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Heat transfer problems involving phase change occur in a wide variety of engineering applications.
Except a few simple cases, most phase change problems do not have an exact solution, and a number
of approximate analytical methods have been developed. This paper presents a theoretical solution for
a one-dimensional phase change problem that includes a pre-melted or pre-solidified length between
the region of interest and a time-dependent temperature boundary condition. Such a scenario can occur
in multiple engineering applications when the heating or cooling process is intermittent in time. The the-
oretical approach involves iteratively solving the coupled problem involving thermal conduction and
phase change, utilizing a perturbation-based method for the phase change problem with a time-
dependent boundary condition. The resulting theoretical solution compares well with numerical simula-
tions. Results are used for analyzing the effect of geometry, thermal properties and other parameters on
the nature of heat transfer and phase change in this problem of much technological importance. These
insights may be helpful in analyzing and optimizing heat transfer in several applications such as phase
change based cooling of Li-ion cells during intermittent operation.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Phase change heat transfer problems involving melting and
solidification occur commonly in engineering applications such
as thermal energy storage, heat exchangers, additive manufactur-
ing, welding and casting of metals, crystal growth and thermal
management systems [1–3]. In theoretical analysis of such prob-
lems, the interest is often in predicting the propagation of the
phase change front as well as temperature distribution in the
newly formed phase. The analysis of phase change problems is
considerably complicated due to their non-linear nature – exact
solutions exist only for a few idealized cases. The simplest phase
change problem is that of a one-dimensional semi-infinite body,
originally at its phase change temperature, being heated or cooled
with a constant temperature boundary condition at its end [1]. Ste-

fan number Ste ¼ CpTref
L , which represents the ratio of sensible heat

storage to latent heat storage is a key non-dimensional parameter
in phase change problems. Analytical solution for this problem [4]
shows that the location of the solid-liquid interface, y(t) is propor-
tional to

ffiffiffiffiffi
at

p
where a is the thermal diffusivity. This analytical

solution was extended later to a problem in which the initial tem-
perature of the body is different from its phase change temperature
[1]. Exact solutions exist only for a few other problems. For exam-
ple, exact solution for one-dimensional solidification of a super-
cooled liquid has been derived [5]. An exact solution for
solidification of a liquid body around a line heat sink in cylindrical
coordinate system has also been presented [6].

Approximate analytical methods or numerical methods have
been used extensively for analyzing phase change problems for
which an analytical solution does not exist [1,5,7]. Perturbation
methods and heat balance integral methods are two commonly
used approximate analytical methods for phase change heat trans-
fer problems. In heat balance integral method, the temperature
profile is assumed to be a particular function of the spatial coordi-
nate, x, similar to the boundary layer theory developed by Karman
and Pohlhausen [1]. The governing energy equation is then inte-
grated with respect to x and the resulting integral equation is
solved to obtain the temperature profile and phase change propa-
gation front as functions of time. This approach has been used for
phase change problems with a variety of boundary conditions,
including time-dependent temperature boundary condition, con-
stant heat flux and convective boundary conditions [8–12]. In per-
turbation method, the temperature profile is written as a series
involving powers of Ste. This expression is then inserted back into
the governing equation and the resulting equations are solved
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Nomenclature

Cp specific heat capacity (J/kgK)
L latent heat of fusion (J/kg)
G initial temperature distribution, relative to Tm (K)
f non-dimensional, time-dependent temperature bound-

ary condition, f = Tw/Tref
k thermal conductivity (W/mK)
q heat flux (W/m2)
Ste Stefan number, Ste = Cp Tref/L
t time (s)
T temperature, relative to Tm (K)
Tm phase change temperature (K)
Tw interface temperature between premelt and PCM re-

gions (K)
T0 time-dependent temperature at the boundary, relative

to Tm (K)

Tref reference temperature, relative to Tm (K)
W length of the initially melted/solidified region (m)
x spatial coordinate (m)
y location of phase change front (m)
a thermal diffusivity (m2/s)
k eigenvalues
q mass density (kg/m3)

Subscripts
l liquid
p pre-melted material
1 phase change region
2 pre-melt region
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through term-by-term comparison and use of energy conservation
at the phase change interface. This approach has been used for
solving phase change problems subjected to a variety of boundary
conditions, including time-dependent temperature boundary con-
dition [13,14], phase change problems in cylindrical [14] and
spherical [14] coordinate systems, and time-dependent heat flux
[15] boundary conditions In addition to these approaches, the vari-
able eigenvalue method has been also used to solve phase change
problems involving time-dependent boundary conditions [1].
Approximate solutions for a number of problems involving convec-
tion within the liquid phase have also been presented [16,17].

Most of the past theoretical studies on phase change problems
consider cases where the body is initially in one phase exclusively,
and the second phase is then gradually formed due to melting or
solidification of the original phase. However, there may be some
engineering problems where both phases exist at the initial time,
such as a melting problem where part of the solid body is already
melted at the initial time and is at a certain initial temperature dif-
ferent from that of the solid body itself, as shown schematically in
Fig. 1(a). This could occur due to discontinuous heating and cooling
that causes the phase change process to be intermittent. For exam-
ple, in phase change thermal management of Li-ion batteries
[18,19], heat generated during battery discharge may initiate melt-
ing of the phase change material, but because battery discharge
may start and stop depending on loading conditions, the melting
process may be very intermittent, leading to the existence of a
pre-melted region of the phase change material at the start of fur-
ther phase change. Similarly, the intermittent nature of phase
Fig. 1. Schematic of the one-dimensional phase change problem with a pre-melted regi
and boundary conditions. Schematic of the two sub-problems including (b) the conduct
change based solar energy storage may cause a pre-melted region
shielding the material that is not yet melted.

In such cases, the nature of heat transfer may be significantly
different from classic phase change problems, and this problem
may not be solvable within the framework of classical Stefan prob-
lems, because the presence of both phases at t = 0 introduces addi-
tional complexity not accounted for by traditional methods. Heat
transfer between the phase change front and the boundary condi-
tion is impeded by the pre-melted region. Thickness of the pre-
melted liquid, its initial temperature distribution and thermal
properties are all expected to play a key role in determining the
rate at which further melting occurs. Further, depending on the
magnitude of the temperature distribution in the pre-melted liquid
relative to the temperature boundary condition, heat flow may
occur entirely into the solid body, or partly in the reverse direction.
Due to these complications in the present problem, solutions avail-
able for classical phase change problems may not be applicable for
this problem, and other approaches may be needed.

This paper develops a theoretical method to solve a one-
dimensional melting problem that includes a pre-melted length
with an arbitrary initial temperature along with a time-
dependent temperature boundary condition. While discussed here
in the context of melting, this method can also be used to solve the
reverse problem of solidification of a liquid with a pre-solidified
length. A solution method is developed by iteratively solving the
thermal conduction problem in the pre-melted length and phase
change problem in the remaining body. Specifically, the
phase change problem comprises a time-dependent temperature
on. (a) Schematic of the overall conjugate problem along with the associated initial
ion problem and (c) the phase change problem.
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boundary condition, which is solved using a perturbation method.
The iterative approach adopted in this work has been used in the
past, but only for single phase problems such as heat transfer in
three-dimensional integrated circuits 3D ICs [20], thermal man-
agement of Li-ion batteries [18,21] and other conjugate heat trans-
fer problems [22].

The next section presents the theoretical models underlying the
iterative method. The effects of various geometrical and thermo-
physical parameters on the solution are discussed in the subse-
quent section.
Fig. 2. Flowchart of the iterative approach used to solve the overall conjugate
problem.
2. Mathematical modeling

The heat transfer problem considered here, shown schemati-
cally in Fig. 1(a), consists of a one-dimensional, semi-infinite solid
body initially at its melting temperature. The region 0 < x < W of
the body is already melted, and has an initial temperature distribu-
tion G(x). The remainder region is initially a solid at its phase
change temperature. A time-dependent temperature boundary
condition T0(t) is applied at the x = 0 end of the domain. Key heat
transfer processes in this problem include thermal conduction
from the x = 0 boundary condition and the pre-melted region into
the initially solid region and then into the phase change interface,
thermal conduction from the pre-melted region to the boundary at
x = 0 (if the boundary temperature is lower than the temperature
in the pre-melted region) and phase change at the liquid-solid
interface y(t).

The nature of these heat transfer processes and relative magni-
tudes and directions of heat flow in this problem depend on the
magnitude of temperature in the pre-melted region, particularly
the initial temperature G(x) compared to the magnitude of the
time-dependent temperature boundary condition T0(t). For exam-
ple, if T0(t) is always greater than the initial temperature G(x), then
heat will always flow from left to right as shown in Fig. 1(a), i.e.
from the pre-melted region to the liquid–solid interface. In a more
complicated scenario, if G(x) is greater than T0(t), then some heat
may flow from the pre-melted region to the x = 0 boundary. Due
to the time-dependent nature of T0, these directions of heat flow
may also reverse over time. These dynamics make this an interest-
ing problem, with specific interest in understanding the role of var-
ious initial and boundary conditions and thermophysical
properties in phase change that occurs in this problem.

This problem is solved in an iterative fashion by splitting the
domain of interest into two regions – the pre-melt region,
0 < x <W and the phase change region, x >W, and solving for tem-
perature distribution in both regions separately, while ensuring
temperature and heat flux continuity at x =W. Both heat conduc-
tion and phase change occur in the second region (x >W), referred
to as the phase change sub-problem. Only heat conduction occurs
in the pre-melted region (0 < x <W), referred to as the conduction
sub-problem. Fig. 1(b) and (c) show schematics of these two sub-
problems. In order to solve the two sub-problems, an unknown
time-dependent heat flux q0 0ðtÞ leaving the pre-melt region at
x =W and entering the phase change region is applied as the
boundary condition for the conduction sub-problem at x = W. For
solving the phase change sub-problem, a time-dependent temper-
ature boundary condition Tw(t) is considered at the interface
between the two regions. Since both q0 0ðtÞ and Tw(t) are unknown,
an iterative approach is used wherein time-dependent tempera-
ture Tw(t) at the interface is first guessed and is used to find the
temperature profile within the phase change sub-problem. The
resulting interfacial heat flux from the solution of the problem is
then used as an input into the conduction sub-problem, which in
turn provides a value for the temperature profile at the interface
that can be used to improve the initial guess. This iterative process
is repeated until the change in temperature from one iteration to
another is negligible. The iterative approach explained above is
summarized in a flowchart in Fig. 2. Such an iterative approach
has been used in past studies to solve a variety of conjugate steady
state and transient problems [18,20–22].

Analytical solutions for each of the two sub-problems are
needed in order to execute the iterative approach. Sub-sections
2.1 and 2.2 below describe these analytical solutions.

2.1. Solution for the phase change sub-problem

Fig. 1(c) shows a schematic of the phase change sub-problem
along with the respective boundary condition, in the region
x >W. For convenience, a new coordinate axis x0 shown in Fig. 1
(c) is used, where x0 = x �W. Within this region, the entire body
is solid at t = 0, and the phase change front, originates at x0 = 0
and propagates with time. Temperature at x0 = 0 in this problem
is taken to be Tw(t). As such, Tw(t) is unknown in advance. The
liquid-solid interface position, y(t) is an important parameter of
this problem that must be determined from the solution. The phase
change problem described above is a generalization of the original
Stefan problem, in that the temperature driving the phase change
process is time-dependent.

The mathematical description of this sub-problem is as follows:
the governing energy conservation equation for the temperature
field is

@2T1

@x
02 ¼ 1

al

@T1

@t
ð1Þ

where al is the thermal diffusivity of the newly formed liquid. Note
that T1 represents temperature rise above the melting temperature
Tm.

The following time-dependent boundary condition is imposed
at one end of the domain.

T1 x0; tð Þ ¼ Tw tð Þ at x0 ¼ 0 ð2Þ
Temperature at the solid-liquid interface, y(t) must equal the

melting temperature. Further, energy must be conserved at this
interface. These result in the following equations:

T1 x0; tð Þ ¼ 0 at x0 ¼ yðtÞ ð3Þ
and

�kl
@T1

@x0

� �
x0¼yðtÞ

¼ qL
dy
dt

at x0 ¼ yðtÞ ð4Þ
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where kl and ql are the thermal conductivity and mass density of
the liquid, respectively, and L is the latent heat. Convection in the
newly formed liquid is neglected.

While an exact solution is available for the specific case of con-
stant Tw – the well-known Stefan solution – approximate analytical
methods such as integral methods [8] and perturbation methods
[14] have been used for solving the more general problem posed
in this sub-section. Here, the perturbation technique presented
by Caldwell & Kwan [14] is used. The general methodology and
final results are briefly outlined below, while complete details
may be found in past papers [14].

For solving this problem using the perturbation method, the
time variable is first eliminated by replacing t with the solid-
liquid interface location y(t), which is a monotonic function
of time. This is followed by writing the solution of the new
governing equation as a series involving powers of Ste [14].
Substituting the assumed form of the temperature solution
back into the governing equation, applying boundary conditions
and a term-by-term comparison results in a set of ordinary dif-
ferential equations. Temperature profile in the liquid phase is
derived by solving these ordinary differential equations. The
location of the solid-liquid interface y(t) is then determined
by utilizing energy conservation at the phase change interface,
given by Eq. (4). This procedure results in the following
expression for temperature profile and phase change front y
(t) [14]

T1 x0; tð Þ ¼ h0 þ Ste � h1 þ Ste2 � h2
� �

� Tref ð5Þ

h0 ¼ f ðtÞ 1� x0

yðtÞ
� �

ð6Þ

h1 ¼ 1
6
f ðtÞ x0

yðtÞ
x0

yðtÞ � 1
� �

f tð Þ x0

y tð Þ þ 1
� �

� f 0 tð Þ
y0 tð Þ yðtÞ

x0

yðtÞ � 2
� �� �

ð7Þ

h2 ¼ � 1
360

f ðtÞ x0

yðtÞ
x0

yðtÞ � 1
� �

f 2ðtÞ x0

yðtÞ þ 1
� �

9
x0

yðtÞ
� �2

þ 19

 !"

þ10
f 0 tð Þ
y0 tð Þ
� �2

y2ðtÞ x0

yðtÞ þ 4
� �

þ 5f tð Þ f
0 tð Þ
y0 tð Þ y tð Þ 3

x0

y tð Þ
� �2

 

þ5
x0

y tð Þ þ 17
�
þ f ðtÞ f

0 0 tð Þ
y02 tð Þ y

2ðtÞ x0

yðtÞ � 2
� �

3
x0

y tð Þ
� �2

 

�6
x0

y tð Þ � 4
��

ð8Þ

y tð Þ ¼ 2ðSteÞal

Z t

0
f ðsÞ 1� Ste

3
f sð Þ þ 7Ste2

45
f 2ðsÞ

 !
ds

" #1
2

ð9Þ

where f(t) is the non-dimensional time-dependent temperature
boundary condition given by [14]

f tð Þ ¼ TwðtÞ
Tref

ð10Þ

Note that both Tw and Tref represent temperature rise above the
melting temperature Tm.

Finally, heat flux between the phase change region and
the pre-melt region at x0 = 0, which is an input into the
second sub-problem, is determined using Fourier’s law as follows
[18]:
q0 0 tð Þ ¼ �kl
@T
@x

� �
x0¼0

¼ �klTref

� f tð Þ
y tð Þ � Ste

f tð Þ f tð Þþ2f 0 tð Þ
y0 tð Þy tð Þ

� �
6y tð Þ þ

Ste2
f ðtÞ 40 f 0 tð Þ

y0 tð Þ

� �2

y2 tð Þþ85f tð Þf 0 tð Þ
y0 tð Þy tð Þþ19f 2 tð Þþ8 f 0 0 ðtÞ

y02ðtÞ
f tð Þy2ðtÞ

� �
360yðtÞ

2
66664

3
77775

ð11Þ
2.2. Solution for the conduction sub-problem

Fig. 1(b) shows a schematic of the conduction sub-problem
along with the associated boundary conditions. The only heat
transfer phenomenon of relevance in this region is thermal con-
duction. Since this region is already a liquid at t = 0, no phase
change occurs in this region. Fluid flow and convective heat trans-
fer is neglected.

Initial temperature distribution in the pre-melted region, G(x) is
known. In addition, a time-dependent temperature boundary con-
dition T0(t) is imposed on the boundary at x = 0. Finally, a time-
dependent heat flux leaving the pre-melted region at x = W, q0 0ðtÞ
is known based on the solution of temperature distribution in
the phase change region. These comprise three non-
homogeneities in this thermal conduction problem. The governing
energy conservation equation for temperature rise in the pre-
melted region relative to melting temperature, T2(x,t) is

@2T2

@x2
¼ 1
ap

@T2

@t
ð12Þ

where ap is the thermal diffusivity of the pre-melted region.
The temperature distribution must also satisfy the following

initial and boundary conditions:

T2ðx; tÞ ¼ GðxÞ at t ¼ 0 ð13Þ

T2ðx; tÞ ¼ T0ðtÞ at x ¼ 0 ð14Þ
and

�kp
@T2

@x
¼ q0 0ðtÞ at x ¼ W ð15Þ

Eqs. (12) through (15) can be solved by linearly splitting the
problem into three sub-problems a, b and c, each of which account
for only one non-homogeneity – initial condition G(x), time-
dependent boundary temperature T0(t) and time-dependent
boundary heat flux q0 0ðtÞ, respectively. Solutions for these sub-
problems are quite straightforward.

The solution for the initial condition problem, based on the
method of separation of variables [1] is

T2a x; tð Þ ¼
X1
n¼1

An sin knxð Þexpð�apk
2
ntÞ ð16Þ

where

An ¼ 1
Nn

Z W

0
GðxÞ sin knxð Þdx ð17Þ

Here Nn ¼ 2
W is the eigenvalue norm, and kn ¼ ð2n�1Þp

2W , n = 1,2,3. . . are
the eigenvalues of the problem.

The method of variation of parameters [23,24] is used for solv-
ing sub-problems b and c. The solution for sub-problem b is:

T2bðx; tÞ ¼
X1
n¼1

BnðtÞ sinðknxÞ ð18Þ
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where the coefficients Bn are given by:

BnðtÞ ¼
Z t

0

knap

Nn
T0 tð Þ exp �apk

2
n t � sð Þ	 


ds ð19Þ

Similarly, the solution for sub-problem c is given by:

T2cðx; tÞ ¼
X1
n¼1

CnðtÞ sinðknxÞ ð20Þ

where the coefficients Cn are given by:

CnðtÞ ¼
Z t

0
� ap

kNn
q0 0 tð Þ sinðknWÞ exp �apk

2
n t � sð Þ	 


ds ð21Þ

Temperature profile within the pre-melted region is then given
by

T2 x; tð Þ ¼ T2aðx; tÞ þ T2bðx; tÞ þ T2cðx; tÞ ð22Þ
Based on this solution, temperature at the intersection of the

pre-melted and phase change regions is determined by putting
x = W in Eq. (22)

Tw tð Þ ¼ T2ðW; tÞ ¼
X1
n¼1

An exp �apk
2
nt

	 
þ Bn tð Þ þ Cn tð Þ� �
sin knWð Þ

ð23Þ
Note that this temperature is an input needed for solving the

phase change sub-problem, as discussed in Section 2.1.

2.3. Iterative approach

Because the solutions for temperature distributions in the pre-
melted and phase change regions are coupled with each other
through continuity of temperature and heat flux at their intersect-
ing boundary, the temperature fields in the two regions may be
determined in an iterative fashion.

The iterative approach starts with an initial guess of the tem-
perature Tw(t) at the intersecting boundary between the two
regions. Based on this, temperature distribution in the phase
change region as well as the location of the phase change front
are determined as derived in Section 2.1. Solution to this sub-
problem provides the heat flux q0 0ðtÞ at the intersection between
the two regions, given by Eq. (11). In the second step of the itera-
tive approach, this heat flux is used to solve the conduction sub-
problem. Based on the solution of this sub-problem, the tempera-
ture distribution at the intersection is determined using Eq. (23),
which in turn serves to update Tw(t) that is used for solving the
phase change problem. If the difference between the previous
and newly computed Tw(t) is within acceptable tolerance, the com-
Fig. 3. Comparison of the analytical solutions of the two sub-problems with Finite elemen
Plot of surface temperature rise at x = W as a function of time for the conduction proble
putation is complete, otherwise, Tw(t) is updated based on the new
value and the phase change problem is solved again. Fig. 2 shows a
schematic of this iterative process. In practice, the old and new val-
ues of Tw(t) are blended linearly using a blending factor b, which is
a number between 0 and 1. It is important to note that the blend-
ing factor b impacts stability and speed of convergence. The larger
the value of b, the larger is the contribution of the newly computed
temperature distribution in Tw(t) for the new iteration, and there-
fore, the faster does the solution converge. However, this may
result in instability [22], and therefore, a reasonably low value of
b is used throughout to maintain stability.
3. Results and discussion

3.1. Validation of the two sub-problems against finite element
simulations

Prior to investigating the combined problem, analytical solu-
tions for the separate phase change and thermal conduction sub-
problems presented in Sections 2.1 and 2.2 are first validated by
comparing with finite element method (FEM) simulations.

In order to validate the phase change problem, the same geom-
etry as Fig. 1(c) is created and meshed in a finite element solver.
Thermal conductivity, heat capacity and latent heat are assumed
to be kl = 0.2 W/m K, Cp = 2250 J/kg K and L = 270.7 kJ/kg, corre-
sponding to paraffin wax. The enthalpy method [1] is used in the
simulations to account for phase change by defining the phase
change material as a binary mixture of liquid and solid, each with
its associated properties and a reference enthalpy of fusion. A time-
dependent temperature boundary condition given by
TwðtÞ ¼ 40þ 0:02t is implemented for validating the phase change
problem discussed in Section 2.1. Fig. 3(a) plots the liquid-solid
interface location y(t) as a function of time and compares results
from the analytical solution given by Eq. (9) and finite element
simulations. This plot shows excellent agreement between the
analytical solution and numerical simulations, with less than
1.8% deviation between the two. Similarly, the thermal conduction
sub-problem in the pre-melted region is validated by comparison
with finite element simulations. A time dependent temperature
boundary condition T0ðtÞ ¼ 50þ 0:01t is applied at x = 0, while a
time-dependent heat flux q00(t) = 200 + 10 t leaving the pre-
melted region is imposed on the boundary at x = W. A linear initial
temperature G(x) = 20 + 3000x is considered in the premelt region.
Thermal properties of the pre-melted region are taken to be the
same as in the phase change problem. Fig. 3(b) shows a plot of
temperature rise as a function of time at x = W for both analytical
model and FEM simulations. Similar to Fig. 3(a), results indicate a
t simulations. (a) Plot of solid-liquid interface location y(t) as a function of time; (b)
m.
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good agreement between the analytical model and FEM simula-
tions for the thermal conduction problem, with a worst-case devi-
ation of only 1.5% between the two. The analytical model does not
require mesh generation, which may result in reduced computa-
tional time. This approach also does not involve discretization
errors that are possible in numerical simulation and offers the
capability of solving such problems without the need for a com-
mercial simulation tool.

Following the validation of the individual sub-problems as
described above, the iterative integration of the two is character-
ized next.
3.2. Validation of the iterative approach

In order to validate the complete problem, a phase change
material of the same properties as the previous section is consid-
ered. The phase change material is initially at its melting temper-
ature and the initial temperature of the pre-melted region of
length W = 10 mm is assumed to be G xð Þ ¼ 10� 1000x. A time-
dependent boundary condition T0ðtÞ ¼ 100þ 0:1t is applied at
x = 0. This problem is solved using finite-element simulations as
well as the iterative approach described in Section 2, starting from
an initial guess of the temperature distribution. Fig. 4 plots tem-
perature rise at the intersection between the two regions as a func-
tion of time for different number of iterations, including the initial
Fig. 4. Validation of the iterative approach with finite element simulation for a
linear time-dependent temperature T0(t) and a linear initial temperature distribu-
tion in the pre-melted region G(x). Temperature rise at the intersection between the
two regions Tw(t) is plotted as a function of time for multiple iterations. Results
from the finite element simulation are also plotted as circles.

Fig. 5. Effect of the initial temperature distribution G(x). (a) Plot of temperature rise at th
of constant G. (b) Plot of solid-liquid interface location y(t) as a function of time for diff
guess, labeled as 0. Fig. 4 indicates a rapid change in the tempera-
ture profile for the first few iterations. However, as the number of
iterations increases, temperature distribution stabilizes and con-
verges to a single curve. It is seen that after six iterations, the
change in temperature curve from one iteration to the next is neg-
ligible. This indicates that around six iterations may be sufficient in
this case for convergence. In addition, it has been verified that the
temperature distribution computed by the iterative approach is
largely independent of the initial guess. When the initial guess is
much different from the actual temperature distribution, the iter-
ative approach takes a larger number of iterations to converge,
but results in the same converged solution irrespective of the ini-
tial guess.

Note that a blend factor of b = 0.1 is used in this and all further
computations in order to avoid instability.
3.3. Effects of the initial condition

In this section, effect of the initial condition on the solid-liquid
interface location y(t) as well as temperature rise at the intersec-
tion between the two regions, Tw(t) is investigated. In order to do
so, the iterative approach is implemented for cases with different
values of a constant initial condition G. The time-dependent tem-
perature boundary condition is chosen to be T0ðtÞ ¼ 50þ 0:01t
up to t = 1000 s, while values of 40, 60 and 80 �C are considered
for the initial condition G. A heat-generating body such as a Li-
ion cell generates heat in a periodic cycle. In this context, the dif-
ferent values of the initial condition G may represent scenarios
where the premelted region is initially at different temperatures
due to the residual effect of previous cycles of heating. The choice
of specific numbers for G here ensure that the initial condition
being studied here is not overwhelmed by the time-dependent
boundary condition. Thermophysical properties of the pre-melted
region and the melting solid are considered to be the same as
the previous section. Fig. 5(a) plots computed temperature rise at
the intersection between the two regions, Tw(t) as a function of
time for different values of initial condition G. Results show that
larger initial temperature results in higher interface temperature
at early times. However, this effect of the initial temperature fades
away as time increases, and after some time, the three plots are
close to each other. At large times, initial thermal energy in the
pre-melted region dissipates away, and only the effect of the
boundary condition remains. To further confirm this, Fig. 5(b) plots
the solid liquid interface location y(t) as a function of time for var-
ious values of initial condition G. It is seen that as initial tempera-
ture increases, y(t) increases as well due to more heat transfer from
the pre-melted region to the melting solid body. For the parame-
e intersection between the two regions Tw(t) as a function of time for multiple values
erent values of G.



Fig. 6. Effect of the pre-melted length W. (a) Plot of temperature rise at the intersection between the two regions Tw(t) as a function of time for multiple values of W. (b) Plot
of solid-liquid interface location y(t) as a function of time for different values of W. Result for the special case of W approaches to zero is also plotted.

Fig. 7. Effect of pre-melted region thermal diffusivity ap. (a) Plot of temperature rise at the intersection between the two regions Tw(t) as a function of time for multiple values
of ap. (b) Plot of solid-liquid interface location y(t) as a function of time for different values of ap.

Fig. 8. Effect of phase change material thermal diffusivity al. (a) Plot of temperature rise at the intersection between the two regions Tw(t) as a function of time for multiple
values of al. (b) Plot of solid-liquid interface location y(t) as a function of time for different values of al.
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ters chosen here, significant impact of G on the phase change prop-
agation occurs in the first few hundred seconds, when the initial
temperature is the predominant forcing function. As time passes,
there remains only a constant offset between the curves for differ-
ent values of G. In the context of Li-ion cells, the initial period dur-
ing which significant impact of G is present may be compared with
the rest period between successive heat-generating periods to
determine if the impact of G dissipates away sufficiently during
the rest period.
3.4. Effect of length of pre-melted region

Effect of the length of the pre-melted region W is investigated
next. Five different lengths W = 1, 5, 10, 15 and 20 mm are consid-
ered. A constant temperature boundary condition T0 = 70 �C is
applied at x = 0 for 1000 s and the initial condition is considered
to be G = 60 �C. All thermophysical properties are also the same
as the previous sections. Fig. 6(a) plots temperature rise at x =W,
the intersection between the two regions as a function of time



Fig. 9. Propagation of phase change front with time during a four-cycle heat
absorption process.
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for five different values of W. Fig. 6(b) shows a plot of the location
of the solid-liquid interface y(t) as a function of time for these
cases. These plots show that as the length of the pre-melted region
increases, the temperature at x =W and location of the phase
change front both decrease. This is however, not a linear effect –
there is significant reduction between W = 1 mm and W = 5 mm,
but the effect saturates at larger values of W. In general, the inter-
face temperature is influenced by both the temperature boundary
condition T0 as well as the initial temperature G(x). As W increases,
the influence of T0 decreases due to increased thermal resistance
between the boundary condition and the phase change front. On
the contrary, increasing W increases the effect of G(x) due to
greater total initial energy in the pre-melted region. As a result,
the net impact of increasing W depends on the relative magnitude
of these two effects. Similarly, Fig. 6(b) plots the solid-liquid inter-
face location y(t) as a function of time. Results indicate that as W
increases, the rate of phase change propagation decreases. This
can be explained based on Fig. 6(a), which shows larger values of
W resulting in lower Tw(t), and consequently lesser heat entering
the phase change region, which eventually results in slower melt-
ing front propagation.

In addition to plots for different values of W, Fig. 6(b) also plots
the phase change propagation for the classical Stefan problem with
the same boundary condition, for which, phase change propagation
occurs at a rate proportional to

ffiffiffiffiffi
at

p
[4]. Fig. 6(b) shows, as

expected, that as the value of W gets close to zero, the phase
change propagation given by the iterative model approaches that
predicted by the classical Stefan problem.

3.5. Effect of pre-melted region thermal diffusivity

In order to investigate the effect of thermal diffusivity of the
pre-melted region, ap, on the phase change process, the tempera-
ture field is computed using the iterative technique for different
values of ap. In each case, a time-dependent temperature boundary
condition T0 ¼ 50þ 0:02t is applied at x = 0, along with an initial
temperature of G = 40 �C for the pre-melted region of length
W = 10 mm. Thermal diffusivity of the newly formed liquid, al is
kept constant at 1.097 � 10�7 m2/s. Fig. 7(a) and (b) plot the tem-
perature rise at the intersection between the two regions, Tw(t) and
the location of the phase change front, y(t) respectively as func-
tions of time for different values of ap. These plots show that the
thermal diffusivity of the pre-melted region plays a key role in
the phase change process. As ap increases, temperature at x =W
goes up due to increased diffusion of thermal energy, both from
the T0 boundary condition as well as the initial condition G. The
increased diffusion also explains the strong dependence of the rate
of phase change propagation on thermal diffusivity of the pre-
melted region, as shown in Fig. 7(b). While the trends shown in
Fig. 7(a) and (b) may be expected based on an understanding of
the governing heat transfer physics, the iterative model makes it
possible to quantifiably compute the impact of ap on the phase
change process, as shown in Fig. 7(a) and (b).

3.6. Effects of phase change material thermal diffusivity

Effect of thermal diffusivity of the phase change material, al, on
the phase change front location y(t) and temperature rise at the
intersection between the two regions is investigated next. In order
to do so, different values of PCM thermal diffusivity, al are consid-
ered while keeping the initial condition, time-dependent boundary
condition at x = 0 and the pre-melted region W the same as in sub-
section 3.5. Thermal diffusivity of the pre-melted region, ap is kept
constant at 1.097 � 10�7 m2/s. Fig. 8(a) plots temperature rise at
the intersection between the two regions, Tw(t) as a function of
time for different values of al. In addition, Fig. 8(b) plots the loca-
tion of the phase change front y(t) as a function of time for these
cases. Results indicate that as the value of PCM thermal diffusivity
increases, the temperature rise at the intersection between the two
regions increases as well. This effect stems from an enhanced rate
of thermal conduction from the pre-melted region into the phase
change region at larger values of the PCM thermal diffusivity.
Fig. 8(b) also confirms this by showing an increase in the solid-
liquid interface location in the phase change region at larger values
of the PCM thermal diffusivity.

3.7. Phase change over multiple heat absorption cycles

In order to demonstrate the capability of the model discussed in
this work to address problems of practical relevance, the effect of
heat absorption from a hot source over multiple cycles is investi-
gated. Heat absorption processes often occur in a cyclic fashion,
which may result in the pre-melted scenario addressed in this
work. A phase change material with the same thermal properties
as previous sections is considered. Heat absorption is assumed to
occur over multiple cycles, each of 1000 s duration. Between
cycles, it is assumed that the PCM melted in the previous cycles
cools back down to the melting temperature. In the first stage,
the phase change material is initially solid at the melting temper-
ature and in direct contact with a heat source maintained at 70 K
above the melting temperature. The first stage can be described
by a simple Stefan problem. Thermal analysis for subsequent
stages is carried out using the analytical model described here,
which, in each case accounts for the effect of the cumulative pre-
melted liquid due to all previous heating periods. Fig. 9 plots the
location of the phase change front y(t) as a function of time for
all four heating periods. In the first period, y(t) is proportional toffiffi
t

p
according to the solution of the Stefan problem. In subsequent

periods, Fig. 9 shows that the rate of growth of y(t) becomes slower
and slower due to the growing pre-melted region.
4. Conclusions

This paper presents a theoretical solution for phase change heat
transfer problems in which a pre-melted or pre-solidified region
exists initially. Results derived here, based on an iterative
approach, highlight the nature of heat transfer in a problem that
can be used to model a number of engineering applications. While
presented here for the specific case of melting, the solidification
problem can also be addressed based on these results. Other com-
plexities, such as convection in the liquid phase may also be
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accounted for, provided that the underlying analytical solutions for
the liquid phase are available or can be derived. This work
improves our fundamental understanding of phase change heat
transfer, and facilitates analysis of heat transfer in applications
related to energy conversion and thermal management.
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