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a b s t r a c t

Heat transfer due to fluid flow past a sphere is encountered commonly in engineering applications. In this
case, the local convective heat transfer coefficient on the surface of the sphere is known to change with
azimuthal and polar angles due to various flow phenomena. While surface-averaged convective heat
transfer coefficient is commonly used for engineering analysis, however, not much work exists for mod-
eling the temperature field inside the sphere while accounting for the spatially varying convective heat
transfer, especially in the context of a sphere with orthotropic thermal conduction properties. This paper
presents an analytical approach for a steady state solution of this problem by deriving a set of algebraic
equations for coefficients of a series solution of the temperature distribution. The problem is solved using
two different approaches, which are shown to lead to equivalent results. Temperature distribution based
on the analytical approach is found to be in excellent agreement with finite-element simulation results.
The effect of various parameters, such as thermal conduction orthotropic ratio, heat generation rate,
power density, flow rate, etc. on temperature distribution in the sphere is presented. Results discussed
in this paper contribute towards the fundamental understanding of an important heat transfer problem,
and in the design of thermal management techniques for engineering applications involving convective
cooling of spherical systems.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid flow past a solid body results in energy exchange between
the two through convective heat transfer [1–6]. This process is
commonly characterized by the convective heat transfer coeffi-
cient, h, which, in general, varies over the fluid–solid interface.
While a space-averaged heat transfer coefficient is often adopted
as an engineering approximation [4], the effect of the spatial vari-
ation of convection on temperature fields is clearly important for a
complete understanding of this phenomenon [5]. For the specific
case of flow past a sphere, the convective heat transfer coefficient
is known to vary with both azimuthal and polar angles, u and h,
respectively. The dependence of h around the periphery of the
sphere has been studied for a variety of flow conditions [1,7].
The heat transfer coefficient h is the largest at the stagnation point
(u = 0�), following which, h first decreases due to laminar boundary
layer development. For laminar flow, a minima is reached at
around u = 109� where separation occurs [1]. Similarly, h also var-
ies with h. The temperature and velocity fields in the flow around
the sphere have been measured and numerically computed [8]. The
overall heat transfer coefficient has been measured for small
spheres in a fluid flow and a relationship between heat transfer,
flow velocity and fluid properties has been derived using experi-
mental data [9]. An analytical solution for transient heat transfer
from a sphere at low Reynolds number under steady velocity con-
ditions has been developed [10]. Analytical solution for unsteady
heat transfer at small Peclet numbers has also been developed
when the surface temperature of the sphere undergoes a step
change [11].

Most of this past work addresses temperature and velocity
fields in the fluid, whereas the temperature field within the sphere,
and its dependence on the u and l dependent convective heat
transfer coefficient has not been adequately addressed in the liter-
ature. Such analysis has been carried out in the past for other
geometries, including extended surfaces [12–15] and orthotropic
cylinders [5], using a variety of analytical techniques to account
for the space-dependent convective heat transfer. A Fourier series
method has been used to determine the two-dimensional temper-
ature distribution in a rectangular fin with heat transfer coefficient
varying along its length [12]. Temperature in fins with varying
geometries and heat transfer coefficient has been computed using
Frobenius series expansion method [13]. The performance of
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Nomenclature

h convective heat transfer coefficient, (W/m2-K)
k thermal conductivity, (W/m-K)
Q volumetric heat generation rate, (W/m3)
r radial coordinate, (m)
Pm
n associated Legendre functions of degree n and order m

R sphere radius, (m)
T temperature rise above ambient, (K)
h polar angle
u azimuthal angle
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annular fins in the presence of variable heat transfer coefficient has
been studied [14]. A Galerkin based integral approach has also
been adopted to account for variable heat transfer coefficient in
fins [15]. An analytical solution for temperature distribution in
an orthotropic cylinder with spatially-varying heat transfer coeffi-
cient on its surface has been presented [5] by assuming a Fourier
series form of the temperature distribution with coefficients that
are determined using the spatial variation of the heat transfer coef-
ficient. In addition to such analytical approaches, numerical meth-
ods have also been used to analyze cases with space-varying heat
transfer coefficient. For example, a finite difference based model
has been adopted to study the transient heat transfer of a solid
sphere in cross flow [16].

This paper presents an analytical derivation to compute the
temperature distribution in a sphere with spatially varying convec-
tive heat transfer coefficient on its surface. Thermal conduction
within the sphere is assumed to be orthotropic in general, with dif-
ferent thermal conductivity values in r, u and h directions. Volu-
metric heat generation occurs within the sphere, which is cooled
on the outside surface with a convective heat transfer coefficient
that depends on both azimuthal and polar angles. A Fourier series
form of the temperature distribution is assumed. It is shown that
the series coefficients can be determined by solving a set of linear
algebraic equations that account for the general spatial variation of
h on the sphere surface. The temperature distribution computed by
this analytical solution is found to be in good agreement with
results from finite-element simulations. The dependence of the
temperature profile on a number of parameters such as the heat
transfer coefficient, thermal conduction orthotropy, etc. is
discussed.

The theoretical derivation of temperature field in a sphere with
orthotropic thermal properties is important because while most
commercial finite-element simulation tools enable analysis of
orthotropic thermal conduction in rectangular and cylindrical
coordinate systems, the treatment of orthotropic thermal conduc-
tion in spherical coordinates is not available. By deriving the tem-
perature distribution for this very general case, the treatment
presented here may help expand the capability of thermal analysis
in spherical coordinate systems.
Fig. 1. Schematic of the problem.
2. Analytical model

This section presents the derivation of the steady state temper-
ature distribution in an orthotropic sphere with internal volumet-
ric heat generation and spatially dependent h. Based on the general
derivation presented next in Section 2.1, a special case for a par-
tially orthotropic sphere where ku = kl is presented in Section 2.2.
Section 2.3 discusses an alternate analytical approach for solving
the general problem. Finally a brief discussion is presented, show-
ing that for isotropic conditions, i.e. all thermal conductivities
being the same, the solutions presented for the orthotropic and
partially orthotropic cases reduce to that of the isotropic solution
as one would expect.
2.1. Orthotropic sphere

Fig. 1 shows a schematic of the general heat transfer problem
being addressed in this sub-section. The steady-state governing
energy equation in a three dimensional orthotropic sphere is given
by [17]
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where T(r, u, l) is the temperature rise above ambient,

l = cos(h), kr, ku and kl are thermal conductivities in the r, u and
l directions, and Q is the volumetric heat generation rate.

The temperature distribution is subject to the following bound-
ary conditions:
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Eq. (2) represents the requirement for the temperature field to
be finite at r = 0. The circumferential variation of h at r = R is
accounted for by Eq. (3). Eqs. (4) and (5) represent temperature
periodicity and heat flux continuity in the u-direction. In addition
to satisfying Eqs. (1)–(5), the temperature field must also remain
bounded in the l direction [17].

If h were a constant number, then the solution for Eqs. (1)–(5)
can be obtained by the separation of variables method in a
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straightforward fashion [17]. However, the general case of spatially
varying h considered here cannot be addressed by this approach. In
this case, the temperature field is first transformed as follows:

Tðr;/;lÞ ¼ wðr;u;lÞ � Qr2

6kr
ð6Þ

In Eq. (6), the second term absorbs the non-homogeneity in the
governing equation, thereby leaving a homogeneous governing
equation for w(r, u, l) and transferring the non-homogeneity
to the boundary condition at r = R for w. The set of equations for
w(r, u, l) is as follows,
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where
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The solution for w(r, u, l) is written in the form of the following
infinite series:
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where a = kl/kr and b = ku/kl.
This particular form of the solution is chosen because it satisfies

the governing differential equation (7) and several boundary con-
ditions, given by Eqs. (8), (10) and (11). Note that in general, the
associated Legendre functions in Eq. (13) may have non-integer
order due to unequal thermal conductivities in the polar and azi-
muthal directions. The coefficients Cnm in Eq. (13) can then be cal-
culated to satisfy the boundary condition at the surface r = R, given
by Eq. (9). To do so, the form of w(r, u, l) given by Eq. (13) is
inserted in Eq. (9), resulting in
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While Eq. (14) involves infinite series in both polar and azimuthal
directions, it can be simplified by multiplying throughout by cos

(ju) and P
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b
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i ðlÞ, and then integrating over u and l. Since h is in
general a function of u and l, this results in a set of linear equations
involving the unknown coefficients, given by
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Assuming that zero through N eigenvalues are considered in the
l-direction, Eq. (15) represents a set of (N + 1) � (N + 2)/2 linear
equations in the same number of unknowns Cij, i = 0,1,2, . . .N and
j 6 i, from where the unknown coefficients can be computed. For
example, if eigenvalues up to N = 10 are considered, the total
number of unknown coefficients is 66. Once the coefficients are
computed, Eqs. (6) and (13) represent the temperature distribution
in the orthotropic cylinder. Note that in the special case of h being a
constant, the integral in the expression for bijmn in Eq. (17) would
yield all zero values except when i = n and j =m due to orthogonality
of the eigenfunctions [17]. As a result, for this case, the coefficients
Cij can be computed explicitly, given by (aij + dijij) Cij = fij. This
special case is the commonly used separation of variables approach
where all coefficients are determined explicitly in case h is a con-
stant. For the more general case of spatially varying h considered
here, a set of linear algebraic equations given by Eqs. (15)–(18)
are to be solved to determine the series coefficients.

The next sub-section considers two special cases in which the
fully orthotropic thermal conduction within the cylinder is relaxed.

2.2. Partially orthotropic and isotropic sphere

In several engineering applications, thermal conduction in the
sphere may be partially orthotropic. For example, when the sphere
is made up of multiple concentric layers, thermal conductivity in
the radial direction may be lower than the other two components
due to thermal contact resistance between layers, whereas thermal
conductivities in the azimuthal and polar directions may be equal,
ku = kl = kc, where kc is a constant. The temperature distribution in
such a case may be obtained from the treatment in Section 2.1 by
setting ku = kl = kc, and hence b = 1. The temperature distribution is
still given by Eq. (6), but the modified form for w(r, u, l) is as
follows
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In this case, the eigenfunctions in the l direction are associated
Legendre polynomials, a special case of associated Legendre func-
tions that appear in Eq. (13), with integer order, since b = 1.

The procedure to determine the unknown coefficients Cnm in Eq.
(19) remains the same as before. The matrix elements aij-, bijnm and
fij are somewhat simplified, and are now given by,
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Note that the integer order of the associated Legendre polyno-
mials leads to significant reduction in computational cost. Explicit
expressions for the integrals in Eqs. (20)–(22) are available for
integer order only [17–19]. These integrals can also be computed
symbolically [20] for any arbitrary, even function h(u, l). In
comparison, for the more general, orthotropic case discussed in
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Section 2.1, exact expressions for the norm integral, as well as the
double integrals for bijnm and fij are not available, and must be com-
puted numerically.

As a further step, substituting kr = kc in equations above reduces
the temperature distribution to the special case of an isotropic
sphere with identical thermal conductivity in all directions. In this
case, while T(r, u, l) is still given by Eq. (6), w(r, u, l) has a simpli-
fied form given by
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Cnm cosðmuÞPm
n ðlÞ

r
R

� �n
ð23Þ

The coefficients are still governed by a set of linear algebraic equa-
tions given by Eq. (15). bijmn and fij are given by Eqs. (21) and (22)
respectively. Due to isotropy in thermal conductivity, expression
for aij given previously by Eq. (20) can be simplified further to

aij ¼ i
R

� 	Z 2p

0
cos2ðjuÞdu

Z 1

�1
P j
i ðlÞ

h i2
dl ð24Þ
Fig. 2. Polar plot for temperature distribution for an orthotropic sphere with
kr = 0.2 W/m-K, ku = 30 W/m-K and kl = 20 W/m-K.
2.3. Alternate analytical approach for orthotropic sphere

This section presents an alternate approach for solving the gen-
eral problem involving orthotropic thermal conduction given by
Eqs. (1)–(5) in Section 2.1. In this approach, the temperature is still
transformed as given by Eq. (6). However, instead of Eq. (13), the
functional form for w(r, u, l) is written as follows

wðr;/;lÞ ¼
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n¼0

Xn
m¼0

Cnm cosðmuÞPmmgn ðlÞ
r
R
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where gn ¼ �0:5þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an2 þ anþ 0:25

p
, a ¼ 1=a, and mm ¼ bm. a

and b are ratios of thermal conductivities as defined earlier in Sec-
tion 2.1. In general, gn and mm, the degree and order respectively of
the associated Legendre function in Eq. (25) can be non-integers
[21]. Due to the arbitrary nature of both degree and order, the asso-
ciated Legendre function appearing in Eq. (25) is now expressed by
a Gauss hypergeometric series [17,21]. Such functions are encoun-
tered, for example in problems related to a sphere surface cut by a
cone [17].

Note that similar to Eq. (13), the functional form of w
represented by Eq. (25) satisfies Eqs. (7), (8), (10) and (11), and
the series coefficients Cnm may be determined using a procedure
similar to Section 2.1 utilizing the boundary condition involving
the spatially varying convective heat transfer coefficient, given
by Eq. (9).
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Similar to Section 2.1, Eq. (26) is multiplied throughout by cos(ju)
and P
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In general, the associated Legendre function is defined by the Gauss
hypergeometric series in the region jl2j < 1 for any arbitrary l, g
and m [21]. Substituting a = b = 1 in Eq. (25) results in the solution
for isotropic thermal conduction within the sphere, as expected.

Thus, a general solution for temperature in an orthotropic
spherical body has been derived in two different ways, and special,
less restrictive cases have been discussed. In the next section, the
various theoretical models presented in this section are computed.
Results are compared against finite element simulations, and the
effect of various properties and geometry on the temperature dis-
tribution is discussed.
3. Results and discussion

Fig. 2 shows a polar plot of temperature distribution in a solid
sphere of radius 10 cm with uniform heat generation rate,
Q = 1432.39 W/m3, based on a total heat generation rate of 6 W
in the sphere. The u variation of h is chosen to be
hðuÞ ¼ h0ð1þ cos2ðu=2ÞÞ with h0 = 100W/m2 K, an even function
with maxima at u = 0 and u = p, and minima at u = p/2. Radial, azi-
muthal and polar thermal conductivities are assumed to be
kr = 0.2 W/m-K, kl = 20 W/m-K and ku = 30 W/m-K respectively,
consistent with the expectation that for a sphere made of multiple
layered materials, the radial thermal conductivity will be the low-
est due to multiple thermal contact resistances between layers.
Temperature variation in Fig. 2 is predominantly in the radial
direction due to the low value of kr relative to kl and ku. The tem-
perature gradient in the u direction is seen more clearly in Fig. 3,
which presents line plots of temperature distribution for the iso-
tropic sphere (k = 0.2 W/m-K) as a function of r along the plane
h = p/2 and u = 0 which is the region that includes the stagnation
point (Fig. 3(a)), and similarly temperature as a function of u at
r = R (Fig. 3(b)). Inset in Fig. 3(b) shows the variation of h as a func-
tion of u. The location of the maxima in temperature coincides
with the minima in h, which is also along expected lines. Fig. 3
(a) and(b) also present comparison of the temperature distribution
obtained from the analytical model discussed in Section 2 for the
isotropic case with results from finite-element simulation. The



Fig. 3. Comparison of analytical solution for the temperature distribution in an isotropic sphere with finite element simulations: (a) variation with r (b) variation with u.

Fig. 5. Plot for temperature distribution in an orthotropic sphere as a function of u
for different values of ku while maintaining kr = 0.2 W/m-K. The value of kl is equal
to the ku for each case.
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finite-element simulations are carried out in ANSYS CFX, with
sufficiently refined grid to rule out grid dependence. Good agree-
ment is found between the temperature distribution computed
from Eqs. (6), (23) and (24) and the one predicted by the finite ele-
ment model. Note that since orthotropic thermal conduction in
spherical coordinate systems cannot be modeled in ANSYS CFX,
the comparison between analytical model and finite-element sim-
ulations shown in Fig. 3 has been carried out only for the case of
isotropic thermal conduction.

Fig. 4 shows temperature variation in the radial direction with
changing values of kr, while holding ku and kl at a constant value
of 0.2 W/m-K. The temperature increases as kr reduces, as
expected. It is found that the partially orthotropic temperature dis-
tribution given by Eq. (19) reduces to the temperature solution for
an isotropic sphere given by Eq. (24), also shown in Fig. 4. Fig. 5
analyzes a different case, where kr is held constant at 0.2 W/m-K,
and ku is varied. The value of kl is held equal to ku. Fig. 5 plots
the temperature as a function of u along the surface at r = R and
l = 0. As expected, the peak temperature of the temperature curves
illustrated in Fig. 5 reduce as ku increases. The inset in Fig. 5 shows
the variation of h with u. As expected, the maxima in temperature
coincides with minima in the heat transfer coefficient.
Fig. 4. Plot for temperature distribution in an orthotropic sphere versus as a
function of r for different values of kr while maintaining ku = kl = 0.2 W/m-K.

Fig. 6. Plot for temperature distribution in an orthotropic sphere as a function of
radius using two different solution techniques, for kr = 0.2 W/m-K, ku = 30 W/m-K
and kl = 20W/m-K.



Fig. 7. Plot for temperature distribution in an orthotropic sphere as a function of r
for spheres of different radii R, while maintaining constant internal heat generation
rate.

Fig. 8. Plot for temperature distribution in an orthotropic sphere versus r for
spheres of different radii R, while maintaining constant power.

Fig. 9. Plot for temperature distribution in an orthotropic sphere for differen
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Fig. 6 shows a comparison of the temperature distribution as a
function of r for the two solution techniques discussed in Sections
2.1 and 2.3. There is good agreement between the two solutions, as
expected, which shows that either of the two approaches discussed
in Sections 2.1 and 2.3 may be adopted for computing temperature
field in a general, orthotropic sphere.

Fig. 7 illustrates the variation in radial temperature distribution
in spheres of different sizes with the volumetric heat generation
rate maintained constant. The value of the volumetric heat gener-
ation rate is based on 6W power in a solid sphere of radius 0.1 m
as the reference case. As expected, a sphere with a larger radius has
a larger temperature gradient, due to greater power generated
inside the sphere of a larger radius. Conversely, in Fig. 8, the total
power is held constant at 6 W, and it is found that there is greater
temperature rise in the small radius sphere due to the increased
volumetric heat generation rate.

Finally, Fig. 9 analyses the temperature variation in the radial
and azimuthal directions as functions of convective cooling rates.
As expected, the peak temperature drops in both cases with
increase in the cooling rate. The reduction in temperature is less
significant at higher values of h0, which could be because at high
h0, total thermal resistance is dominated by thermal conduction
within the sphere rather than convective thermal resistance at
the boundary.
4. Conclusions

This paper addresses the classical problem of heat transfer
between a solid sphere and fluid flow past its surface. The analyt-
ical technique presented here accounts for spatial variation of the
heat transfer coefficient on the sphere surface, as well as orthotro-
pic thermal conduction within the sphere. The temperature field
inside the sphere is expressed in a series form, where the coeffi-
cients are determined by solving a set of linear algebraic equations.
Results derived from two different approaches agree well with
each other. The results presented in this manuscript contribute
towards the understanding of a classical heat transfer problem,
and enables the analysis of an orthotropic sphere which is not pos-
sible in current finite-element analysis tools. This paper may con-
tribute towards the development of design tools for thermal
management of heat-generating spherical systems with realistic
convective heat transfer coefficients.
t convective cooling rates h0: (a) variation with r, (b) variation with u.
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