assumed
to be laminar. Similar to the problem discussed in Section 2.1, this
is also a commonly encountered heat transfer problem. As shown
schematically in Fig. 2(b), a semi-infinite flat plate of length L and
thickness H generates heat at a volumetric rate of Q. Fluid flow
occurs at the top surface with given freestream velocity and temper-
ature of u1 and Te respectively. The plate is also being cooled at the
other three surfaces with convective heat transfer coefficient h.

The procedure starts with an assumed temperature distribution
Twall(x) on the solid–fluid interface, y = 0. Neglecting viscous dissi-
pation, the governing energy equation for the fluid is

@2Tþf
@yþ2 ¼ uþ

@Tþf
@xþ
þ vþ

@Tþf
@yþ

ð34Þ

where,

Tþf ¼
Tf

QL2=ks

ð35Þ

xþ ¼ x
L

ð36Þ

yþ ¼ y
H

ð37Þ

uþ ¼ u � H2

aL
ð38Þ

vþ ¼ vH
a

ð39Þ

The solution to Eq. (34) with the assumed wall temperature
boundary condition is given by [1]

Tþf ðxþ; yþÞ � Tþe ¼
Z xþ

0
1� hðnþ; xþ; yþÞ
� �dTþwall

dnþ
dnþ

þ
Xk

i¼1

1� hðnþi ; xþ; yþÞ
� �

TþwallðiÞ � Tþe
� �

ð40Þ

where the function h (n,x+,y+) is given by [1]

hðn; xþ; yþÞ ¼ 0:331Pr1=3Re1=2
x yþH

xþL 1� nþ

xþ


 �3=4
� 1=3

� 0:005405PrRe3=2
x yþ3H3

xþ3L3 1� nþ

xþ


 �3=4
�  ð41Þ
and

Tþwall ¼
Twall

QL2=ks

ð42Þ

Tþe ¼
Te

QL2=ks

ð43Þ

The integral and summation terms in Eq. (40) account for the
variation in Twall

+ as a function of x+, and any step changes that
may exist in the Twall

+ distribution.
Similar to the internal flow problem, the wall heat flux can be

computed as follows:

qþwallðxþÞ ¼
qwallðxþÞ
QL2=H

¼�K
@Tþf
@yþ

�����
yþ¼0

¼ K
Z xþ

0
hyþ ðnþ;xþ;0Þ

dTþwall

dnþ
dnþ þ

Xk

i¼1

hyþ ðnþi ;xþ;0Þ TþwallðiÞ � Tþe
� �" #

ð44Þ

where K = kf/ks.
By differentiating equation (41) with respect to y+, hþyþ ðn; xþ;0Þ is

given by

hyþ ðn; xþ;0Þ ¼
0:331Pr1=3Re1=2

x

xþL
1� nþ

xþ

� �3=4
" #�1=3

ð45Þ

qwall
+(x+) computed by Eq. (44) is then used to provide a boundary

condition for the energy conservation equation that governs the
temperature distribution in solid:

@2Tþs
@xþ2 þ Lþ2 @

2Tþs
@yþ2 þ 1 ¼ 0 ð46Þ

where Ts(x,y) is the temperature rise above ambient in the solid.
The governing equation is subject to the following boundary

conditions:

@Tþs
@xþ
¼ BiLTþs at xþ ¼ 0 ð47Þ

@Tþs
@xþ
¼ �BiLTþs at xþ ¼ 1 ð48Þ

@Tþs
@yþ
¼ BiHTþs at yþ ¼ �1 ð49Þ

@Tþs
@yþ
¼ �qþwallðxþÞ at yþ ¼ 0 ð50Þ

Solution for Ts
+(x+,y+) proceeds along similar lines as the previ-

ous section. The temperature field may be determined by splitting
Ts

+(x+,y+) into two components

Tþs ðxþ; yþÞ ¼ pþðxþÞ þwþðxþ; yþÞ ð51Þ

The two components of the temperature distribution are given
by

pþðxþÞ ¼ 1
2

xþð1� xþÞ þ 1
BiL

� 
ð52Þ

and

wðxþ;yþÞ¼
X1
n¼1

Cþn CoshðlnHyþÞþDþ
n
ðbnCoshðlnHyþÞþSinhðlnHyþÞÞ

� �
� lnLCosðlnLxþÞþBiLSinðlnLxþÞ
� �

ð53Þ

The coefficients Cn
+, Dn

+ and bn in Eq. (53) are given by



Fig. 3. (a) Temperature distribution along the inner wall as a function of number of iterations for the internal flow problem, (b) temperature distribution along the solid–fluid
interface as a function of number of iterations for the external flow problem.

Fig. 4. Temperature distribution along the inner wall as a function of number of
eigenvalues considered in the internal flow solution.

Fig. 5. Comparison of inner wall temperature as a function of axial coordinate for
an internal flow problem computed using the present approach (curves) with
results from Mori et al. [10] (symbols) for different ratios of solid and fluid thermal
conductivities.
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Cþn ¼
�BiH

R 1
0 pþðxþÞ � lnLCosðlnLxþÞþBiLSinðlnLxþÞ

� �
dxþ

1
2 � ðl2

nLHþBiHBiLÞ 1þ BiL
ðlnLÞ2þBi2L


 �
þBiH

h i
� lnLSinhðlnHÞþBiLCoshðlnHÞ
� �

ð54Þ

Dþn ¼
R 1

0 qþwallðxþÞ � lnLCosðlnLxþÞ þ BiLSinðlnLxþÞ
� �

dxþ

1
2 � ðlnLÞ ðl2

nLH þ BiHBiLÞ 1þ BiL
ðlnLÞ2þBi2L


 �
þ BiH

h i ð55Þ
bn ¼
ðlnLÞCoshðlnHÞ � BiL � SinhðlnHÞ
ðlnLÞSinhðlnHÞ þ BiL � CoshðlnHÞ ð56Þ

The eigenvalues ln are obtained from roots of the transcenden-
tal equation

TanðlLÞ ¼ 2BiL � ðlLÞ
ðlLÞ2 � Bi2

L

ð57Þ

where BiH ¼ hH
k and BiL ¼ hL

k :

This completes the solution methodology for the external flow
problem. The wall temperature determined from the solid temper-
ature distribution may be used to repeat the process outlined
above, starting with solving the fluid flow problem, which will
iteratively lead to a converged solution.

Characteristics of the general methodology outlined above are
discussed in the next section. Comparison with finite-element
simulation results is also shown. Applications of the method for
internal and external flow problems are also discussed.
3. Results and discussion

The solution methodology described and illustrated for internal
and external flows in Section 2 is iterative in nature, beginning
with a guessed temperature distribution along the solid–fluid
interface. To understand the nature of convergence of this iterative
process, two problems – one of internal flow, and another of exter-
nal flow – are solved using the iterative technique. For the internal
flow problem, hydrodynamically developed flow of air entering at
a uniform temperature and fluid velocity of 0.5 m/s through a
0.065 m long annular cylinder with annulus diameter of
0.0026 m is considered. For the external flow problem, flow over
a 0.03 m thick plate at fluid velocity of 0.01 m/s is considered.
Internal heat generation of 6 W and 30 W is considered within
the solid domain for the internal and external flow cases respec-
tively. Heat transfer coefficient of 100 W/m2 K and 50 W/m2 K is
considered along all other surfaces for the internal and external
flow cases respectively. Axial and radial thermal conductivity val-
ues of 30.0 and 0.2 W/m K are assumed for the solid in the internal
flow case. This models thermal conduction in systems like Li-ion
cells, where thermal conduction is known to be highly orthotropic
[38]. For external flow problem, an isotropic slab with thermal
conductivity of 0.2 W/m K is considered. Fig. 3(a) and (b) plot the
temperature distributions at the start of successive iterations along
the solid–liquid interface for the internal flow and external flow
problems The initial assumed wall temperature is also shown.
Fig. 3(a) and (b) show excellent convergence of the temperature
distribution within 4–5 iterations, even when the temperature
distribution assumed initially is not accurate. An iterative



Fig. 6. (a) Comparison of temperature plot inside the solid computed using the iterative model for internal flow problem with finite element simulation results, (b)
comparison of wall heat flow computed using the iterative model for external flow problem with finite element simulation results.

Fig. 7. (a) Solid temperature as a function of radius at mid-height for different air speeds in the internal flow problem, (b) wall temperature distribution in the external flow
problem for different air speeds.

Fig. 8. Wall temperature distribution in the external flow problem for different
precooling temperatures at 0.1 m/s coolant speed.
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convergence criterion of change of less than 0.0002 in the
non-dimensional temperature throughout the domain between
successive iterations is used. In case of the internal flow problem,
the accuracy of the temperature solution further depends on the
number of eigenvalues considered for the infinite series solution.
Fig. 4 plots the temperature distribution at the solid–liquid inter-
face for the internal flow problem as a function of the number of
eigenvalues considered. It is found that using around 8–10 eigen-
values is sufficient, and the solution does not change significantly
by considering additional eigenvalues.

The analytical, iterative approach described in Section 2 is com-
pared against results presented by Mori et al. [10] for a conjugate
problem involving flow in a thick tube with constant temperature
along the outside wall. Mori et al. solved this problem by assuming
a power law distribution for the inner wall temperature. Fig. 5 pre-
sents the wall temperature computed from the iterative model
presented here, along with results from Mori et al. [10] for five dif-
ferent ratios of the solid and fluid thermal conductivities. In each
case, there is excellent agreement between the two temperature
solutions. Further, the iterative approach presented here is com-
pared with results from finite-element simulations, carried out in
ANSYS-CFX. The parameters for problems considered for this pur-
pose are identical to the problems in Fig. 3(a) and (b), except for
a fluid speed of 0.1 m/s for the external flow. Sufficient grid refine-
ment is carried out to ensure grid independence of results. Fig. 6(a)
plots the temperature rise at mid height along the radius for the
internal flow problem, using the iterative analytical model, as
well as finite-element simulations. There is excellent agreement
between the two. Similarly, Fig. 6(b) shows good agreement for
wall heat flux for the external flow problem between the analytical
model and finite-element simulation results.

Fig. 7(a) and (b) plot the temperature distributions in the solid
body for internal and external flow cases respectively for a number
of inlet fluid velocities. As expected, in each case, the iterative
model discussed in Section 2 predicts a strong reduction in peak
temperature as the fluid velocity increases. The effect of fluid
velocity on the solid temperature distribution is most prominent
at the wall, particularly for the internal flow case. While the wall



Fig. 9. (a) Wall heat flux distribution in the external flow problem for different air speeds for no precooling, (b) wall heat flux distribution in the external flow problem for
different precooling temperatures at 0.1 m/s coolant speed.

Fig. 10. Variation of the heated length in external flow as a function of air speed, (b) variation of total reversed heat in external flow problem as a function of air speed.
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temperature continues to reduce as the fluid velocity is increased,
this effect saturates in regions closer to the outer wall, where the
effect of the coolant flow is not so prominent.

Fig. 8 presents results for the effect of precooling the inlet fluid
in the external flow problem for a fluid velocity of 0.1 m/s. It is
found that reducing the inlet flow temperature reduces the wall
temperature distribution, plotted in Fig. 8 as a function of length
along the cylinder. However, the effect is not very significant. For
example, even for a precooling of �15 K, the model computations
predict a peak temperature drop of only 5 K at most.

Fig. 9(a) examines the wall heat flux from the heat-generating
solid into the cooling fluid as a function of the coordinate along
the flow, plotted for a number of fluid flow speeds. In each case,
the wall heat flux is positive for nearly the entire length, except
for a small region towards the end. In this region, the sign of the
heat flux reverses, and heat flows back from the fluid into the solid.
This interesting phenomenon occurs because as the fluid traverses
the length of the solid, it progressively gets hotter, so that beyond a
certain critical length, the heat flow direction reverses, and the
fluid actually starts heating up the solid. This interesting behavior
is seen at all fluid speeds. In Fig. 9(b), the wall heat flux is plotted
along the length of the plate at fluid velocity of 0.1 m/s at different
precool temperatures. It is evident that precooling reduces the
length over which reversal of heat flow occurs. Precooling may
not affect the peak temperature of the plate significantly but
may reduce or eliminate the local heating of the plate near the
end region. Such reversal in the direction of heat flow has been
reported in the past for heat transfer from a sphere in the wake
region [39].

As shown in Fig. 10(a), the location of heat flux reversal moves
further downstream as the fluid velocity increases. On the other
hand, the magnitude of the reversed heat flux also increases with
increase in fluid velocity. Therefore, Fig. 10(a) alone is not suffi-
cient in knowing whether the overall reversed heat decreases with
increase in fluid velocity. In Fig. 10(b), total reversed heat flow is
plotted against fluid velocity by integrating the reversed heat flux
over the heated length. The total reversed heat increases with
increase in velocity up to a certain velocity, after which it starts
going down. These plots may be useful in deciding the appropriate
fluid velocity, and whether precooling may be helpful in the case of
cooling a heat-generating solid with external flow.

4. Conclusions

The iterative analytical methodology presented in this paper is
a general method for solving conjugate heat transfer problems
involving both conduction and convection. This approach is sim-
pler and mathematically less involved compared to other
approaches reported earlier. Results based on this approach are
in good agreement with a past method and with finite-element
simulations. While this method is illustrated in this paper for
two specific example problems involving internal and external
flows, other more complicated scenarios, for example, involving
multiple solid–fluid interfaces, can also be analyzed. The iterative
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approach presented here may help improve the fundamental
understanding of conjugate heat transfer, as well as develop ther-
mal modeling tools for applications where conjugate heat transfer
is important.
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