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Theoretical understanding of phase change heat transfer prob-
lems is of much interest for multiple engineering applications.
Exact solutions for phase change heat transfer problems are often
not available, and approximate analytical methods are needed to
be used. This paper presents a solution for a one-dimensional
(1D) phase change problem with time-dependent heat flux bound-
ary condition using the perturbation method. Two different
expressions for propagation of the phase change front are
derived. For the special case of constant heat flux, the present
solution is shown to offer key advantages over past papers. Specif-
ically, the present solution results in greater accuracy and does
not diverge at large times unlike past results. The theoretical
result is used for understanding the nature of phase change prop-
agation for linear and periodic heat flux boundary conditions. In
addition to improving the theoretical understanding of phase
change heat transfer problems, these results may contribute
toward design of phase change based thermal management for a
variety of engineering applications, such as cooling of Li-ion
batteries. [DOI: 10.1115/1.4041956]
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1 Introduction

A fundamental understanding of heat transfer processes during
phase change is critical for optimizing multiple engineering appli-
cations where melting and solidification occurs, such as metal
casting, thermal management, process manufacturing, etc. [1,2].
Heat transfer in an engineering system involving phase change
requires the modeling of heat absorption or release at the phase
change front, the location of which usually changes with time [3].
In general, such problems are nonlinear in nature, although engi-
neering approximations are often made in order to linearize and
solve these problems [1–4]. The Stefan number, defined as
Ste ¼ Cp Tref � Tmð Þ=L, which represents the ratio of sensible
heat to latent heat, is a key nondimensional parameter in such
problems. The simplest phase change problem involves a
one-dimensional (1D), semi-infinite body, initially at the melt-
ing temperature, Tm, being heated up or cooled down by a con-
stant temperature, T0 imposed at its end. This problem, often
referred to as the Stefan problem has a standard solution, which

shows that the location of the phase change front, Y(s) is propor-
tional to

ffiffiffiffiffi
as
p

where a is the thermal diffusivity [5]. Several var-
iants of this problem have been addressed in past work,
including a heat flux boundary condition [6–11], convective
flow within the melted liquid [12,13], time-dependent tempera-
ture boundary condition [14–16], convective boundary condi-
tion [8], phase change over a temperature range [17], etc. Only
the simplest of these phase change problems admits an exact
solution—in most other cases, one must resort to approximate
analytical methods that often result in series solutions.

A number of approximate solution methods are available for
solving phase change problems [2,18]. For example, the perturba-
tion method has been used to solve the problem with a time-
dependent boundary condition [14,15] as well as a problem with a
constant heat flux boundary condition [8]. This method involves
expressing the temperature distribution as a series solution involv-
ing powers of the Stefan number, and solving for each term indi-
vidually. Solving for only the first few terms of the series provides
a reasonably accurate solution, particularly for small values of Ste.
Integral methods apply the heat balance integral to phase change
problems, similar to the momentum integral in boundary layer
theory [19] and have been used for solving phase change problems
with time-dependent temperature boundary conditions [3,19].
Quasi-stationary and quasi-steady methods have also been used
[3]. These methods are particularly applicable if the solid–liquid
interface location moves slowly and the transient term in the
energy equation can be neglected. While much of the work in this
direction addresses cases with temperature boundary condition,
relatively lesser work exists on analysis of heat flux boundary con-
dition. This problem has been solved for the specific cases of con-
stant heat flux using the integral method [6] and by approximating
the form of the temperature distribution [7]. A series solution has
been derived for the specific case of a sinusoidal boundary condi-
tion [8]. Solution for the problem with time-dependent heat flux
has been derived using a series solution [11] as well as expansion
of the temperature distribution as a function of the error integral
family [9]. A few highly mathematical treatments of such prob-
lems also exist, including proofs for existence and uniqueness of
solutions for nonlinear Stefan problems [20,21], although these
results are difficult to apply for engineering problems.

This paper presents a theoretical analysis of the problem of
one-dimensional phase change involving a time-dependent heat
flux boundary condition using a perturbation method. Time-
dependent heat flux may be encountered when, for example, a
heat-generating body such as a Li-ion cell undergoing high rate
discharge is being cooled by a phase change material. In this case,
heat flux entering the phase change material may change with
time due to time-dependent heat generation and transient thermal
conduction within the Li-ion cell [22]. In this work, this problem
is solved by expanding the temperature distribution in a power
series involving the Stefan number and solving for the first three
terms of the power series. Comparison of the theoretical results
with past papers is presented. For a specific case of constant heat
flux, results from this work are shown to be close to results from
past papers that utilized other methods. The present work is shown
to be able to accurately predict the time evolution of the phase
change front at large times, while several past models are found to
diverge. Results are found to be in good agreement with finite ele-
ment simulation results, while providing significant advantage in
terms of computational time. The analytical method is used for
analyzing the dependence of the solution on key thermal parame-
ters. These results contribute towards an improved theoretical
understanding of a heat transfer problem that is commonly
encountered in multiple engineering applications.

2 Mathematical Modeling

Consider a one-dimensional, semi-infinite body initially at its
phase change temperature Tm. Figure 1 shows this schematically
for the specific case of solid-to-liquid phase change, although the
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reverse process of liquid-to-solid phase change can also be ana-
lyzed using the results derived in this section. Heat flux at the
X¼ 0 end is a known function of time, q(s). Heat enters the body
with time, resulting in phase change and propagation of the phase
change front with time. A key quantity of interest in such a problem
is the location of the solid–liquid interface as a function of time,
Y(s). In addition, temperature distribution within the newly formed
phase, T(X,s) is also of interest. Convection in the liquid phase is
neglected. Following the nondimensionalization of variables as
summarized in the Nomenclature section, the temperature field
must satisfy the following governing energy conservation equation:

@2h
@x2
¼ @h
@t

(1)

where x> 0 and t> 0.
h(x,t) is subject to the following boundary condition:

� @h
@x
¼ g tð Þ at x ¼ 0 (2)

where g(t) is the nondimensional temperature gradient at the
boundary.

Temperature continuity and energy conservation at the
solid–liquid interface requires that

h ¼ 0 at x ¼ yðtÞ (3)

and

�Ste
@h
@x

� �
x¼y tð Þ

¼ dy

dt
at x ¼ y tð Þ (4)

In order to determine the unknown phase change front y(t) and the
temperature distribution following phase change h(x,t), Eq. (1) is
transformed in order to replace t with y as an independent vari-
able. By doing so, Eq. (1) results in

@2h
@x2
¼ �Ste

@h
@y

@h
@x

� �
x¼y

(5)

The boundary condition at x¼ 0 is rewritten in terms of y as
follows:

� @h
@x
¼ g tð Þ ¼ G yð Þ at x ¼ 0 (6)

In order to solve this problem for time-varying g(t), the tempera-
ture distribution h(x,y) is written in the form of a series involving
the first three powers of Ste, similar to past papers that utilized
this approach for a time-dependent temperature boundary condi-
tion [14,15]

hðx; yÞ ¼ h0ðx; yÞ þ Ste� h1ðx; yÞ þ Ste2 � h2ðx; yÞ (7)

By substituting Eq. (7) into Eq. (5), governing equations and asso-
ciated boundary conditions for the temperature components
h0(x,y), h1(x,y), and h2(x,y) can be derived. These ordinary differ-
ential equations can be solved to result in the following solution:

h0ðx; yÞ ¼ �GðyÞðx� yÞ (8)

h1 x;yð Þ¼G yð Þ �G0 yð Þ
x3�y3

6

� �
þ G yð ÞþG0 yð Þy
� � x2� y2

2

� �" #

(9)

h2 x; yð Þ ¼
A

20
x5 � y5
� �

þ B

12
x4 � y4
� �

þ C

6
x3 � y3
� �

þ D

2
x2 � y2
� �

(10)

where

A ¼ � 1

6
G yð Þ G0

2
yð Þ þ G00 yð ÞG yð Þ

	 

(11)

B ¼ 1

2
G yð Þ y G0

2
yð Þ þ G00 yð ÞG yð Þ

	 

þ 3G yð ÞG0 yð Þ

	 

(12)

C ¼ G yð ÞG0 yð Þ y yG0 yð Þ þ G yð Þ
� �

� G0 yð Þ
y2

2

� �
(13)

D ¼
�G yð Þ yG0 yð Þ þ G yð Þ

� �
y yG0 yð Þ þ G yð Þ
� �

� G0 yð Þ
y2

2

� �

þG yð Þ �2G yð ÞG0 yð Þy2 � yG2 yð Þ �
1

3
y3 G0

2
yð Þ þ G00 yð ÞG yð Þ

	 
� �
2
6664

3
7775 (14)

Note that the forcing function G(y) is assumed to be appropriately

differentiable.

The location of the phase change front, y(t) in Eqs. (8)–(14) is
unknown. In order to solve for y(t), energy balance at the interface
is utilized. Substituting Eqs. (7)–(14) in Eq. (4) results in

dy

dt
¼�Ste

�G yð ÞþSte�G yð Þ yG0 yð ÞþG yð Þ
� �

y�G0 yð Þ
y2

2

� �

þSte2 A

4
y4þB

3
y3þC

2
y2þDy

� �
2
6664

3
7775

(15)

Fig. 1 Schematic of the one-dimensional phase change prob-
lem with time-dependent heat flux. The schematic shows solid-
to-liquid phase change, but the opposite process can also be
analyzed in the same framework.
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Finally, as is the case in perturbation analysis [14,15], derivatives
of G are neglected, and the following nonlinear ordinary differen-
tial equation is obtained for y(t):

y0 þ Ste2G2ðyÞy� 2Ste3G3ðyÞy2 ¼ ðSteÞGðyÞ (16)

For cases with relatively simple expression for the heat flux, this
equation can be directly solved. In general, a solution for y(t) can
be derived by neglecting the Ste3 term, which may be reasonable
since Ste� 1. In such a case, the general solution for y(t) is found
to be

yðtÞ ¼
ð

Ste� gðt�Þ exp

ð
Ste2g2ðt��Þdt��

� �
dt� þ C

� �

� exp �
ð

Ste2g2ðt�Þdt�
� �� �

(17)

where C is a constant which is determined using the initial condi-
tion of y(0)¼ 0. The temperature distribution h(x,y) can be deter-
mined by substituting y(t) from Eq. (17) into Eqs. (7)–(14).

This completes the derivation of solution of the problem with
time-dependent heat flux using perturbation method. Due to
approximations made during the derivation, this solution is valid
only for small values of Ste, which is usually appropriate for mate-
rials of engineering interest due to the relatively large value of the
enthalpy of phase change compared to specific heat. Further, note
that since the previous derivation involves derivatives of the forc-
ing function G(y), the approach utilized here may not be appropri-
ate in the case of a heat flux profile that is not appropriately
differentiable.

Comparison of these results with past work, particularly for the
specific case of constant heat flux is analyzed next.

3 Results and Discussion

In order to compare with results from past work [9,10,19], it is
instructive to examine the solution presented here when the heat
flux is constant, for which, solutions based on other methods are
available. There are two distinct approaches for simplifying the
general treatment in Sec. 2 and deriving the solution for the phase
change front when g(t)¼ g0.

First, for constant heat flux, Eq. (16) can be shown to have an
exact solution, given by

y tð Þ ¼

ffiffiffi
7
p

tan
1

2

ffiffiffi
7
p

c2t� tan�1 1ffiffiffi
7
p
� �� �

þ 1

4c
(18)

where

c ¼ Ste� g0 (19)

Alternately, the integral in Eq. (17) can be computed for the case
of constant heat flux to result in the following solution:

y tð Þ ¼ ct� 1

2
c3t2 þ 1

6
c5t3 � 1

24
c7t4 þ 1

120
c9t5 � 1

720
c11t6…

(20)

While Eq. (18) represents the general solution for the constant
heat flux case, Eq. (20) is based on neglecting higher order terms
in Eq. (16). Note that the solution in Eq. (18) is not valid for large
t where the tan function may diverge, which is the case for the
past work as well. On the other hand, Eq. (20) does not have such
a restriction and converges uniformly even at large times.

Equation (20) offers a good physical insight into the solution.
The first term in Eq. (20) represents the rate of heat absorption at
the phase change interface, and further terms represent the effect
of sensible heat in the newly formed phase. In many engineering
cases, where latent heat dominates over sensible heat, heat absorp-
tion in the newly formed phase can be neglected, and only the first
term of this equation may be sufficient.

It is instructive to compare the solutions derived here, Eqs. (18)
and (20) with results from past papers that have presented solu-
tions for the constant heat flux case. Specifically, the solution for
the phase change front has been derived by Tao [9], Goodman
[19], and Carslaw and Jaegar [10] as follows:

y tð Þ ¼ ct� 1

2
c3t2 þ 5

6
c5t3 � 17

18
c7t4 þ 827

120
c9t5… (21)

y tð Þ ¼ ct� 1

2
c3t2 þ 5

6
c5t3 � 17

18
c7t4 þ 795

120
c9t5… (22)

y tð Þ ¼ ct� 1

2
c3t2 þ 5

6
c5t3… (23)

While Eq. (21) was derived by Tao by expressing temperature in
terms of polynomial functions of error integrals [9], Eq. (22) was
derived by Goodman using the heat balance integral method [19].
Eq. (23) was derived by Carslaw and Jaegar by writing y(t) as a
power series [10].

It can be seen that the expression for the phase change front
derived in this work for the specific case of constant heat flux by
neglecting the Ste3 term, Eq. (20) is close to results from several
papers that solved the same problem using other techniques. The
first two terms are identical, with a departure occurring in the third
term. Figure 2(a) plots y(t) as a function of t derived in this work
(Eqs. (18) and (20)) and compares with past papers [9,10,19] as
well as numerical computation based on finite element method
(FEM) for a nondimensional, constant g0 ¼ 5000. In this case, the
enthalpy method is used in the finite element simulations for solv-
ing for computing temperature distribution in the phase change
material, which is defined as a binary mixture of liquid and solid.

Fig. 2 Comparison of the present analytical result with past results for the special case
of constant heat flux: (a) plot of nondimensional phase change front location, y(t) as a
function of nondimensional time, t for the present work and three past results [9,10,19].
Results from FEM simulation are also shown for comparison. (b) Comparison of present
model with Tao [9] for a larger time period for two different values of a.
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The FEM simulation is validated separately against the analytical
solution of the well-known Stefan problem with constant tempera-
ture boundary condition. Mesh independence is also ensured.
Very good agreement with past papers is seen up to a nondimen-
sional time of around 2.5� 10�4. As time increases, solutions
from past studies lose accuracy beyond around t¼ 2.5� 10�4,
while the present result continues to agree well with finite element
simulations. Figure 2(b) investigates this further by plotting the
phase change front Y(s) over a much larger time range, up to
s¼ 4000 s for different values of thermal diffusivity. This plot is
shown in dimensional form since plotting in nondimensional form
would not be appropriate as thermal diffusivity influences both t
and y(t). It is clearly seen that previous models diverge and fail to
accurately predict Y(s) at large times, beyond around s¼ 1500 s
for a¼ 1.10� 10�7 m2/s. While the convergence of past models
can be improved by including many more terms [3], derivation of
further terms for these models is very cumbersome and impracti-
cal [3,9]. While Eq. (18) may also diverge at large times due to
the presence of the tan function, Eq. (20) in the present work
clearly converges even at large times, even with a few number of
terms. Computation of terms further than those shown in Eq. (20)
is also simpler than past work.

It has been shown [3] that the result from Tao [9], shown in Eq.
(21), is valid only when the nondimensional parameter b ¼
ðq2=q2aL2Þs is less than 0.4. This explains why the solution by
Tao [9], Eq. (21), diverges at large times. This also explains diver-
gence at even smaller times when computed for larger value of a,
as shown in Fig. 2(b). On the other hand, the present solution, Eq.
(20), does not suffer from such divergence problems and contin-
ues to predict the interface location even at large times. This rep-
resents a key advantage of the present technique compared to past
work.

Note that in Fig. (2), the value of the reference length for nondi-
mensionalization is taken to be b¼ 1 m. Further, the value of Ste-
fan number is 0.008 based on Tref� Tm¼1 K and thermal
properties of commercial paraffin wax.

For further validation of the theoretical results, the phase
change front y(t) is plotted in Fig. 3(a) as a function of time based
on Eq. (17) assuming linear g tð Þ ¼ Aþ Bt. While the value of A
is held constant at 5000, a number of cases with different values
of B are considered in order to investigate the effect of the slope
of g(t). The values of b and Ste are the same as in Fig. 2. Results
from FEM computations are also plotted in Fig. 3(a) for compari-
son. Further, Fig. 3(b) plots the temperature distribution in the
newly formed phase at different times for a specific input heat
flux, with A¼ 5000 and B¼�4.56� 107. Figure 3(a) shows very
good agreement between the analytical solution and FEM-based
computations for each heat flux considered. As the value of B
increases, the nature of y(t) curves changes from concave to con-
vex, which is along expected lines, since an increase in the value
of B results in more heat flux into the medium, and therefore, a
greater rate of propagation of the phase change front. There is also
very good agreement in the temperature distribution at multiple
times, as shown in Fig. 3(b). Note that the analytical solution is
significantly faster than finite element simulation since the solu-
tion is obtained as a closed form equation and does not require
time-intensive discretization and solution of a large system of
equations.

Periodic heat flux boundary conditions are of interest in a vari-
ety of applications. Figure 4(a) presents computed profiles of the
solid–liquid interface as a function of time for periodic,
g tð Þ ¼ Að1þ CosðetÞÞ, where e ¼ xb2=a is the nondimensional
frequency. The values of b and Ste are the same as in Fig. 2, and
A¼ 5000. Figure 4(a) shows that the theoretical model presented

Fig. 3 Validation of the present work with finite element simulation for linear, time-
varying heat flux: (a) phase change front y(t) as a function of t for linear
g(t) 5 A1Bt . The value of A is taken to be 5000 and values of B are shown in the
legend. (b) Temperature distribution as a function of x for the specific case of
B 5 4.56 3 107. Both plots show very good agreement between the analytical model
and finite element simulation.

Fig. 4 (a) Plot of phase change front y(t) as a function of time for periodic
g(t) 5 A ð11cos(et)) for multiple values of the nondimensional frequency, e. (b) Plot of the
variation in phase change front propagation for different values of thermal diffusivity for
constant heat flux case.
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in this work is able to capture the time evolution of the phase
change front for different frequencies. The number of oscillations
within the time period considered decreases as frequency
decreases, as expected.

It is of interest to examine the dependence of the solution on
the value of thermal diffusivity, which is a key thermophysical
property that governing phase change propagation. Figure 4(b)
plots phase change front as a function of time for multiple
values of thermal diffusivity a. Figure 4(b) considers up to
650% variation in thermal diffusivity from the baseline value
of 1.1� 10�7 m2/s, which is the typical value of thermal diffu-
sivity of paraffin wax used for multiple phase change heat trans-
fer applications. This plot indicates that an increase in thermal
diffusivity results in a slight increase in y(t). This happens
because of more rapid heat transfer through the newly formed
phase at a higher value of thermal diffusivity, and vice versa.
Unlike the case of constant temperature boundary condition, where
the phase change front location is known to be proportional to

ffiffiffiffiffi
as
p

[3,4], a similar explicit relationship is not available for heat flux
boundary conditions.

Time-varying heat flux in a phase change problem can be
encountered in applications where a phase change material cools
down a heat-generating body in which the heat generation itself is
a function of time. For example, phase change cooling of Li-ion
cells has been of much recent research attention [22,23]. Since
heat generation in Li-ion cells changes with time as the electrical
load changes [24]; therefore, heat flux into the phase change mate-
rial is also likely to change with time. For such applications, the
present model offers a theoretical framework for thermal analysis
and optimization. While the perturbation method used here does
not apply for very short times, such information is often not
important for engineering analysis.

Extension of the treatment discussed here to problems in cylin-
drical and spherical coordinate systems, which may also have
practical applications, is reasonably straightforward, following the
same approach as Eqs. (7)–(17) to account for the time-dependent
heat flux.

4 Conclusions

This work presents a solution for the phase change heat transfer
problem with time-dependent heat flux boundary condition using
the perturbation method. The solution is shown to converge at
large times, where solutions from past papers are known to
diverge. This represents a significant improvement in our theoreti-
cal understanding of phase change heat transfer. The theoretical
results presented here may be relevant to multiple engineering
applications, such as cooling of Li-ion cells. Results derived here
are used to understand the effect of linear and periodic heat flux
boundary conditions, which may arise in such applications. These
results can be easily extended to cylindrical and spherical coordi-
nate systems.
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Nomenclature

b ¼ reference length scale (m)
Cp ¼ specific heat capacity (J/kg K)

g ¼ nondimensional boundary condition, g¼ qb/k(Tref� Tm)
k ¼ thermal conductivity (W/mK)
L ¼ latent heat of fusion (J/kg)
q ¼ heat flux (W/m2)

Ste ¼ Stefan number, Ste¼Cp(Tref� Tm)/L
t ¼ nondimensional time, t¼ as/b2

T ¼ temperature (K)
Tm ¼ phase change temperature (K)

Tref ¼ reference temperature (K)
x ¼ nondimensional lengthscale, x¼X/b
X ¼ lengthscale (m)
y ¼ nondimensional location of phase change front, y¼ Y/b
Y ¼ location of phase change front (m)
a ¼ thermal diffusivity (m2/s)
h ¼ nondimensional temperature, h¼ (T� Tm)/(Tref� Tm)
e ¼ nondimensional frequency, e¼xb2/a
s ¼ time (s)
x ¼ frequency (1/s)
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