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List of symbols determine finer details of electrochemical properties and cell character-
istics. Alternatively, electrochemical models are more detailed, physics-
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A cigenvalues Mathematical models summarized above often result in a set of

coupled equations that may be non-linear. As a result, exact
solutions for these mathematical models exist only for a few limited
cases. For example, diffusion equation for a solid solution cathodes
initially at zero concentration has been solved using Laplace
transformation approach.>' Separation of Variables (SOV) technique
has been used to solve a similar model for discharging of a Li-ion
cell for different limiting cases.”? Analytical solution for 1-D
transient diffusion in a thin film, spherical electrode particle and
composite electrode under galvanostatic discharge boundary condi-
tion and zero initial concentration has been developed using an
extended separation of variables method.>** Laplace transformation
technique has been used to solve material balance equation in both
solid and solution phases with non-zero initial concentration.”® This
model considers the migration term in solution phase diffusion with
a constant transference number.”> Integral transform method has
been used to solve material balance equation for different cathode
geometries under galvanostatic discharge boundary conditions.”® A
*Electrochemical Society Student Member, Finite Integral Transform (EIT) methoc} hgs been usec} to ﬁnd. an
#*Electrochemical Society Member. exact solution for the diffusion of Li/Li+ into a spherical particle
“E-mail: jaina@uta.edu for arbitrary initial and boundary conditions.”” The method of

Li-ion cells are the preferred electrochemical energy storage and
conversion device in a wide variety of applications due to superior
electrochemical characteristics compard to other secondary cells.'™
Higher power and energy density, longer cycle life and lower self-
discharge rate are among the key advantages of Li-ion cells over
competing technologies.*”’

A wide variety of mathematical models have been developed to
predict and optimize electrochemical transport in a Li-ion cell under
different operating conditions.®*® Mathematical models for Li-ion cells
can broadly be divided into two categories—empirical and electro-
chemical models.'”"" Empirical models employ data analysis techni-
ques to predict the future state of a Li-ion cell based on past
experimental data.'>'*> Compared to electrochemical models, empirical
models are relatively faster and simpler, but cannot be used to
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Pseudo-Steady-State (PSS) is used to ensure convergence in this
work.”” Green’s function approach has been used to solve the
material balance equation in solution phase of a thin film electrode
under a galvanostatic discharge condition.”®

In addition to the limited cases where an exact solution is
possible, approximate analytical solutions have also been developed
in order to reduce the complexity and required computational time.
An example is the Parabolic Profile approximation (PP) method, in
which the concentration profile in a spherical electrode })article is
assumed to be a second, fourth, or sixth order polynomial.**~*° Other
approximate analytical methods include residue grouping technique
which is based on the transcendental transfer function approach,’’
State Variable Model (SVM), which is a combination of analytical
transfer functions and a numerical transfer matrix,'gl’32 Electrode
Averaged Model (EAM),** Proper Orthogonal Decomposition
(POD),** Extended Single Particle Model (ESPM),*>%¢ etc.

While most of the past analytical models focus on constant
galvanostatic discharge conditions, there is a relative lack of work on
time-dependent flux boundary conditions. For example, the diffusion
problem in composite electrode has been solved for a constant boundary
condition.? However, in some cases, time-dependent boundary condi-
tions are also important since the applied current density may be time-
dependent. While several past studies presented approximate solutions
to such problems,'>'%"® there is a relative lack of analytical solutions
for this class of problems. The few analytical solutions that have been
presented for such problems are for the case of single-layer electrodes,
and not composite electrodes.”” For example, exact solutions for
diffusion in a spherical single electrode particle has been presented
using the finite integral transform method for time-dependent boundary
conditions.”” Green’s function is a powerful tool for solving such
problems. While the use of Green’s functions in heat transfer problems
is quite common,‘w"m only limited work exists on the use of this tool for
species diffusion problems in electrochemical systems.”®

This paper presents an exact analytical solution for Li-ion diffusion
in thin film and spherical electrodes, as well as composite two-layer
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electrodes with arbitrary initial conditions and time-dependent flux
boundary condition using Green’s function approach. The exact
solution presented here is validated against both numerical simulations
and previous studies. Concentration distribution for cases representa-
tive of realistic discharge conditions is predicted using the model. The
mathematical tools developed in this work help understand species
transport in a Li-ion cell, thereby contributing towards improved
performance of electrochemical energy storage devices and systems.

Mathematical Modeling

Green’s function solution.—Greens’ function is a powerful
mathematical tool which can be used to solve linear partial
differential equations with multiple non-homogeneities in the
governing equation, boundary conditions and initial condition.>**
While the method of separation of variables is not applicable to
problems with time-dependent non-homogeneities, Green’s function
approach can be used to solve a wide variety of such problems.
Green’s function approach has been used for a wide variety of
thermal conduction problems.**** Since thermal and species diffu-
sion are governed by similar conservation equations, Green’s
function approach can also be used for solving species diffusion
problems, such as those that appear in Li-ion cell electrodes.

The general form of the solution to the 1-D diffusion problem
presented here in non-dimensional form using Green’s function
approach is given by*":

clx, 1) = f G (x, ', ')y—oF (') x'Pdx’
n /f G(x, ', g (x', t')x"Pdx'dr’

+ iv: {f[x’PG(x, ¥, )]er £, (t’)dz’} "

i=1

(b)

Figure 1. Schematic of the four electrode geometries considered in this work: (a) Thin film electrode; (b) Spherical electrode particle; (c) Composite slab

electrode; (d) Composite spherical electrode.
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Where x'? is the Sturm-Liouville weight function, and p = 0, 1 and
2 for slabs, cylinders and spheres respectively. Here, F(x) is the
initial condition and g is the generation or consumption term.
The summation is taken over all boundaries of the problem. G is
the Green’s function that must be determined.

The three terms on the right-hand side of Eq. 1 represent
contributions of the initial concentration, generation or consumption,
and boundary conditions respectively. In order to present the
solution given by Eq. 1 for a specific problem, the Green’s function,
G (x, tlx’, ') needs to be determined first. This is usually done by
solving the corresponding homogeneous version of the problem. For
any homogeneous problem, the second and third term in Eq. 1 will
be zero. Therefore, a comparison between the solution to the
homogeneous problem and the first term in Eq. 1 provides the
Green’s function evaluated at t' = 0, G(x, t|x’, t')y—o. The full
Green’s function, G(x, f|x’, t') is then determined by replacing ¢
with (t — /) in G (x, t|x', t")y—o.

Analytical solutions for transient diffusion under a time-depen-
dent flux condition using Green’s function approach are presented
next. A number of progressively complicated cases are considered—
a thin film electrode, a spherical particle electrode and composite
electrodes, both Cartesian and spherical. Figures la-1d show
schematics of the thin film, spherical particle, two layer and
spherical composite electrodes respectively. Specific details for
these cases are discussed in sub-sections below.

Thin film electrode.—Figure la shows a schematic of a one-
dimensional thin film electrode initially at a non-uniform concentra-
tion of F(x) and operating under a time-dependent flux boundary
condition. Referring to the non-dimensionalization scheme presented
in the Nomenclature section, the governing equation for concentra-
tion distribution can be written in non-dimensional form as follows:

0% _ dc

z°s _ 2t 2
Ox? ot [2]

Associated boundary conditions at the two ends are

(&) =0 atx=0 [3]
Ox x=0

Oc

(a)/{:1 = 5(1) atx = 1 [4]

Equation 3 results from symmetry at x = 0 and Eq. 4 represents
the applied, time-dependent flux boundary condition at x = 1, where
4(t) is the dimensionless current density.where ¢ is the dimension-
less, time-dependent current density defined in the nomenclature
section.

The initial condition associated with this problems is:

c=F(x) att=0 [5]

As outlined in the previous sub-section, the first step to construct
the Green’s function associated with this problem is to solve the
corresponding homogeneous problem. The solution to the homo-
geneous problem can be determined using the Separation of
Variables technique® as follows:

c(x, 1) = j: F(x)dx'

+ f 'S 12 c0s ) cos ) exp(— A0 F D! [6]
0 n=1

where )\, = nm are the eigenvalues for n = 1, 2, 3,.... A comparison
between Eqgs. 1 and 6 indicates that the expression for Green’s
function calculated for = 0 can be written as follows:

G, tlx', ty—g =1

+ 2§j €08 (\,x) cos (A, x') exp(—\21) (7]

n=1

Therefore, the general form of the Green’s function is obtained by
replacing ¢ with ¢t — ¢’ in Eq. 7:

Gx, tx', 1)y =1

+ 23 cos (A, x) cos (A, x') exp(— A2 (t — 1)) [8]

n=1

Now that the Green’s function is determined, a solution for the
problem defined in Egs. 2-5 can be constructed. The solution can be
written as:

cx,t) =c(x, 1) + c2(x, t) + c3(x, 1) 9]

where
1
o, 1) = f F(x)dx'
x'=0

+ f 1 ST 12 cos (A, x) cos (A, x) exp(—AZO]F (x))dx’  [10]
x'=0 n=1
cx, 1) =0 [11]

t 00
e3(x, 1) = ft _, B0l + 237 cos (v cos (M)
= n=1

x ft exp(—A2(r — )6 (") dr! [12]
t'=0

Note that the solution accounts for the time-dependent flux
boundary condition in the expression for cs(x, t), given by Eq. 12.
Further, since there is no non-homogeneity in Eq. 2, the second term
of the Green’s function solution is zero.

As a special case, if the initial concentration is constant, C,
the second term in Eq. 10 becomes zero, leading to further
simplification.

Spherical electrode particlee—Figure 1b shows a schematic of a
one-dimensional spherical particle initially at a given concentration
distribution F(r) and subject to time-dependent flux at its surface.
The non-dimensional governing equation for concentration distribu-
tion and boundary conditions can be written in non-dimensional
form as follows:

) __Oc [13]

1 8(280
r - 9
ot

Foror

where the initial and boundary conditions are

c=F@r) att=0 [14]

¢ = finite asr — 0 [15]

(&) =6@) atr=1 [16]
or r=1

Similar to the thin film electrode problem, the homogeneous
problem must be solved first. In order to do so, a new variable U is
defined as U(r, t) = rc(r, t), which facilitates a solution of the
homogeneous problem using separation of variables method. The
concentration profile can be derived to be:
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1
oo =3 [ rF@ar
0

1 o
+f0 Z[Nlrr, sin (Awr) sin () exp(— A20)F/2F (') i’
n

(17]

2
where N, is the norm defined as N, = ?7",
202+ 1)

)\, are positive roots of the transcendental equation A\, cot A, = 1.

and the eigenvalues

x'=x;j

rectangular geometry and a composite spherical electrode particle
will be presented.

Green’s function approach can be used to solve multilayer
problems. While the general procedure is similar to single-
layer problems discussed in previous sections, the derivation of
the solution is somewhat more complicated. Green’s function
solution for an M-layer problem involving non-homogeneities
in the governing equation and boundary conditions can be
written as>’:

. - M Ajj+lG” ;o Py ! "f/’-lG“ ;o 1 xrdx dt! ! G ’og . Nt 24
e, H=> Gyt yp—o - F(X)x'Pdx’ + ol 5 (e, 1lx, 1) g (), 1x'Pdx'dt’ + , O[x 5 (6 1, )=y - f; () dt [24]
= x'=xj =

j=1

Thus, comparing Eq. 17 with Eq. 1 and taking p = 2 for the case
of a sphere, the Green’s function calculated at ' = 0 can be
determined as follows:

G, t|r', ty—o =3

+Zl

!
a1 Nurr

sin (A, ) sin (A, ') exp(— A1) (18]

The complete form of Green’s function can be obtained by
obtained by replacing ¢ with (+ — ¢) in Eq. 18.

G, fr','y=3

=1
+2
n=1

o sin (A, ) sin (A, ) exp(—= A2 (t — 1)) [19]
_ nrr

Thus, based on Eq. 1, the concentration profile for the original
problem can be written as:

cr,t) =ci(r,t) + co(r, t) + c3(r, 1) [20]

1
c(r,t) =3 fr,o r'2F (r')dr'

1 > 1
. . / 2 12 ! !
+f0 Z[N = sin (A, ) sin (A, ') exp( )\nt)]r F(r')ydr

n

(21]

o, 1) =0 [22]

t 00
cs(r, t) = 3fl_0 5(tdt' + lz €L sin (\, 7) sin (\,,)

n=1""n

X f " exp(=A2( — NS (23]
t'=0

Similar to the previous problem, the third component of the
solution contains various integrals of the time-dependent flux
boundary condition. Note that c,(x, ) becomes zero since there is
no non-homogeneity in Eq. 13.

Composite electrodes.—This section presents solutions for
composite electrodes under time-dependent flux boundary condition.
After a brief introduction on Green’s function for multi-layer
problems, the solutions for a two-layer composite electrode in a

where i = 1, 2,..., M and p = 0, 1 and 2 for slabs, cylinders and
spheres, respectively
The composite Green’s function is defined as®®:

> 1
Gy(x, th', )y—g = Y —T (O, (), &) [25]
n=1""n
Gy(x, tlx', 1) = Nir(r — )4, (), () [26]
n=1""n

where x'7 is the Sturm-Liouville weight function. N, is the norm,
given by

M.
No=3 [ et ahay [27]
JE1UNTY

where I'(z) and W(x) can be found by solving the corresponding
homogeneous problem, as discussed next.

Two-layer composite electrode.—Figure 1c shows a two-layer
composite electrode with an initial concentration distribution given
by Fi(x) and F,(x) in the two layers, respectively. The two layers
have diffusion coefficient of D, and D, respectively. The goal is to
find the concentration profile in the two regions. The governing
equation, initial and boundary conditions can be written in non-
dimensional form as follows:

82C1 186‘1

—=—— 0<x<lI 28
Ox? a Ot * [28]
2

0%, _ 9c I<x<l1 [29]
Ox? ot

Subject to the following boundary conditions

(%) -0 atx=0 (30]
Ox x=0
g =c¢c atx = [31]
a(%) - (%) atx = (32]
Ox x=I Ox x=I
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(%) =06() atx=1 [33]
x=1

ox

Equation 30 arises from symmetry at x = 0. Equations 31 and 32
are interfacial conditions representing species continuity and con-
servation of flux, respectively. Equation 33 is the applied time-
dependent boundary condition.

The initial condition is

c=Fkx) att=0 [34]

o =FKx) att=0 [35]
where F; and F, are the non-dimensional initial conditions.

Note the presence of additional non-dimensional parameters in
this problem due to the presence of two layers that, in general, may
have different thicknesses and diffusion coefficients.

This problem is considerably more complicated than the ones
discussed in previous two sub-sections. However, the same concept
of developing a Green’s function solution can be applied, starting
with derivation of a solution of the corresponding homogeneous
problem. Similar to the separation of variables method for single-
layer problems, the solution can be written as

ci(x, 1) = h,)I@) [36]
Where i = 1, 2.

Substituting Eq. 36 back into the governing equations results in
two separate differential equations which can be solved for time-
dependent and space-dependent components of Eq. 36 as follows:

L) = exp (= A1) [37]

A An
Y1, (x) = Ay, sin (Fj) + By, cos( \Ex) [38]
%n(x) = Ay, Sin()‘nx) + By, cos ()\nx) [39]

0 x'=l
awn=% [
n—o Y x'=0

1 2 )\n
—exp(—\;t)cos
N Xp(— Ay 1) (

n

Ja

x) ()\
cos
Ja

Note that the non-dimensional parameter « is absorbed in the
solution of one of the layers. Applying boundary conditions results
in a set of equations for the unknown coefficients A;, and B;, written
in matrix form as follows:

1 0 0 0
0 cos jﬁ —sin A\,I —cos A, 2"’ 0
i ! Aln B 8 [40]
0 Ja sin =2— cos )\, —sin \,l 2n
\ﬁ \/a B2n 0
0 0 cos A, —sin ),

In order to determine the eigenvalues, \,, Eq. 40 may be required
to result in a nontrivial solution. This implies that the determinant of
the matrix in Eq. 40 must be equal to zero, thereby resulting in a
transcendental equation for the eigenvalues as follows:

)\l)zo
AN

Without loss of generality, any one of the non-vanishing coefficients
in Eq. 44 may be set to unity. In this case, B;, is chosen to be equal
to 1. Consequently, the coefficients, A;, and B;,, are determined to be

tan(\,l — \,) — V& tan( [41]

A, =0 [42]
B, =1 [43]
o LAl
Ay, = cos —— sin A\, — /& sin —— cos A\, [ [44]
Ja Ja
Al Al
B,, = cos “2— cos \,l + ~Ja sin “2— sin ),/ 45
2 N Ja N [45]

With these values, all the information is available to construct
Green’s functions based on Eqs. 25 and 26. The concentration profile
in each layer is found to be

!
nX

)Fl(x’)dx’

¥=l 2 AnX : ’ / INF,
+ J;:[ A exp(—A\; 1) cos (ﬁ)(Agn sin (A, x") + By, cos (A, x")F>(x")dx

n

t'=t ]
t
=0 N,

n

o x, 1) = i fX,:] LeXP(—AfJ)
n=0 x'=0 ]v’l

X (A, sin (A, x) + By, cos (A,x)) cos(

x'=1
+J.
x'=l

n

—exp(—A2(t — 1)) cos

X (Ag, sin (A, x") + By, cos (A, x")F> (x")dx’

(A"x )(Azn sin (Ay) + Bay cos (A))6 (1) dt! [46]
e
!
)\'i )Fl (x")dx'
Niexp<—A£t)<Azn Sin (Apx) + Bay c0s (Anx))
4L PN ) sin () + By cos ()
[47]

X (Ag, sin(\,) + B, cos (\,)6(t)dt
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Where A,,, and B,, are shown in Egs. 44 and 45 and N,, is defined in
Eq. 27. Note that the zeroth terms of Eqs. 46 and 47 can be
calculated by finding the limits of these equations as A — 0. For a
special case of zero initial concentration in both layers and constant
flux, the solution can be written as follows:

clx,)=26- t+Zf

t'=t

— exp( An(t — 1))

/\n : N 4!
X cos( N )(Azn sin (\,) + Ba, cos (A\,))6(¢)dt
[48]
O =6-1+ Z f —exp( At — 1))
n=1
X (Agy, sin (A, x) + Bz,, cos (A, x))
X (Agy sin(A,) + By, cos(A,))6 () dt’ [49]

Diffusion in a two-layer spherical composite electrode is
analyzed next.

Spherical composite electrode.—Figure 1d presents a schematic
of a composite spherical electrode. Similar to the previous sub-
section, the initial concentration in the two layers is assumed to be
Fi(r) and F,(r), respectively. A time-varying, inward flux §(¢) is
assumed at the outer surface. In this case, the governing equation,
initial and boundary conditions can be written as follows:

1 0( ,0c 1 Oc
SO = 25 o<x<t 50
rz(?r(r (?r) a Ot * 501
iﬁ(ra—):% l<x<1 [51]
29 or ot
sin 2! 0 —sin A\,
0 1 0

oz(A’;[ cos 2L gin j%l) 0 sin A\, — A,lcos A\l cos A\l + A, lsin A\l Ao
0 MA,cos A\, — sin ),

Subject to the following boundary conditions

a(%) = (%) atr=1 [54]
or r=I or r=I
(%) =68 atr=1 [55]
or r=1
and the initial conditions
=F((r) atr=0 [56]
cp=FK(@r) att=0 [57]

Here, Eq. 53 an 54 represent species continuity and flux conserva-
tion, respectively, at the interface.

Similar to the single spherical particle problem, a new variable
U is defined as Ui(r, t) = rc;(r, t), to facilitate the derivation. After
re-writing the governing equations and boundary conditions based
on the new variable, U, and employing the separation of variables
technique, the solution to the homogeneous problem can be
written as:

ci(x, 1) = ry;(nNL() [58]
L,(1) = exp(— A1) [59]
A\, r A\,
Uy, () = Ap, sm( ﬁ] + B, cos(JEr) [60]
Yy, (r) = Az sin (A, 1) + By, cos A, r [61]

Substituting Eqs. 60 and 61 back into the boundary conditions
results in the following equations in matrix form

—cos A\, ! A
n

0 By, [62]

(=N ool

. BZn
Ay sin A, + cos A,

Similar to the previous section, one of the non-zero coefficients,
A, is set to a value of 1. Therefore, the coefficients, A;, and B;,, are
determined to be

¢ = finite asr — 0 [52]
A, =1 [63]
co=c atr=1 [53] B, =0 [64]
Ay, = ! sin M(cos Al + Xl sin X\, 1) — « cos /\nl(sm Al L’l cos M) [65]
) Ja Ja Ja Ja

By, = ! e sin)\,,l(f Al 2l cos
N

Al a Ja

*) — sin M(sin Ml — Al cos )\,,l)] [66]
Ja
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Figure 2. Validation against past study> for composite two-layer electrodes: Non-dimensional concentration as a function of non-dimensional distance, x and r,
at multiple times for (a) A composite slab electrode, (b) A composite spherical electrode. Both cases are for discharge, with 6 = —1.

Based on the requirement of non-trivial solution of Eq. 62, the
eigenvalues, A, are determined to be given by the roots of the
following transcendental equation

ta D@ — 1 =A%)
~N
nt /\n + CY)\")
2
— n) — —— Anl =0 [67]
Ja Ja

Based on these expressions for the coefficients, the concentration
profile can be determined in both spherical regions from the
following equations:

cx, 1) = i j;iol :N] exp (— /\2t)s1n(§_)

n=0
X s1n( )F rdx'

r'=l 2 At
+ L Eexp( A t)sm(/_)

X (Agy, sin (A, ") + Bo, cos (N, r")) B (r')dr!
+f[, . Wexp( Az(zft/))sm( )

X (Agy sin(A,) + By, cos(A\,))8 () dt’ [68]

exp (— )\2 1)

o, t) = Zf
X (Azn sin (A, r) + By, cos (A\,r))
)Fl(r’)dr

X Sll’l(

+ f, ; Wexp( A2t
X (A, sin (A, r) + By, cos (A, r))
X (Az,, sin(A,, r"y + Ba, cos (N, r"))E(r)dr'

=t

+ oo Lexp(=X2(t — 1)) (As, sin (A7)
+ BZn Ccos ()\n r))(AZn sin ()\n)
+ By, cos (\))6(t))dt! [69]

Note that the zeroth terms of Egs. 68 and 69 can be calculated by
finding the limits of these equations as A — 0. Moreover, in order to
calculate the concentration at r = 0, one must calculate the limit
when » — 0. In a simple case of zero concentration in both layers
and constant flux, the solution can be written as follows:

t'=t
—exp( M- 1))
=0 rN, n

o, 1) =36 - z+Zf

x sin()\"—_r)(Az,, sin(\,) + By, cos(\))8(t")dr'
Ja

[70]
o, 1)=36-1t+ Z fltit 7exp( )\2(1 — 1)
X (Ap, sin ()\n r) + B, cos(A,r))
X (Ag, sin(A,) + Ba, cos (A\,)6()dt [71]

Results and Discussion

Model validation.—Validation of the Green’s function based
models presented in the mathematical modeling section is carried out
by comparison with past studies and numerical computation. This
comparison is discussed in the follwoing sections, below.

Validation against past studies.—Concentration profiles pre-
dicted by the Green’s function based models are compared against
past studies by Subramanlan & White** and Guo & White.>” While
Subramanian & White>* used the method of separation of variables
for composite electrodes under a galvanostatic boundary condition,
Guo & White®” used an approximate analytical solution for spherical
electrode particle under both constant and a time-dependent flux
boundary conditions.

For comparison with Subramanian & White,”> the cases of
galvanostatic discharge boundary condition for both thin film
composite electrodes and composite spherical electrode particle are
considered. The dimensionless current density, 6, and ratio of
diffusion coefficients, a, are taken to be 1 and 0.25, respectively,
consistent with Subramanian & White.>* Thicknesses of both layers
are considered to be equal. Figure 2a plots the concentration profile
determined by the present model and previous work® for a
composite slab. Similar comparison is presented in Fig. 2b for a
composite spherical electrode. In both cases, results show very good
agreement between the present model and past studies across the
entire electrode and at multiple times.

In order to further validate the Green’s function model, a study
by Guo & White®’ is used for comparison. This paper presented an
approximate analytical solution for solid-phase diffusion in a
spherical particle under constant and time-dependent flux boundary
condition. Values of various parameters are taken to be consistent
with the previous work. Figure 3 presents a plot of concentration as a
function of time at the surface of the electrode for a constant
dimensionless current density of § = 0.2. Very good agreement
between the present work and past work is seen.
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Figure 3. Validation against past study®’ for a spherical particle electrode:
Non-dimensional concentration as a function of non-dimensional time at the
particle’s surface for a constant flux § = 0.2.

Validation against numerical simulations.—Further validation is
carried out by comparison with a finite difference based calculation
for solid-phase diffusion in thin film, spherical particle, composite
slab and composite spherical electrodes. In order to do so, a finite
difference method is used. The governing equations and boundary
conditions are discretized using an implicit approach. 1000 and 2000
nodes are used for single layer and double layer electrodes,
respectively. A time-step of 1s is used for the numerical solution.
Mesh and time-step sensitivity study is carried out in order to ensure
that the results are independent of these variables. Figures 4-7
present comparisons between the Green’s function solution and
numerical solution. Figure 4a plots concentration as a function of
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Z
g
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time for a linear time-dependent current density at the electrode’s
surface, 8(f) = A + B-t for a thin film electrode for both analytical
and numerical models. The concentration profile is plotted for a
constant value of A and multiple values of slope, B. Very good
agreement is seen for each case. Figure 4b plots the concentration as
a function of distance, x, at multiple times for a linear current
density, 6(f) = A + B-t, where A = —1 and B = —0.05. Note that the
negative signs are due the discharge boundary condition. Similarly,
for the same linear boundary condition, Figs. 5a and 5b plot the
concentration as a function of time and distance for spherical
electrode particle. Results show very good agreement between the
two models.

Similar plots are shown in Figs. 6 and 7 for composite slab and
spherical electrodes. The length of each layer in these composite
electrodes are considered to be equal i.e. / = 0.5 and the ration of
diffusion coefficient, « is considered to be 0.25. A linear dimension-
less current density, 6(f) = A + B, is used as the boundary
condition for both geometries. Figure 6a plots the concentration as a
function of time at the electrodes surface for different values of
slope, B for a composite slab electrode for both numerical and
analytical models. Figure 6b plots the concentration as a function of
distance at multiple times for the same case. Similarly, Figs. 7a
and 7b plot concentration as a function of time at the electrode’s
surface and distance respectively for a composite spherical electrode
for both numerical and analytical models. All plots show very good
agreement between the analytical model and numerical simulation,
thereby providing further validation in addition to the comparison.

Application of the model.—Following validation, the Green’s
function based model is used for analyzing a number of realistic
problems involving time-dependent current density functions.
Specifically, two different types of time-dependent flux boundary
conditions are considered—sinusoidal and step functions. The first
category not only covers periodic functions but also any arbitrary
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Figure 4. Validation against numerical model for a linear flux boundary condition, 6(z) = A + B¢ in a thin film electrode: (a) Non-dimensional concentration as a

function of non-dimensional time at the electrode’s surface for A = —1 and multiple values of slope, B, (b) Non-dimensional concentration as function of non-
dimensional distance, x, for A = —1 and B = —0.05 at multiple times.
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Figure 5. Validation against numerical model for a linear flux boundary condition, §(f) = A + Bt in a spherical electrode particle: (a) Non-dimensional
concentration as a function of non-dimensional time at the electrode’s surface for A = —1 and multiple values of slope, B, (b) Non-dimensional concentration as
function of non-dimensional distance, r, for A = —1 and B = —0.05 at multiple times.
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Figure 6. Validation against numerical model for a linear flux boundary condition, 6(f) = A + Bt in a composite slab electrode: (a) Non-dimensional
concentration as a function of non-dimensional time at the electrode’s surface for A = —1 and multiple values of slope, B, (b) Non-dimensional concentration as
function of non-dimensional distance, x, for A = —1 and B = —0.05 at multiple times.
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Figure 7. Validation against numerical model for a linear flux boundary condition, 6(f) = A + Bt in a composite spherical electrode: (a) Non-dimensional
concentration as a function of non-dimensional time at the electrode’s surface for A = —1 and multiple values of slope, B, (b) Non-dimensional concentration as
function of non-dimensional distance, r, for A = —1 and B = —0.05 at multiple times.

function since any appropriate function can be written as a series
summation of periodic functions with different frequencies. Step
functions can be used to address problems with sudden changes in
C-rate during cyclic charge and discharge processes in Li-ion cells.

Figures 8a and 8b present plots for a non-dimensional time-
dependent sinusoidal current density 6 = 1 + Sin(wr) with two
different frequencies. Figure 8a plots concentration as a function of
time at the surface of a spherical particle for w = 100, whereas
Fig. 8b presents a similar plot for w = 1000. As expected, the
concentration profile goes up and down with time at the expected
frequency based on the value of w. Figures 8a and 8b also present the
results from a previous study Guo & White’” which used an
approximate solution for diffusion in spherical electrode particle
under time-dependent boundary conditions. As seen from the
figures, there is very good agreement between the present work
and past paper,’” with a worst-case deviation of 1.1% and 1% for
data presented in Figs. 8a and 8b, respectively.
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Figures 9a and 9b present spatial distributions of concentration
for the same boundary conditions as Figs. 8a and 8b, respectively.
Figure 9a and 9b plot concentration as a function of distance, r, at
multiple times for w = 100 and w = 1000, respectively. As expected,
the concentration is highest at the surface of the electrode since the
flux is coming in at this location. Figure 9a shows that concentration
increases rapidly between t = 0 and ¢t = 0.02, corresponding to the
time during which flux is high. Following that, the concentration
close to the surface actually reduces for + = 0.04 and ¢ = 0.06,
beyond which, there is a sharp increase. This is consistent with flux
as a function of time, as well as the surface concentration plot as a
function of time shown in Fig. 8a. The corresponding concentration
distribution plots for w = 1000 are, in comparison, monotonic, due
to the larger frequency.

Figure 10 presents results for a discharge process with sinusoidal
current density, 6(f) = A(1 + sin wr) for multiple values of fre-
quency, w. Surface concentration is plotted as a function of time for
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Figure 8. Non-dimensional concentration as a function of non-dimensional time at the surface of a spherical particle with sinusoidally varying flux, 6(z) = 1 +
sin(wt) for: (a) w = 100; (b) w = 1000. For comparison, plots from a past paper37 are also shown.
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Figure 9. Non-dimensional concentration as a function of non-dimensional distance, r, at multiple times at the surface of a spherical particle with sinusoidally

varying flux, &(¢) = 1 + sin(wt) for: (a) w = 100; (b) w = 1000.

a thin film electrode and a spherical electrode particle in Figs. 10a
and 10b, respectively. In both cases, the predicted concentration plot
is consistent with the periodic nature of the forcing function. As
expected, the concentration profile oscillates at the same frequency
as the imposed current density, whereas the overall rate of reduction
in the concentration is nearly the same for all cases.

Figure 11 presents plots for a scenario where the current density
changes with time as a step function. This may be relevant where the
C-rate of the cell changes due to changes in the external circuit, such
as when an electric vehicle suddenly brakes or accelerates. Another
practical scenario of relevance may be the cyclic charge and
discharge of a Li-ion cell where the current density switches
directions between charge and discharge periods. Two specific cases
are considered. In the first case, the current density changes from a
negative value of 6 = —1 at t = 0.03 to a positive value of 6 = 0.5,
and then becomes negative (6 = —1.5) again at t = 0.05. Figure 10a
plots concentration as a function of time at the electrode’s surface in

1 T T T T
(a) | .
A SH=A(1+sin(wt)) —100 1
; —500
gos8r —2000] 7
Lozt —
g .
§ 06k 0=F (%) cD:FAx)g
O iéﬂ)
0.5F 7, = .
O 4 Tb 1 1 1 1
~o 002 004 006 008 0.1
Time, ¢

a thin film electrode for this case. The current density is plotted as a
function of time in the inset. Figure 10 shows that the concentration
reduces during the discharge period, then increases rapidly during
charge, and finally follows a downward trend again during the third
phase of the process. The computational time associated with
the calculations for Fig. 10 is relatively small (less than 30s on a
3.30 GHz desktop computer with 8 GB RAM), since the eigenvalues
depend only on the geometry and diffusivity, and need to be
calculated only one time. Once the eigenvalues are calculated,
they can be used to calculate the concentration profile under any
types of boundary conditions. Therefore, the Green’s function based
model can be used for rapidly analyzing complicated, realistic
charge/discharge scenarios.

Figure 11b plots the concentration profile as a function of time
for a spherical electrode particle with a step-change current density.
In this case, the current density function is a three-step function with
values of § = —0.5, —1 and —1.5, as shown in the inset of Fig. 11b.
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Figure 10. Practical application of the model in predicting concentration profile for a periodic flux boundary condition, §(z) = A(1 + sin(wt)): Non-dimensional
concentration as a function of non-dimensional time at the electrode’s surface for A = —1 and multiple values of frequency, w, for (a) a composite slab electrode
(b) a composite spherical electrode.
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Figure 11. Practical application of the model in predicting concentration profile for step-change flux boundary conditions: Non-dimensional concentration as a
function of non-dimensional time at the electrode’s surface for (a) a charge-discharge process (b) a discharge process at different rates.
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Figure 12. Practical application of the model in predicting concentration profile for step-change flux boundary conditions: Non-dimensional concentration as a
function of non-dimensional distance, x and r, at multiple times at the electrode’s surface for (a) a charge-discharge process (b) a discharge process at different

rates.

This scenario may occur in applications with sudden changes in
discharge rate. Figure 11b shows, as expected, a gradual reduction in
concentration due to the negative current density. As the discharge
current density increases in magnitude, concentration reduces more
and more rapidly, as expected.

Figure 12 plots corresponding spatial concentration profiles at
multiple times for the same parameters of step-function flux
boundary condition as Fig. 11. Figure 12a shows that the concentra-
tion reduces, then increases, and then reduces, consistent with the
variation of the flux boundary condition over time. Concentration at
r =1 is the highest at # = 0.04, which is because = 0.04 lies in the
region when the flux is positive. Concentration profiles in Fig. 12b
are similarly consistent with the corresponding variation of flux with
time.

Conclusions

In this paper, an exact solution is developed for solid-phase
diffusion under a time-dependent flux boundary condition using the
Green’s function approach, which has been used widely in the past
for solving thermal conduction problems. The method is first applied
to a thin film electrode and a spherical electrode particle. The
method is then extended to determine the concertation profile in two-
layer slab and spherical composite electrodes. The mathematical
models agree well with previous studies for specific cases, as well as
numerical simulations. The Green’s function-based model presented
here is able to accurately predict the transient behavior during solid
phase diffusion process relevant to a Li-ion cell. The Laplace
transform approach used in previous studies provides separate
expressions for short time and long solutions. The short time
solution derived using Laplace transform, which is very useful for
some applications such as high rates and short times may be
calculated faster than the Green’s function solution presented here,
since there is no separate expression for short time solution using
this method. However, for complicated flux boundary conditions,
inversion of the Laplace solution may be challenging, whereas the
present approach offers a closed-form solution. The model presented
here can be used to predict the concentration profile under realistic
time-dependent boundary conditions that may appear in practical
applications for electrochemical energy storage.
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