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Fluid flow past a cylinder is a classical problem of fluid mechanics and convective heat transfer. In this
problem, the local convective heat transfer coefficient on the cylinder surface varies around the cylinder
due to boundary layer growth, separation and transition to turbulence. While there is considerable liter-
ature on computing the temperature distribution in the fluid, not much work exists on computing the
temperature distribution within the solid body, particularly if the solid has anisotropic thermal proper-
ties. This paper presents an analytical technique for computing the temperature distribution within a
heat-generating cylinder with anisotropic thermal conductivity subjected to spatially varying convective
heat transfer coefficient due to fluid flow. As expected, temperature distribution on the cylinder surface
exhibits minima and maxima at locations where the convective heat transfer coefficient has maxima and
minima respectively. The effect of various parameters, including Reynolds number of the flow and extent
of anisotropy are examined. Results presented in this paper contribute towards the fundamental under-
standing of a classical heat transfer problem. Further, since Li-ion cells that are commonly used for energy
conversion and storage exhibit strong thermal conduction anisotropy, these results may be useful for
design of convection-based thermal management of Li-ion cells.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Convective heat transfer between a solid body and fluid flow
past the body is an important technological problem for which a
vast amount of literature on experimental investigation as well
as theoretical modeling exists [1,2]. For fluid flow past a solid body,
the convective heat transfer coefficient, h, at the surface of the
body is known to vary spatially. For the specific case of flow past
a cylinder, the variation of h as a function of the circumferential
angle, h is well known. This variation has been experimentally
measured for different values of Reynolds number, Re [2], and
has also been computed by solving the governing energy and
momentum conservation equations of the flow [3]. Starting from
the stagnation point (h = 0�), h first decreases due to laminar
boundary layer development. For laminar flow, a minima is
reached at around h = 80� where separation occurs. For large values
of Re, a sharp increase occurs beyond the first minima due to
transition to turbulence, following which a second minima occurs
due to separation at around h = 140�. Mixing in the wake region
results in further increase in h beyond this minima [1]. For the case
of flow past a cylinder, the temperature and velocity fields in the
flow around the cylinder have been computed theoretically and
analytically. However, not much work exists that addresses the
computation of temperature within the cylinder while accounting
for the h-dependence of h. The problem of variable convective heat
transfer coefficient occurs commonly in the thermal analysis of
extended surfaces [4]. This problem has been analyzed in a number
of papers. Steady state temperature distribution for a one dimen-
sional rectangular fin with temperature-dependent heat transfer
coefficient has been presented [5]. A solution method to determine
temperature involving direct integration of the governing differen-
tial equation has been presented [6]. A method based on Fourier
series expansion has been adopted to determine the two-
dimensional temperature field in a rectangular fin in which the
heat transfer coefficient varies along the length of the fin [7].
Another paper analyzes the variable heat transfer coefficient prob-
lem for computing temperature in the thermal entry region of a
hydrodynamically developed duct flow [8]. The Frobenius series
expansion technique has been used for fins with different cross-
sectional areas with varying heat transfer coefficients [9]. Another
paper highlights the performance of annular fins of different
profiles when subjected to variable heat transfer coefficient [10].
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Nomenclature

h convective heat transfer coefficient over curved surface
of the cylinder

hend convective heat transfer coefficient over end surfaces of
the cylinder

H cylinder height
kr

radial thermal conductivity

kh circumferential thermal conductivity
kz axial thermal conductivity
Q heat generation rate
R cylinder radius
T temperature rise above ambient
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Semi-analytical solution methods such as the Galerkin based inte-
gral method has also been adopted to account for variable heat
transfer coefficient in fins [11]. An inverse problem that estimates
the functional form of the heat flux at the base of the fin when
the surface of the fin is subjected to variable heat transfer coefficient
has been presented [12]. Another paper has addressed the inverse
problem of computing the space dependent heat transfer coefficient
when temperature at certain locations inside the body at certain
locations is known a priori [13]. A hybrid numerical scheme has
been used for transient thermo-elastic analysis of an annular fin
with [14]. Numerical analysis has also been carried out for deter-
mining the transient natural convective heat transfer with variable
heat transfer coefficient in the case of domestic refrigerators [15].
The literature cited above indicates that the variable heat transfer
coefficient problem has been adequately addressed for extended
surfaces. However, there is a lack of literature for addressing vari-
able heat transfer coefficient in the context of cross flow past a solid
cylinder, a problem of considerable technological importance. This
is particularly so when thermal conduction inside the cylinder is
anisotropic in nature. Recent research on Li-ion batteries suggests
the existence of strong anisotropy in thermal conduction in Li-ion
cells [16]. Thermal conductivity measurements indicate a 100-fold
difference in thermal conductivity in the radial and axial directions
[16]. The cooling of Li-ion cells is a problem of much technological
importance [17]. Li-ion cells are commonly used for energy storage
and conversion, and thermal runaway is a significant problem in
insufficiently cooled Li-ion cells, which in extreme cases leads to
explosion and fire, as evidenced in recent incidents on aircrafts
[18]. As a result, it is important to develop analytical techniques
for computing the temperature of a Li-ion cells that account for
the anisotropic nature of thermal conduction within the cell, and
also the variable convective heat transfer coefficient around the cell
that may occur due to flow of a coolant fluid past the cell.

This paper presents an analytical technique to compute the
temperature profile within an infinite or a finite cylinder subjected
to internal heat generation and a convective heat transfer coeffi-
cient on the outer surface that varies around the cylinder in the h
direction. The analytical model results in a series solution for the
temperature profile with coefficients that can be computed easily
by solving a well-defined set of linear algebraic equations.

Using the functional form of h(h) from well-known experi-
ments, [1,2], the expected temperature profile is computed for a
cylinder subjected to an external coolant flow. The dependence
of the temperature profile on a number of parameters such as
the Reynolds number of the external flow, extent of thermal con-
duction anisotropy, aspect ratio, etc. is discussed. In addition to
addressing a classical theoretical problem, this paper may also help
develop design tools for thermal management of Li-ion cells using
external coolant flow.
2. Analytical model

Consider the steady state thermal conduction problem of a
heat-generating cylinder of radius R subjected to circumferentially
varying convective heat transfer on its outer surface, represented
by h(h). Note that h(h) must be an even function and periodic with
a period of 2p. A uniform volumetric heat generation rate Q is
assumed to occur within the cylinder. Two specific cases shown
in Fig. 1(a) and (b) are considered – an infinitely long cylinder,
and a finite cylinder of height H. The finite cylinder is subjected
to a constant convective heat transfer coefficient hend at the top
and bottom surfaces. Thermal conduction within the cylinder is
assumed to be anisotropic, with the radial, circumferential and
axial thermal conductivities given by kr, kh and kz, respectively.
Such anisotropy occurs, for example, in a Li-ion battery in which
recent experimental measurements have indicated a 100-fold
difference in the axial and radial thermal conductivities [16]. The
primary interest in this paper is to derive an analytical expression
for the temperature distribution T(r,h) for the infinite cylinder, and
T(r,h,z) for the finite cylinder.

2.1. Infinite cylinder

In this case, the governing energy equation is given by

kr

r
@

@r
r
@T
@r

� �
þ kh

r2

@2T

@h2 þ Q ¼ 0 ð1Þ

where T(r,h) is the temperature rise above ambient.
The temperature distribution is subject to the following bound-

ary conditions:

@T
@r
¼ 0 at r ¼ 0 ð2Þ
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@T
@r
þ hðhÞ � T ¼ 0 at r ¼ R ð3Þ

TðhÞ ¼ Tðhþ 2pÞ ð4Þ
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Eq. (2) is based on the requirement of symmetry of the temperature
field about r = 0. Eq. (3) represents circumferentially varying con-
vective heat transfer at the outer surface, r = R. Eqs. (4) and (5) arise
from temperature and heat flux periodicity in the circumferential
direction.

Eqs. (1)–(5) represent a thermal conduction problem in which
the governing energy equation is non-homogeneous, whereas all
boundary conditions are homogeneous. If the convective heat
transfer coefficient in Eq. (3) were to be constant, this set of equa-
tions admits a straightforward solution using the separation of
variables approach. However, h-dependence of h precludes this
approach. Instead, a more general approach that accounts for h-
dependence of h must be adopted. The temperature field is first
split into two parts as follows:

Tðr; hÞ ¼ wðr; hÞ � Q r2

4kr
ð6Þ



Fig. 1. Schematic of the geometry under consideration for (a) infinite, and (b) finite cylinder subjected to circumferentially varying convection at the surface due to cross-
flow.
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Splitting of the temperature field in this manner results in a homo-
geneous governing equation for w (r,h), with one non-homogeneous
boundary condition at r = R, as follows:
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subject to

@w
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¼ 0 at r ¼ 0 ð8Þ
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wðhÞ ¼ wðhþ 2pÞ ð10Þ
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where

FðhÞ ¼ QR
2

1þ hðhÞR
2kr

� �
ð12Þ

The boundary conditions in Eqs. (7)–(12) are all homogeneous,
except one. The solution for w(r,h) is written in terms of an infinite
series as follows:

wðr; hÞ ¼
X1
m¼0

Cm cosðmhÞ r
R

� �m
ffiffiffiffiffiffiffiffi
kh=kr

p
ð13Þ

Eq. (13) already satisfies the governing differential equation given
by Eq. (7) and three boundary conditions given by Eqs. (8), (10)
and (11). The coefficients Cm in Eq. (13) can be chosen in a manner
so as to satisfy the last remaining boundary condition, given by
Eq. (9). To do so, w(r,h) from Eq. (13) is inserted in Eq. (9), resulting
in

kr

X1
m¼0

Cm cosðmhÞ m
ffiffiffiffiffiffiffiffiffiffiffi
kh=kr

p
R

þ hðhÞ
X1
m¼0

Cm cosðmhÞ ¼ FðhÞ ð14Þ
Finally, Eq. (14) is multiplied by cos(jh) and integrated from h = 0 to
h = 2p. Because h is a function of h, this results in a set of linear
equations involving the unknown coefficients:

Cj bj þ
X1
m¼0

Cm dj;m ¼ fj for each j ¼ 0;1;2;3;4 . . . ð15Þ

where

bj ¼
j
ffiffiffiffiffiffiffiffiffiffi
kr kh

p
R

Z 2p

h¼0
cos2ðjhÞdh ð16Þ
dj;m ¼
Z 2p

0
hðhÞ cosðjhÞ cosðmhÞdh ð17Þ
fj ¼
Z 2p

0
FðhÞ cosðjhÞdh ð18Þ

Assuming that the maximum value of m in Eq. (14) is M, Eq. (15)
represents a set of (M + 1) linear equations in (M + 1) unknowns
Cj, j = 0,1,2,...,M, from where the unknown coefficients can be com-
puted. Once the coefficients are computed, Eqs. (6) and (13) repre-
sent the temperature distribution in the anisotropic cylinder.
Putting kr = kh in equations above reduces the solution to that for
an isotropic cylinder with identical thermal conductivity in each
direction.

It is to be noted that in the special case of h being independent
of h, dj,m become zero except when j = m. As a result, Eq. (15)
reduces to (bj + dj,j)�Cj = fj, from where all Cj’s can be obtained
explicitly without the need to solve a set of algebraic equations.
This corresponds to the separation of variables approach for con-
stant h, in which all coefficients can be obtained explicitly, as
opposed to the case considered here, where the coefficients are
determined through the solution of a set of linear algebraic
equations.
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This is not necessarily true, actually. For example, for ktheta=kr, in calculating dw/dr at r=0, the m=1 term in equation (13) results in a non-zero constant, meaning that equation (8) may not be satisfied necessarily. Further, for ktheta<kr, dw/dr at r=0 based on equation (13) results in a term c1*cos(theta)*sqrt(ktheta/kr)*r^(sqrt(ktheta/kr)-1). Since ktheta/kr<1, therefore, r is being raised to a negative power, meaning that the slope at r=0 becomes infinitely large. Therefore equation (13) is not the correct form of the solution for equation (7) that satisfies equation (8).  On a side note, equation (8) should probably require finite temperature at r=0 instead of zero slope. 



Fig. 2. Polar plot of the temperature distribution in an anisotropic infinite cylinder
at Re = 7960.
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2.2. Finite cylinder of height H

This sub-section considers a finite cylinder of height H. In this
case, the governing energy equation is given by
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r
@

@r
r
@T
@r

� �
þ kh

r2

@2T

@h2 þ kz
@2T
@z2 þ Q ¼ 0 ð19Þ

The temperature field T(r, h, z) satisfies the boundary conditions
given by Eqs. (2)–(5). Note that the convective heat transfer coeffi-
cient in Eq. (3) is now a function of h as well as z, i.e. h = h(h,z). The
temperature field also satisfies the following boundary conditions
in the z direction:

kz
@T
@z
� hend � T ¼ 0 at z ¼ 0 ð20Þ

and
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@T
@z
þ hend � T ¼ 0 at z ¼ H ð21Þ

In this case, the solution methodology is similar to that described
for the infinite cylinder in Section 2.1. The solution is given by

Tðr; h; zÞ ¼ wðr; h; zÞ þ f ðzÞ ð22Þ
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and Bi ¼ hend �H
kz

.
The governing equation for w (r, h, z) is
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w(r,h,z) satisfies the boundary conditions given by Eqs. (8), (10),
(11). In addition, w also satisfies
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Using an approach similar to Section 2.1, w (r,h,z) may be written as
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where I is the modified Bessel function of the first kind. The order of
the Bessel function is given by

tm ¼ m
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The eigenvalues gn are determined from roots of the equation

tanðgn HÞ ¼ 2ðgn � HÞBi

ðgn � HÞ
2 � Bi2 ð30Þ

The solution form shown in Eq. (28), when substituted in the
boundary condition at r = R, given by Eq. (27) results in
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Using a similar approach as shown in Section 2.1 following Eq. (14),
use of orthogonality in Eq. (31) results in a set of linear equations
involving the unknown coefficients given by
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The norms Nh and Nz in Eq. (33) are given by [19]
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2p when j ¼ 0
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Fig. 3. Comparison of the analytically computed temperature distribution for the infinite cylinder with finite-element modeling results. (a) Shows variation with h, (b) shows
variation with r.
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Solving the set of linear algebraic equations involving the coeffi-
cients Cmn given by Eq. (32) results in the determination of the tem-
perature distribution for the finite cylinder given by Eq. (22). Note
that the ratios of various thermal conductivities appearing in the
solution account for the thermal conduction anisotropy in the cylin-
der. Putting kr = kh = kz results in a solution for the isotropic
cylinder.

3. Results and discussion

Fig. 2 presents a polar plot of temperature distribution in an
infinite cylinder of radius 13 mm with Re = 7960 computed using
the model in Section 2.1. The h-variation of h is obtained from
well-known experimental data [2]. Radial and circumferential
thermal conductivities are assumed to be kr = 0.2 W/mK and
kh = 30 W/mK, respectively, based on recent measurements on a
26650 Li-ion cell [16]. While the h-variation in the temperature
distribution shown in Fig. 2 may not be readily apparent due to
the much larger radial variation, it is clearly seen in Fig. 3, which
presents line plots of temperature distribution as a function of h
at the outer surface (Fig. 3(a)), and as a function of r (Fig. 3(b)).
Fig. 4. Comparison of the analytically computed temperature distribution for the finite cy
h, (b) shows variation with r.
Inset in Fig. 3(a) shows the variation of h as a function of theta.
Fig. 3(a) and (b) also present the temperature distributions pre-
dicted by a finite-element simulation. Similar plots are presented
for a finite-cylinder at the mid-height in Fig. 4(a) and (b). For the
finite cylinder case, a cylinder of radius 13 mm and height
65 mm is used, which corresponds to the geometry of the com-
monly used 26650 Li-ion cell. Figs. 3 and 4 show that the infinite
cylinder and finite cylinder models are both in excellent agreement
with finite-element simulation results. The temperature field is
found to have maxima and minima at h locations where the distri-
bution of the heat transfer coefficient has minima and maxima
respectively. This is along expected lines since a large value of
the local convective heat transfer coefficient results in greater local
heat transfer from the solid to the fluid, and thus lower solid tem-
perature. While the model predictions and finite-element simula-
tion results are within less than 1% of each other for most of the
cylinder, the maximum deviation between the two is about 3%,
which occurs at the temperature peaks. This small error occurs
possibly due to approximations related to the number of
eigenvalues used in the model, and due to numerical errors in
computing the integrals present in the model. Additionally,
linder at mid-height with finite-element modeling results. (a) Shows variation with



Fig. 5. Polar plots for the temperature distribution in an anisotropic infinite cylinder with three different values of Reynolds number, with kr = 0.2 W/mK, kh = 30 W/mK based
on recent measurements [16].

Fig. 6. Polar plots for the temperature distribution in an anisotropic infinite cylinder with three different values of Reynolds number, with kr = 30 W/mK, kh = 0.2 W/mK.

Fig. 7. Plot of temperature rise as a function of the degree of thermal conduction
anisotropy in an infinite cylinder.

Fig. 8. Plot of temperature as a function of aspect ratio for a finite cylinder.
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approximations in the finite-element simulation may also have
contributed to the small error.

The model presented in Section 2 is next used to determine the
temperature distribution within the cylinder for different values of
Re. Well-known measurements of the convective heat transfer
coefficient on the cylinder surface as a function of h at various val-
ues of Re [2] are used in these computations. Fig. 5 shows polar
plots of temperature distribution in the cylinder for three values
of Re. The thermal properties and heat generation rate are the same
as used in Figs. 2 and 3. Fig. 5 shows that as Re increases, the tem-
perature field within the cylinder reduces, as expected. In addition,
these polar plots also demonstrate the radial and circumferential
variations in the temperature field within the cylinder. As
expected, the core of the cylinder is the hottest in each case, while
the outer surface directly facing the fluid flow is the coolest.

In order to illustrate the strong effect of anisotropy in thermal
conduction, Fig. 6 shows temperature plots at three values of Re,
with kr = 30 W/mK and kh = 0.2 W/mK, which is the opposite of
the assumption for Fig. 5. In this case, the much lower value of kh
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relative to kr is expected to result in significant temperature gradi-
ents in the h direction, which is clearly seen in Fig. 6. Recent mea-
surements on a 26650 Li-ion cell [16] indicate that kr is expected to
be much lower than kh, which is why Fig. 5 may be more represen-
tative of an actual Li-ion cell than Fig. 6.

In order to further demonstrate the effect of anisotropic thermal
conduction, the temperature field in the cylinder is computed as a
function of the radial thermal conductivity, while keeping the
other thermal conductivities constant. Fig. 7 plots temperature at
h = 0�, and h = 90�, both at r = R as functions of kr. The ratio kr/kh,
which represents the degree of anisotropy is also indicated. Fig. 7
shows that the temperature at h = 0� increases while the tempera-
ture at h = 90� decreases as kr increases. At large kr, the tempera-
tures at the two points converge to the same value, which is
along expected lines, since the cylinder will behave as an isother-
mal body in the limit of large kr.

Finally, the finite cylinder model is used to compute the tem-
perature distribution in a finite cylinder as a function of aspect
ratio H/R, while keeping the volumetric heat generation rate con-
stant. The temperature at the stagnation point at mid-height
(r = R, h = 0�, z = H/2) is plotted in Fig. 8 as a function of the aspect
ratio. Fig. 8 also shows the temperature at this point for an infinite
cylinder with the same volumetric heat generation rate and ther-
mal properties. Fig. 8 shows that as the aspect ratio increases,
the temperature predicted by the finite model approaches that of
the infinite cylinder, since the finite cylinder approaches the limit
of an infinite cylinder as the aspect ratio increases.

4. Conclusions

This paper addresses the classical problem of heat transfer
between a solid and the cross flow of a cooling fluid. This paper pre-
sents an analytical technique to account for spatial variation of h on
the cylinder surface predict the temperature field inside the cylin-
der, particularly if the cylinder has anisotropic thermal properties,
as is the case in cylindrical Li-ion cells. The results presented in this
paper contribute to the fundamental theoretical understanding of
an important heat transfer problem. In addition, the results may
also help in understanding heat transfer in energy conversion
devices based on Li-ion cells that generate significant heat, and
are known to have significant anisotropy in thermal conduction.
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