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Steady state measurements of convective heat transfer coefficient often use a constant wall heat flux
condition along with measured temperature distribution to generate heat transfer coefficient maps.
Large spatial gradients in the heat transfer coefficient may lead to lateral conduction within the heater
foil, causing non-uniformity in the actual convective flux into the fluid, yielding errors in the calculated
Nusselt numbers. This paper presents an analytical procedure for correcting such errors for a model
system with a known heat transfer coefficient distribution and nominal 1-D applied wall heat flux. The
resulting 2-D conduction problem is parametrized in terms of the Biot number Bi and the heat transfer
coefficient distribution, expressed by the change in magnitude r and the peak gradient g, as well as the
proximity of the gradient region to a symmetry plane. Three model configurations are studied: a region
of large gradients that is located far away from lateral boundaries, and two cases where the gradient
region is located near a symmetry plane, viz. impingement heat transfer due to a slot jet and a round jet.
It is shown that sharp spatial variations in heat transfer coefficient can lead to significant error in Nusselt
number determination when the wall heat flux is assumed to be uniform. The error is shown to be
amplified when the gradient region is located near a symmetry plane. Finally, the wall heat flux is
correlated using of an expression that captures the results of the analytical calculations for the ranges of
Bi, r and g studied, which can be used to evaluate experimental designs for heat transfer measurement,
and make corrections for the two-dimensional nature of heat transfer in the foil and insulation.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

The trend of increasing inlet temperatures in gas turbines and
the corresponding high cooling requirements of turbine blades
requires the development of novel cooling schemes. Accurate
measurements that characterize the performance of these cooling
schemes are critical for reliable design. In order to estimate the true
operating temperatures of various hot section components, de-
signers rely on heat transfer coefficient data obtained from low-
temperature tests. Small errors in measurements of the heat
transfer coefficient can lead to moderate uncertainties in metal
operating temperature, and large uncertainties in blade lifetime
prediction [1]. Despite considerable care taken by researchers, it is
well known that uncertainties in heat transfer experiments are
rarely less than 8e10%. Several techniques are currently used for
erved.
the measurement of heat transfer coefficients in lab-scale experi-
ments. In recent years, thermocouple-based measurements of
temperature at discrete spatial locations have almost completely
givenway to high resolutionwhole surface measurements utilizing
Thermochromic Liquid Crystals (TLCs), Infra-Red Thermography
(IRT), Temperature Sensitive Paint (TSP) or Pressure Sensitive Paint
(PSP). All of these techniques, when carefully calibrated, enable
temperature measurements with high spatial resolution and low
measurement uncertainty of the order of 0.5 K [2].

Independent of the temperature measurement technique, there
are mainly two methods for measurement of heat transfer coeffi-
cient on a surface, given by the thermal boundary condition on the
surface. Steady-state measurements typically use a constant heat
flux surface, established by thin metal foil heaters. The local heat
transfer coefficient is found by the relation,
hð r!Þ ¼ qw=ðTwð r!Þ � T∞Þ where qw is the convective heat flux into
the fluid after subtracting losses from the power input. The heat
loss can be minimized by insulating the heater foil from the back,
i.e. on the side not exposed to the flow, and byminimizing radiation
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Nomenclature:

a width, (m)
b thickness, (m)
g volumetric heat generation rate, (W/m3)
hmin minimum convective heat transfer coefficient, (W/m2-

K)
hmax maximum convective heat transfer coefficient, (W/m2-

K)
k thermal conductivity, (W/m-K)
~qc heat flux correction factor, Section 2.3
r radial coordinate, (m)
x cartesian coordinate, (m)
y cartesian coordinate, (m)
z axial coordinate, (m)

Bi Biot number, (hmax b2/k2)
N maximum number of eigenvalues
T temperature, (K)

Greek:
b thickness ratio (b1/b2)
g gradient parameter
l eigenvalue, (m�1)
k ratio of thermal conductivities (k2/k1)
r ratio of heat transfer coefficients (hmax/hmin)

Subscripts:
1 insulation
2 foil
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loss, which may not always be possible. The uncertainty in esti-
mation of the lost power input can be reduced by having a good
knowledge of the emissivity of the foil material, and the thermal
properties of the insulation.

Transient experiments utilize the assumption of one-
dimensional conduction into a semi-infinite medium in order to
reconstruct the heat transfer coefficient. The surface temperature
field is measured at two different times, and the data are plugged
into an analytical solution to extract the heat transfer coefficient.
This method and its several variations have been extended for
simultaneous calculation of heat transfer coefficient and cooling
effectiveness in film cooling flows [3]. Mass transfer based mea-
surements, such as the naphthalene sublimation technique [4],
measure transport coefficient distributions over a sublimating
surface. Using the analogy between heat and mass transfer in
boundary layer flows, these mass transfer distributions can be
converted to heat transfer coefficient distributions.

Each of these techniques have distinct advantages and disad-
vantages. Steady-state measurements are conceptually simple and
are easy to set up. When used with TLCs, the technique is inex-
pensive but time-consuming. The transient IR technique is often
preferred nowadays, but requires greater care in calibration of the
IR camera [5]. Both these techniques suffer from the deficiency that
a 1-D conduction model is assumed for the heat flux in one
instance, and for the thermal penetration in the other. As such, both
methods are unreliable in regions of strong lateral variation of heat
transfer coefficient or geometry. The mass transfer technique based
on naphthalene sublimation avoids many of these issues. This
technique implicitly simulates a constant temperature boundary
condition, and is not subject to lateral conduction error. This
technique is capable of very high spatial resolution, and the con-
version from mass transfer coefficients (Sherwood numbers) to
heat transfer coefficients (Nusselt numbers) has been shown to be
reliable in complex systems such as endwall secondary flows [6];
however, it has not been fully established for regions with recir-
culating flows, such as immediately downstream of film holes or
backward facing steps, or in regions where erosion may cause mass
transfer, such as stagnation points of impinging jets.

In this paper, we focus on the lateral conduction error intro-
duced in steady state heat transfer measurements. Lateral con-
duction errors arise when a constant wall flux is assumed in the
presence of large gradients in heat transfer coefficient. If the flux in
the heater were purely normal to the surface, these gradients in
heat transfer coefficient would cause large gradients in wall tem-
perature. As a result, the path of least thermal resistance from
below a low-heat transfer region may involve lateral conduction
along the foil into the region of high heat transfer. Such lateral
conductionwithin the foil leads to a non-uniformwall-normal heat
flux distribution, which needs to be accounted for during the data
reduction process.

For the transient heat transfer technique utilizing the assump-
tion of conduction into a semi-infinitemedium, the effects of lateral
conduction have been documented and analyzed. An early study
was by Vedula and Metzger [7], who performed numerical simu-
lations to quantify the effect of lateral conduction, including the
effect of anisotropic conduction. Lin and Wang [8] used an inverse
3-D algorithm to avoid making the 1-D heat transfer approximation
when processing the raw hue data. They attribute the 12% differ-
ence between their results and the results of the 1-D procedure to
the effect of lateral conduction. Kingsley-Rowe et al. [9] used a
modified version of the 1-D analytical solution and applied a Biot
number correction in order to calculate the heat transfer coefficient
in the presence of lateral conduction. Bons [10] applied a finite
volume method to study the effect of lateral conduction in the
presence of surface roughness and showed that the 1-D model is
inadequate for rough surfaces, due to large peak-to-valley variation
in heat transfer coefficients. A comprehensive model for the effects
of flow temperature variation and heater foil response in
conjunction with lateral conduction on the measurement uncer-
tainty has been presented by von Wolfersdorf and co-workers
[11,12].

These studies confirm that the effects of lateral conduction are
most pronounced when there are sharp gradients in the heat
transfer coefficient. Such sharp gradients exist at several locations
on a modern gas turbine blade, such as the point of laminar/tur-
bulent transition, stagnation points on blade leading edge, as well
as on internal channels cooled by showerhead film holes, and
separation/reattachment regions near tip/hub endwalls. As an
example, consider the distribution of transport coefficient along
the blade suction surface shown in Fig. 1 for a representative high-
performance blade profile [13]. Starting from its peak near the
leading edge stagnation point, the Sherwood number drops by a
factor of 4 over a streamwise distance of 10% of blade chord.
Similarly, near the trailing edge, the Sherwood number rises by a
factor of 6 over a streamwise distance of 20% of the blade chord, due
to laminar-turbulent transition. Such sharp gradients can occur in a
region where the upstream and downstream transport coefficients
are relatively uniform (as for Tu¼ 18% in the figure) or near a point
of nominal symmetry, such as the leading edge.

While the effect of lateral conduction has beenwell investigated



Fig. 1. Midspan Sherwood number distribution on the suction surface of a high per-
formance turbine rotor blade (reproduced with permission from Wang et al., 1998,
[13]).
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for the transient measurement technique, little information is
available on the appropriate correction for the steady state tech-
nique. The steady state technique continues to be used by several
groups for gas turbine heat transfer [14,15]. Partly, this is because a
quick estimate for the lateral conduction correction can be obtained
by taking the Laplacian of the observed temperature field on the
surface, and adding/subtracting that to the nominal heat flux [16].
However, as wewill show, the exact error is sensitive to the location
of the gradient region and the behavior of the heat transfer coef-
ficient profile on either side of the gradient region. In this paper, we
outline a technique to estimate a priori the error due to the
assumption of a uniform wall heat flux in a steady state heat
transfer experiment.

The rest of this paper is organized as follows: Section 2 presents
the mathematical framework used to analyze the two-dimensional
conduction problem. Briefly, it involves expansion of the unknown
temperature field in terms of orthogonal functions (Fourier series)
and applying the boundary conditions to evaluate the unknown
coefficients. Section 2.1 discusses the problem of a slot jet for two
cases, one when the jet width is much larger than the gradient
region, and another when it is comparable. Section 2.2 repeats the
analysis for a circular jet. Section 2.3 defines a heat flux correction
factor, which can be applied to nominal 1-D calculations in order to
account for two-dimensional effects. Section 3 presents the results
of the calculations, as well as correlations for the correction factor.
Section 4 summarizes the conclusions of this study.

2. Mathematical modeling

A typical test section for studying heat transfer to a jet from a
constant-flux involves the use of a resistive foil of thickness b2
(typically 50 mm) stretched over an insulating surface, as is shown
in Fig. 2. The insulation is usually a low conductivity polymer, with
or without an air gap to further increase the thermal resistance
beneath the foil. The present mathematical analysis can include
variation in the fluid jet temperature, for example compressible jets
and film cooling applications. If one accounts for such variations in
the estimation of local heat transfer distribution, the analytical
procedure illustrated here is well suited to estimate the error in the
heat transfer distribution due to lateral conduction. The thickness
b1 of the insulation is chosen such that even for low values of the
heat transfer coefficient, the thermal resistance in the downward
direction (b1/k1) is much greater than the thermal resistance above
the foil (1/hmin). The thermal conductivities of the insulation and
foil are given by k1 and k2. The convective heat transfer coefficient
on the top surface is assumed to vary spatially, h ¼ h(x) or h(r), as is
the case with slot and radial jets.

To obtain the local wall heat flux at every location, we solve for
the temperature distribution in a two-layer medium with heat
generation in the top layer, which is convectively cooled. Using the
temperature solution in the multilayer body, an expression for the
heat flux correction factor is determined to account for the effect of
lateral conduction. The mathematical model discussed in this sec-
tion assumes thermal conduction in the insulation material to be
anisotropic, as is often the case. Heat transfer in the case of isotropic
materials is discussed as a special case. The error estimated by the
correction factor results in quantification of the lateral conduction
effects within the foil in regions of sharp gradient of convective
heat transfer.

In order to understand the effects of gradient in heat transfer
coefficient, we choose an idealized distribution which is parame-
trized in terms of its maximum andminimum values, as well as the
region over which this variation occurs, expressed in terms of the
maximum slope. For the case of a gradient region that is far away
from any boundaries (such as the transition region in Fig. 1 and
laminar and turbulent components of an air jet over a circular disk
[17]), we use the expression

hðxÞ
hmax

¼
1� R tanh

�
g

�
x�10
w

��
ð1þ RÞ (1)

where r ¼ hmax/hmin and R ¼ (r � 1)/(r þ 1). The parameter g is
directly proportional to the maximum slope in the heat transfer
coefficient, and inversely proportional to the region over which the
variation occurs. The parameter w, corresponds to the width of the
gradient region for the case of an asymmetric jet and jet-half width
for the case of a symmetric jet.

This expression is plotted in Fig. 3 for r¼ 5, and various values of
g. The function asymptotes to 1 at x/w ¼ 5 and to 0.2 at x/w ¼ 15
where x/w is in the range of 0e20. The steepness of the gradient is
characterized by the gradient parameter g, and is centered at x/
w ¼ 10.

For the case corresponding to a slot/plane jet, we use the dis-
tribution to represent the case of an impingement region where
the gradient region is centered on 1, adjacent to a symmetry plane.
The expression is given by hðxÞ ¼ hmax�
1þ R tanh

�
g
�
w
x � x

w

���.
ð1þ RÞ. From observation, when

x/0; tanh g w
x � x

w

� �� �
z1 . As a result, in the above equation, h(x)

reduces to hmax as x / 0. A similar expression in radial co-
ordinates is used in calculations for a round jet in which the
spatial co-ordinate x in above equations for h (x) is replaced by the
radial co-ordinate r.

2.1. Heat transfer due to a slot jet

The geometry of the slot jet case is shown in Fig. 2(b). Note that
while the heater foil (layer 2), typically a metal, is usually isotropic
(k2x ¼ k2y ¼ k2), thermal conduction in the insulation layer, typi-
cally a low thermal conductivity material, may be orthotropic
(k1x s k1y).

The following parameters are used for non-dimensionalization
of this problem:



Fig. 2. (a) Schematic of the experimental setup for jet impingement cooling of a metal foil with an insulation layer, (b) Geometry for slot jet cooling in cartesian coordinates, (c)
Geometry for circular jet cooling in cylindrical coordinates.

Fig. 3. Heat transfer coefficient as a function of x for different values of g.
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x* ¼ x
w
; y* ¼ y

w
;

a* ¼ a
w
; b*1 ¼ b1

w
; b*2 ¼ b2

w
;

T*j ¼ k2
�
Tj � T∞

�
g2 w2 ;

Bi ¼ hmaxb2
k2

; jj ¼
�
0 j ¼ 1
1 j ¼ 2

(2)

For convenience, the star (*) notation is dropped in the
remainder of this paper, so that all subsequent variables are in
dimensionless form. The governing energy conservation equation is
given by

v2Tj
vx2

þ
 
kj;y
kj;x

!
v2Tj
vy2

þ k2 jj

kj;x
¼ 0 for j ¼ 1; 2 (3)

where heat generation occurs only in the metal foil layer due to
Joule heating. It must also be noted that the heat generation in the
foil due to Joule heating is assumed to be uniform. This is usually
achieved by choosing a material with low temperature coefficient
of resistance. This equation is subject to the following boundary
conditions and interface conditions

T1ðx;0Þ ¼ 0 (4)

vT2
vy

				
y¼b2

þ Bi
b2

hðxÞ T2ðx;b2Þ ¼ 0 (5)

vTj
vx

				
x¼0;a

¼ 0 for j ¼ 1; 2 (6)

T1ðx; b1Þ ¼ T2ðx;0Þ (7)

k1;y
vT1
vy

				
y¼b1

¼ k2
vT2
vy

				
y¼0

(8)

Equations (7) and (8) represent the compatibility condition at
the interface where each layer is assigned its individual co-ordinate
system with the origin at the bottom-left corner of each layer. The
following transformation absorbs the non-homogeneity from the
governing Equation (3):
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Tjðx; yÞ ¼ qjðx; yÞ �
 
k2
kj;x

!
jj

2
y2 (9)

Based on the above transformation the transformed boundary
value problem is given by

v2qj
vx2

þ
 
kj;y
kj;x

!
v2qj
vy2

¼ 0 (10)

subject to the following boundary conditions and interface
conditions

q1ðx;0Þ ¼ 0 (11)

vq2
vy

				
y¼b2

þ Bi
b2

hðxÞ q2ðx; b2Þ ¼ j2b2

�
1þ Bi hðxÞ

2

�
(12)

vqj
vx

				
x¼0;a

¼ 0 for j ¼ 1; 2 (13)

q1ðx; b1Þ ¼ q2ðx;0Þ (14)

k1;y
vq1
vy

				
y¼b1

¼ k2
vq2
vy

				
y¼0

(15)

Using Fourier series expansion and separation of variables, the
temperature solutions in layers 1 and 2 are found to be given by

q1 x; yð Þ ¼ C0 yþ
X∞
n¼1

Cn sinh lnyð Þcos lnxð Þ (16)

q2 x; yð Þ ¼ C0 b1 þ
y
k

� �

þ
X∞
n¼1

Cnðsinhðlnb1ÞcoshðlnyÞ
þð1=kÞcoshðlnb1ÞsinhðlnyÞÞcosðlnxÞ

� �
(17)

where, l2n ¼ b2n ðkj;y=kj;xÞ and bn ¼ np/a. Substituting Equation (17)
in Equation (12) results in a linear system of N þ 1 equations in
N þ 1 variables, namely C0, C1, C2/CN, where N is the number of
eigenvalues considered in the solution. In order to determine these
unknown coefficients, the principle of orthogonality is used,
resulting in

C0

0
@a
k
þ
�
Bi
b2

��
b1 þ

b2
k

�Za
0

hðxÞdx
1
A

þ
X∞
n¼1

Cn

�
Bi
b2

�
Pn

Za
0

hðxÞcosðlnxÞdx

¼
Za
0

FðxÞdx (18)
C0

�
Bi
b2

��
b1 þ

b2
k

�Za
0

hðxÞcosðlixÞdxþ Cili
Si a
2

þ

P∞
n¼1

Cn

�
Bi
b2

�
Pn

Za
0

hðxÞcosðlnxÞcosðlixÞdx ¼
Za
0

FðxÞcosðlixÞdx

(19)

where,

Sn ¼ sinh lnb1ð Þsinh lnb2ð Þ þ 1=kð Þcosh lnb1ð Þcosh lnb2ð Þ (20)

Pn ¼ sinhðlnb1Þcoshðlnb2Þ þ ð1=kÞcoshðlnb1Þsinhðlnb2Þ (21)

FðxÞ ¼ j2b2

�
1þ Bi hðxÞ

2

�
(22)

Equations (18) and (19) are the result of the use of orthogonality
principle to obtain a linear system of N þ 1 equations in N þ 1
variables. The index i in Equation (19) corresponds to the contri-
bution of the diagonal terms of the matrix. Note that the standard
approach of using principle of orthogonality for constant heat
transfer coefficient results in explicit expressions for each unknown
coefficient. However, similar to other papers addressing space-
dependent convective heat transfer coefficient [18e20], in this
case, since h is a function of x, a set of coupled, linear algebraic
equations is obtained. The coefficients, C0 and Cn’s can be obtained
by solving this set of linear algebraic equations. The final temper-
ature solution in each layer is then given by substituting Equations
(16) and (17) in Equation (9). The mathematical treatment for a slot
jet on an infinite plate is the same, however, an appropriate length
of the plate must be chosen during analysis.
2.2. Heat transfer due to a radial jet

Themethodology for deriving the temperature distribution for a
radial jet is similar to a slot jet, except that the cylindrical coordi-
nate system must be employed. Further, because the effect of
orthotropic thermal conduction in layer 1 is found to be negligible,
as discussed in Section 3, the derivation in this section is presented
for an isotropic insulation layer. Non-dimensionalization is first
carried out using the following equations:

r* ¼ r
w
; z* ¼ z

w
;

a* ¼ a
w
;

b*1 ¼ b1
w
; b*2 ¼ b2

w
;

T*j ¼ k2
�
Tj � T∞

�
g2 w2 ;

Bi ¼ hmaxb2
k2

; jj ¼
�
0 j ¼ 1
1 j ¼ 2

(23)

Similar to Section 2.1, the star (*) notation is dropped in the
remainder of this section for convenience. In non-dimensional
form, the temperature distribution is governed by

v2Tj
vr2

þ 1
r
vTj
vr

þ v2Tj
vz2

þ jj ¼ 0 ; j ¼ 1; 2 (24)

subject to the following boundary conditions and interface
conditions
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T1ðr;0Þ ¼ 0 (25)

vT2
vz

				
z¼b2

þ Bi
b2

hðrÞ T2ðr; b2Þ ¼ 0 (26)

vTj
vr

				
r¼0;a

¼ 0 for j ¼ 1; 2 (27)

T1ðr;b1Þ ¼ T2ðr;0Þ (28)

k1
vT1
vz

				
z¼b1

¼ k2
vT2
vz

				
z¼0

(29)

Equations (28) and (29) represent the compatibility condition at
the interface where each layer is assigned its individual co-ordinate
system with the origin at the bottom-left corner of each layer.
Similar to previous section, a transformation is introduced in order
to absorb the non-homogeneity in the governing Equation (24)

Tjðr; zÞ ¼ qjðr; zÞ �
jj

2
z2 (30)

Based on the above transformation, the transformed boundary
value problem is given by

v2qj
vr2

þ 1
r
vqj
vr

þ v2qj
vz2

¼ 0 (31)

subject to the following boundary conditions and interface
conditions

q1ðr;0Þ ¼ 0 (32)

vq2
vz

				
z¼b2

þ Bi
b2

hðrÞ q2ðr; b2Þ ¼ j2b2

�
1þ Bi hðrÞ

2

�
(33)

vqj
vr

				
r¼0;a

¼ 0 for j ¼ 1; 2 (34)

q1ðr; b1Þ ¼ q2ðr;0Þ (35)

k1
vq1
vz

				
z¼b1

¼ k2
vq2
vz

				
z¼0

(36)

Following a similar procedure as Section 2.1, the temperature
solutions in layers 1 and 2 are given by the following expressions

q1ðr; zÞ ¼ C0 zþ
X∞
n¼1

Cn sin hðlnzÞJ0ðlnrÞ (37)

q2ðr; zÞ ¼ C0
�
b1 þ

z
k

�

þ
X∞
n¼1

�
Cnðsin hðlnb1Þcos hðlnzÞ
þð1=kÞcos hðlnb1Þsin hðlnzÞÞJ0ðlnrÞ

�
(38)

where ln’s are roots of J1(lna) ¼ 0. Substituting Equation (38) in
Equation (33) results in a linear system of Nþ 1 equations in Nþ 1
variables. In order to determine the coefficients, the principle of
orthogonality is used, resulting in the following set of algebraic
equations in the unknown coefficients:
C0

0
@a
k
þ
�
Bi
b2

��
b1 þ

b2
k

�Za
0

rhðrÞdr
1
A

þ
X∞
n¼1

Cn

�
Bi
b2

�
Pn

Za
0

rhðrÞJ0ðlnrÞdr

¼
Za
0

rFðrÞdr (39)

C0
Bi
b2

� �
b1 þ

b2
k

� �Za
0

rh rð ÞJ0 lirð Þdr þ CiliSiNliþ

P∞
n¼1

Cn
Bi
b2

� �
Pn

Za
0

rh rð ÞJ0 lnrð ÞJ0 lirð Þdr ¼
Za
0

rF rð Þcos lirð Þdr

(40)

where,

Nli ¼
a2

2
J20ðliaÞ (41)

FðrÞ ¼ j2b2

�
1þ Bi$hðrÞ

2

�
(42)

Equations (39)e(41) are the result of the use of orthogonality
principle in radial systems to obtain a linear system of N þ 1
equations in N þ 1 variables. The index i in Equations (40) and (41)
corresponds to the contribution of the diagonal terms of thematrix.
In addition, Equation (41) represents the norm integral in radial
systems [21]. Expressions for Sn and Pn are given by Equations (20)
and (21) in Section 2.1. On solving the linear system of equations
simultaneously, the coefficients C0 and Cn’s are determined, and
thus, the temperature solution in each layer is given by substituting
Equations (37) and (38) in Equation (30).
2.3. Heat flux correction factor

The heat flux correction factor needed to correctly account for
lateral effects due to spatial variation in the heat transfer coefficient
is defined as follows

~qc ¼
ðhmaxb2=k2Þ$4

�
x*
�
$T*2;top

ðb2=wÞ2
� 1 ¼

Bi$4
�
x*
�
$T*2;top�

b*2
�2 � 1 (43)

Equation (43) is the dimensionless form of the heat flux
correction factor, in which T2,top is T2(x, b2) or T2(r, b2) for Cartesian
and cylindrical coordinate systems respectively. Note that the ‘*’
notation has been adopted only for Equation (43) in this section.
This is to distinguish between dimensional and dimensionless pa-
rameters in the general definition of the heat flux correction factor.
In Equation (43), the function (x*) ¼ h(x*)/hmax , h(x*) ¼ h(x) since
x* ¼ x/w and the Biot number, Bi is defined as hmaxb2/k2.

Note that when the heat transfer coefficient h(x) is constant, the
two terms in the numerator h(x)$(T2,top � T∞) and g2b2 are equal to
each other based on overall energy conservation, and thus ~qc re-
duces to zero. When there is a spatial variation in h, Equation (43)
accounts for the dimensionless correction factor in heat flux
needed as a result. Note that this correction needs to be computed
based on the temperature at the top of the two-layer structure, as
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given by the final results of Sections 2.1 and 2.2 for slot and circular
jets respectively.

For a fixed geometry and appropriate choice of thermal con-
ductivity ratio, the heat flux correction factor ~qc is a function of
three non-dimensional parameters e Bi, r and g. While the theo-
retical models discussed above capture this dependence exactly, it
is also desirable to determine simple power law correlations to
represent these theoretical results. Such correlations could be used
by experimentalists in the design of experiments and improvement
in the accuracy of heat transfer measurements. The following sec-
tion discusses results from this analysis.
Fig. 5. Convergence in temperature solution as a function of maximum number of
eigenvalues.
3. Results and discussion

Fig. 4(a) illustrates the effects of lateral conduction for param-
eter values Bi ¼ 0.001, r ¼ 5 and g ¼ 2, for an infinite plate, i.e. for
the case where the gradient region is far from any geometric
boundaries. The peak positive and negative errors are labeled as eþ

and e�. For a packet of thermal energy generated in the foil at a
value of x just greater than 10, the path of least resistance is one
that involves lateral conduction through the foil, and convection
into the fluid at x < 10. The result is that around x ¼ 10, the local
wall-normal heat flux is no longer uniform, and increases above the
nominally constant value for x < 10, and decreases for x > 10. In
conventional methods of heat transfer measurements, this effect is
not accounted for due to the one dimensional nature of the prob-
lem, whereas the two-dimensional analysis shown here accounts
for this effect, resulting in greater accuracy.

For the case of a slot jet on a finite plate, Fig. 4(b) shows a
comparison of the heat flux correction curves between an ortho-
tropic insulationmaterial and its isotropic equivalent for Bi¼ 0.001,
r ¼ 5, g ¼ 2 and k ¼ 1000 where k ¼ k2/k1y due to anisotropy and
k1y equals to k1 for isotropic condition. Results indicate that there is
not much variation in the correction factor for the case where the
in-plane thermal conductivity is five times the out-of-plane ther-
mal conductivity in the insulation material. For all subsequent re-
sults discussed in this section, both the resistive heater foil and
insulation material are considered to have isotropic properties. In
order to determine the number of eigenvalues required for accu-
racy of the temperature solution depend strongly on the values of r,
g and k. Fig. 5 plots the residual as a function of x* along the y ¼ b2
boundary for the case r ¼ 5, g ¼ 2 and k ¼ 1000. The residual is
defined based on Equation (5) as the ratio of the heat flux at the
heater foil boundary exposed to jet impingement to the effect of
Fig. 4. (a) Heat flux correction curve illustrating lateral conduction effects for a slot jet ov
isotropic insulation layer with an orthotropic case, where in-plane thermal conductivity is
Newton cooling, in non-dimensional sense, Bi h(x) T2(x,b2)/b2. The
residual characterizes how well the solution satisfies Equation (5).
Fig. 5 shows that as the number of eigenvalues increases, the re-
sidual approaches the ideal value of 1. Around 60 eigenvalues are
needed for the residual to be nearly 1 over the entire range of x*.
There may be significant error if a lower number of eigenvalues is
used, particularly around x* ¼ 1 which represents the gradient
region in the flow field.

Fig. 6(a) and (b) illustrate the effect of foil to insulation thermal
conductivity ratio, k at varying Biot numbers for the case of a slot jet
impinging on an infinite plate. Fig. 6(a) shows that for low foil-to-
insulation conductivity ratio and a low value of Biot number, a
large fraction of heat (z40%) flows inward through the foil into the
insulation, even for k ¼ 100. This is expected as the thermal
resistance offered by the insulation material is lower than that
offered by the impinging jet (i.e. hminb1/k1 is O(1)). However, this is
not desirable for experiments designed to calculate the heat
transfer coefficient, as it leads to large ~qc, and hence incorrect
measurement of heat transfer. This can be improved by proper
selection of foil and insulation materials such that (hminb1/k1 ¼ Bi b
k/r [ 1), which is satisfied by selecting the conductivity ratio
greater than 1000. For the same set of parameters and increased
conductivity ratio, Fig. 6(b) shows improved results in terms of
percentage errors. Regardless, the percentage error due to lateral
er an infinite metal foil. (b) Comparison of finite plate heat flux correction curves for
five times the out-of-plane thermal conductivity.



Fig. 6. Heat flux corrections for slot jet impingement over an infinite plate with r ¼ 5 and g ¼ 2, for (a) k ¼ 100, (b) k ¼ 1000.

Fig. 8. Heat flux corrections for slot jet impingement over a finite plate with r ¼ 5 and
g ¼ 2, for k ¼ 1000.
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conduction effect is still large and can be further reduced by proper
design of the experiments. For example, both Fig. 6(a) and (b) show
significantly reduced error when the Biot number is large.

Similar results for slot jets are shown in Fig. 7(a) and (b) where
the non-dimensional quantities, r and g are varied at a constant
Biot number of 0.001. These results indicate that as the ratio of
maximum to minimum heat transfer coefficient increases, the
resulting error increases, as expected. The parameter g, as
described earlier determines the gradient region of the jet. In
Fig. 7(b) for g ¼ 5, the profile of the jet is that of a step, and
maximum error in heat flux is observed. This is because due to
sudden change in the jet profile, lateral effects are predominant as
compared to the g ¼ 0.5 case, where the jet profile does not
encounter an extreme step change. Most lab-scale experiments are
analyzed by considering a symmetric profile for the jet. This is a
reasonable approximation to make, however by forcing the sym-
metric condition, the percentage error increases as shown in Fig. 8.
For instance, the peak error (eþ) in Fig. 8 is almost double of its
infinite case equivalent Fig. 6(b) for a Biot number of 0.0001. The
larger error primarily occurs due to the symmetric boundary con-
dition forced on the side walls of the foil and insulation at x ¼ 0.
Fig. 9 illustrates the variation of r and g for Biot number of 0.001 for
a slot jet impinging on a finite length plate. Peak errors increase
with increasing values of r and g, as expected.

Fig. 10 illustrates the comparison between the errors for a radial
jet impinging on a two layered disk for k ¼ 1000, r ¼ 5 and g ¼ 2.
Fig. 7. Dependence of slot jet infinite plate heat flux co
The peak error (e�) is appreciable for the Bi ¼ 0.0001 case. Also in
addition, with reduction in magnitude of the Biot number, the
rrections on (a) r, (b) g (k ¼ 1000 and Bi ¼ 0.001).



Fig. 9. Dependence of slot jet finite plate heat flux corrections on (a) r, (b) g (k ¼ 1000, Bi ¼ 0.001).

Fig. 10. Heat flux corrections for slot jet impingement over a disk with r ¼ 5 and g ¼ 2,
for k ¼ 1000.

Fig. 11. Dependence of heat flux corrections for radial jet im

D. Sarkar et al. / International Journal of Thermal Sciences 109 (2016) 413e423 421
conduction effects become predominant and hence the error in-
creases. Fig. 11 illustrates the variation in the error for different
values of r and g while maintaining constant values for Bi and k.

The mathematical analysis in Section 2 is used to calculate the
correction factor and peak percentage errors for awide range of test
cases spanning the Bi, r and g parameter space relevant for typical
experimental conditions. Based on the results, correlations for
estimating the percentage errors for all cases discussed in Section 2
are determined. These results may be useful to experimentalists in
two ways, by both facilitating better experimental design and by
allowing for corrections to measured data. For illustration, consider
a heat transfer coefficient assumed to vary in the same manner as
the Sherwood marked by inverted triangles on the aft portion of a
turbine blade surface in Fig. 1. We stress that the actual data in Fig.1
correspond to mass transfer measurements in which conduction
errors are absent. In the non-dimensional coordinates used in the
figure, the peak-to-base ratio of transport coefficient is 5, and oc-
curs in the region 0.8 < Sp/C < 1.2, with a maximum slope of about
12 (¼g) when the maximum value of Sh at Sp/C ¼ 1.4 is normalized
to unity. Using r ¼ 5 and g ¼ 12, one can estimate measurement
errors for a heat transfer measurement in the given situation. The
ratio of thermal conductivity of heater foil to insulation (k) rarely
exceeds 100 in practice. Using these values, the experimentalist can
use the correlations given in Figs. 11e13 to a priori estimate the
error for a given Biot number, and thus adjust the dimensions of the
heater foil and/or insulation thickness accordingly. This yields
pinging on a disk on (a) r, (b) g (k ¼ 1000, Bi ¼ 0.001).



Fig. 12. Correlations for peak percentage error for infinite plate (a) positive error, (b) negative error.

Fig. 13. Correlations for peak percentage error for finite plate (a) positive error, (b) negative error.
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bounds on the maximum over- and under-estimation of the heat
transfer coefficient in the vicinity of a gradient region. The corre-
lations are, strictly speaking, valid only for the peak over- and
under-estimate of the heat transfer coefficient, and do not give local
corrections. However, one can observe that these maximum de-
viations occur at either end of the gradient region. Therefore, some
information about the distribution can be obtained in the region
Fig. 14. Correlations for peak percentage error f
where the errors are highest. To obtain a correction everywhere,
one would have to repeat the analytical procedure presented in the
paper. A power law expression is used to represent this data. The
pre-factor and exponents in the power law are determined so as to
minimize the least-squares error between the error predicted by
the theoretical model and the power law. This procedure success-
fully provides correlations to accurately capture the theoretical
or disk (a) positive error, (b) negative error.
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model results for each case. Fig. 12 presents the error from the
theoretical model and from the power-law correlation for a slot jet
impinging upon an infinite plate. The final form of the power law
correlation is also shown. The ideal 45� line is shown. Subsequently,
correlations with similar capabilities to represent results from the
theoretical models are obtained for slot jets (finite plate) and cir-
cular jets (disk), are illustrated as Figs. 13 and 14. In each case, the
correlation captures nearly all data within a 10% error band. This
accuracy could be improved further by neglecting test cases cor-
responding to extremely poor experimental design.

4. Conclusion

A theoretical procedure to account for lateral thermal effects
within a jet-cooled foil has been derived. The derivation provides a
means for calculating a correction factor in the traditional heat
transfer measurement methodology that accounts for two-
dimensional nature of thermal transport due to spatial variation
in the heat transfer coefficient. Since an impinging jet is known to
present sharp gradients in the heat transfer coefficient, accounting
for these effects is important. Analytical solutions for the temper-
ature distribution are derived for both slot and circular jets for a foil
with insulation material at the bottom. Results indicate that the
correction factor is most sensitive and is inversely proportional to
the Biot number, in addition to also being dependent on r and g.
Correlations are obtained for various experimental conditions that
closely predict the peak errors obtained from the theoretical
analysis. While the anisotropic nature of an insulating material is
also accounted for in the theoretical model, results indicate that
variation from the isotropic case is minimal. Results from this work
may help improve the heat transfer measurements and design of
equipment’s that encounter sharp gradients in heat transfer due to
external flow conditions.
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