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ABSTRACT

Phase change materials (PCMs) are used commonly for thermal energy storage and thermal management. Typically,
a PCM utilizes its large latent heat to absorb and store energy from a source. The rate of energy stored (W) and energy
storage density (J/m>) over a certain time period are both important performance parameters of a phase change
based energy storage system. While significant experimental research has been carried out to improve thermal
conductivity of PCMs, there is a lack of theoretical understanding of how thermal conductivity and other thermo-
physical properties affect these performance parameters. This paper presents a theoretical heat transfer model to
predict the rate of energy storage and energy storage density as functions of PCM thermal properties. Using per-
turbation method based techniques, expressions for these parameters are derived for two geometries, first for a
simplified assumption of constant temperature at the source-PCM interface, and then for a more realistic scenario of
time-dependent interface temperature. Results indicate that while increasing thermal conductivity results in im-
provement in rate of energy stored, the energy storage density does not change for a Cartesian system and actually
decreases for cylindrical system. This shows that using a high thermal conductivity PCM may not be ideal when
energy must be stored compactly because while this increases the total energy absorbed, it also results in greater rate
of melting, which reduces the energy storage density. Results also provide guidelines for material selection for phase
change based energy storage systems. For example, a trade-off in the choice between materials of disparate thermal
properties is identified in terms of whether the rate of energy stored or energy storage density is paramount.
Differences in the performance of Cartesian and cylindrical systems is investigated. Theoretical results presented in
this work highlight various performance trade-offs related to the thermal properties of the PCM and help understand
the impact of thermal conductivity enhancement on phase change energy storage performance.

1. Introduction

from a source of heat into a phase change material (PCM) that under-
goes phase change from solid to liquid. As an example, latent heat

Solid-liquid phase change occurs in a number of engineering ap-
plications such as thermal management, energy storage, etc. The large
latent heat of phase change relative to the magnitude of typical sensible
heat is utilized commonly for designing effective thermal management
[1] or energy storage techniques [2]. In both cases, energy is absorbed
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storage has been widely investigated for storing energy harnessed from
renewable sources [3], and forms a critical part of the infrastructure
needed to address the intermittent nature of these sources and ulti-
mately make renewable energy feasible. Compared to other competing
mechanisms for energy storage, such as sensible heat [4],
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thermochemical [5], electrochemical [6], etc., phase change energy
storage offers several advantages such as large rates of energy transfer,
large energy storage density, etc. [3].

As the phase change process proceeds, thermal impedance offered
by the melted liquid slows down the rate of further melting. This self-
limiting nature of phase change energy storage has been recognized to
be an important limitation of phase change based energy storage [71,
and the energy storage system is often designed to counter these effects,
for example by providing fins into the PCM to increase surface area [8],
or by enhancing PCM thermal conductivity by introducing nano/micro-
particles [9].

Typical PCMs can be divided into two categories — organic PCMs
which are usually paraffin based, and inorganic PCMs such as salt hy-
drates that offer large latent heat [10]. Clearly, thermophysical prop-
erties such as thermal conductivity (k), heat capacity (C,) and latent
heat (L) of the PCM play a key role in determining the performance of
phase change energy storage. While PCMs are typically chosen for their
large values of latent heat, these materials also have low thermal con-
ductivity, in the range of 0.1-2.5W/mK [11]. Significant research has
been reported on enhancing thermal conductivity of PCMs. A variety of
techniques such as dispersing particles with high thermal conductivity
such as graphite and nickel particles[12], adding carbon fibers [13],
using expanded graphite and carbon fibers [14], adding high thermal
conductivity promoters [7] and using graphite matrix [15] have been
used for PCM thermal conductivity enhancement. Graphite matrix in-
sertion has been shown to increase PCM thermal conductivity to up to
17Wm~ 'K~ [16]. Multiple microscale mechanisms have been pro-
posed to explain such enhancement, including Brownian motion which
enables the particles to move through the fluid, nano-particles clus-
tering and liquid layering around solid particles [17].

The average rate of energy transferred and stored into the PCM over a
certain time period is an important performance parameter for both
thermal management and energy storage applications. Further, from a
systems perspective, the density of energy stored is also an important
parameter in order to ensure compactness of energy storage. High energy
storage density can be a critical performance parameter when the space
available for energy storage is limited and minimizing system weight is
important. These considerations often arise in automotive, aerospace and
military applications as well as compact consumer electronic devices.
While the total energy stored is determined largely by the integral of heat
flux at the PCM-source interface over time, the energy storage density
additionally involves the volume of PCM melted over the time period.

While most experimental papers have focused on improving thermal
conductivity, which clearly improves the rate of heat transfer from the
source into the PCM, one must recognize that an increased thermal
conductivity also increases the rate of melting. This is expected to in-
crease the total volume of PCM required, and therefore, may negatively
impact energy storage density. Unlike extensive past experimental
work, a key gap in the literature pertains to the modeling and analysis
of such effects. There is a lack in the literature of analytical models that
connect these two key performance parameters - total energy stored
and energy storage density — with underlying thermal properties of the
PCM. Further, such an analytical model may also play a key role in
materials selection. For example, given two candidate phase change
materials that differ from each other in the values of both k and C,, an
analytical model may help determine which material is expected to
have better performance in terms of total energy stored or energy sto-
rage density. In some cases, either one of total energy stored and energy
storage density may be more critical than the other, and therefore, the
choice of the ideal PCM depends on such system-level considerations.

The simplest model for phase change based energy storage is the
case of heat transfer from a constant temperature wall into a PCM. This
is indeed the well-known Stefan problem [18,19], for which, progres-
sion of the melting front is known to be proportional to vaf where a is
the thermal diffusivity of the PCM. For this problem, equations are also
available for temperature distribution in the melted material, and
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therefore, the rate of heat transfer into the PCM [18]. However, similar
exact models are lacking for more complicated cases, such as in cy-
lindrical coordinates, or for a heat-generating source surrounded by a
PCM, for which, analysis using a time-dependent temperature boundary
condition is more realistic than a constant temperature one. These
limitations in the literature have made it difficult to optimize phase
change based energy storage in practical engineering applications that
cannot be reasonably modeled by the simplest, constant-temperature
Stefan problem, or that are cylindrical or spherical in nature. Phase
change heat transfer problems are, in general, non-linear in nature,
making such theoretical analysis challenging.

This paper presents analytical modeling of performance parameters for
phase change energy storage in a variety of scenarios. Analysis is presented
for a PCM absorbing heat from a hot source, although the case of energy
transfer between a PCM And a cold body can be similarly analyzed. The
key novelty of this work is that the models presented here help understand
the impact of thermal properties such as thermal conductivity and heat
capacity on the rate of energy storage and energy storage density.
Simplified cases such as heat transfer from a constant temperature wall in
Cartesian and cylindrical systems are analyzed first. Perturbation method
is used to derive expressions for the average rate of energy storage and
energy storage density for cases where an analytical solution is not readily
available. Theoretical models are extended to account for more realistic
scenarios involving time-dependent temperature boundary conditions,
which can represent a heat source with internal heat generation next to the
PCM. Results indicate that while the rate of energy storage increases with
increasing PCM thermal conductivity in a Cartesian phase change system,
the energy storage density remains unchanged. Further, in cylindrical
system, an increase in thermal conductivity may actually result in a re-
duction in energy storage density. By developing a theoretical under-
standing of the effect of PCM thermal properties on the performance of
energy storage, this work addresses a key gap in literature. Results derived
here help place ongoing experimental research on thermal conductivity
enhancement in perspective, and contribute towards the optimization of
practical energy storage systems.

2. Theoretical model

This section derives expressions for the two key performance
parameters of phase change energy storage — average rate of energy
storage and energy storage density — in Cartesian and cylindrical co-
ordinate systems. Section 2.1 analyzes a simplified model that assumes
constant wall temperature, whereas Section 2.2 analyzes cases of in-
ternal heat generation in the heat source, modeled by an unsteady
temperature boundary condition.

2.1. Energy storage from a constant temperature wall

The thermal interaction between the heat source and PCM can, in
the most simplified form, be described as heat transfer from a constant
temperature wall. The phase change energy storage system could be
designed either in Cartesian and cylindrical geometries. In this sub-
section, expressions for average rate of energy stored and energy sto-
rage density are derived for this simplified case.

2.1.1. Cartesian wall

Fig. 1(a) shows a schematic of a Cartesian, one-dimensional phase
change energy storage system, where a PCM, initially at its melting
temperature T,, absorbs heat from an infinite wall maintained at a
constant temperature T,,. Assuming no fluid flow in the newly formed
phase due to forced or natural convection, this is the classical Stefan
problem, for which well-known solutions are available [18,19]. The
phase change front y(t) is given by

y(6) = 2AJat @

where a is the thermal diffusivity and A is the root of the transcendental
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(b)

Fig. 1. Schematic of the (a) Cartesian and (b) cylindrical phase change problems consider here.

equation
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Temperature distribution in the newly formed liquid phase is given

by [18]
v (55=)
erf(1)
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w
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from where, the average rate of energy absorbed by the PCM up to a
given time t can be found to be

. _1p (3T _ —2kA(T, — Ty)
Qug (1) = - { kA(ax )xzodf Jaaerf )t )

Finally, the energy storage density can be found by dividing the
total energy absorbed by the volume of PCM melted.

Qug@xt _ .
YO xA ()

Both Qavg (t) and y(t) have the same square root dependence on k,
which, therefore, cancels out in the expression of the energy storage
density. The final expression of the energy storage density is only a
function of density, latent heat and specific heat capacity through A.

It is assumed in the analysis above that the PCM size can be chosen
in advance, based on the knowledge of how much PCM is expected to
melt in a given time duration. As a result, the use of y(t) — which is a
function of thermal properties — in calculating the volume of PCM
melted is appropriate.

Note that in most practical phase change problems, the extent of
natural convection is not strong enough to produce significant con-
vective heat transfer due to the relatively small temperature difference
and consequently small value of the Rayleigh number. This, together
with the considerable complications in the coupled analysis of heat
transfer and natural convection justifies neglecting natural convection
in the present work.

QW=

2.1.2. Cylindrical wall

Consider an infinite bed of PCM absorbing heat from the outer
surface of a cylinder of radius R maintained at temperature T,,, as
shown in Fig. 1(b). Similar to Section 2.1.1, the PCM is initially at its
melting temperature T,,. Unlike the Cartesian Stefan problem discussed
in Section 2.1.1, this problem in the cylindrical coordinate system does
not have an exact solution. A technique based on perturbation method
has been presented for solving this problem, based on an assumption of
small Stefan number [20,21].

The governing energy equation in cylindrical coordinate system is
given by
13(,20) 1
ro\ or a ot 6)

and the boundary conditions are

T=T, atr=R @

T=T, atr=y(t) €))

- k(a—T) = pLd—y atr = y(t)
or )iy ot (C)]

Based on perturbation technique discussed in past papers [20,21], t
is replaced by phase change front, y(t) in the governing equation and
boundary conditions. Temperature distribution is expressed in the form
of a series involving powers of the Stefan number, Ste = w. By
substituting temperature distribution back in the governing equation
and using boundary conditions, similar to the treatment in [20], the

phase change front, y(t) is found using an inverse function

= &2[(2@(0)21@0) D, S[f (@®)logp(t) + logp (1) — F(D))* + 1)
a 4 4logy (t)

+ Ste?
128(5 (1))*logy (1)

— 16(7(1))*(logy (1) — 1) — Slogy () — 8)]

(*(8(logy (1))* — 20(logy (1))* + 21logy (t) — 8)

(10)

where y = % . Note that Eq. (10) corrects a minor error in the final
result of similar treatment presented in [20]. Temperature distribution
in the newly formed liquid is given by

T(r, t) = (8y + Ste-6; + Ste*-6,)(T,, — Tp) + Ty (11
where
logr
90 = -
logy (t) 12)

logr (G - 1

_ (Flogr — (3(1))Hogr — 72 + 1)

1

4 () (logy (1)) 407 (1))*(logy (1))* (13)
0 = GO G O & OO — 2Plogf + 100 () logF — 872 + 37— 8(G(O) - 87>
()2l 007 1 2 00F — A0F2(5(1))2 — s
@ (t))*logF + 5) + 12860 g O (167°logF — 407>y (t)) 10logF — 6F
logF + 1672logF — 56(3 (t))*logF — 4072 + 97* + 40(3(£))? + 4072 (3 (¢))logF + 31)
1 52 — 2 _ 4072logF 5 () 2logF 22 _
+ 128G ) (om O ) (G@®) 1)(31logF) — 407%logF + 71(y (t))%logF + 407 — 40)
_ (Slogr (G()* = 1)?)
16(7(1))* (logy (1))’ (14)
where 7 = . As a result, the average rate of energy absorbed by the

PCM up to a specific time t can be determined as follows
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where h is the height of the cylinder. Therefore, the energy storage
density can be found by dividing total energy stored in PCM from Eq.
(15) by the volume of the melted PCM.

Qug (£) X t
(@ (®)* - RHh (16)

For any given time ¢, the phase change front y(t) may be obtained
from Eq. (10), following which, Eq. (16) provides the energy storage
density.

Note that, in the cylindrical coordinate system, the volume of PCM
melted appearing in the denominator of Eq. (16) is a function of yZ and
not y, as was the case in the Cartesian coordinate system. This, along
with the complicated expression for Q. indicates that the lack of de-
pendence of Q" on k seen for the Cartesian system may not exist for the
cylindrical phase change process.

Q)=

2.2. Energy storage from a heat-generating source: time-dependent
temperature boundary condition

The constant wall temperature boundary condition analyzed in
Section 2.1, while easily amenable to theoretical analysis, may not
accurately model the heat generation process in the source that makes
energy available for the phase change material to absorb. For example,
internal heat generation in the source may occur due to a chemical
reaction, or due to volumetric heat absorption from an external source
of radiation. Modeling the heat transfer process within the source
makes this a considerably more complicated, coupled heat transfer
problem. In order to analyze this system without making it mathema-
tically intractable, the effect of the heat-generating source is modeled
with a time-dependent temperature boundary condition at the source-
PCM interface. This is a reasonable assumption since the interface
temperature is expected to rise with time due to heat generation and
thermal conduction within the source. This model is considered in this
section for the Cartesian and cylindrical coordinate systems.

2.2.1. Cartesian heat source

This problem is similar to the one analyzed in Section 2.1.1 and
shown schematically in Fig. 1(a), where wall temperature is now time-
dependent, T,,(t). In this case, the heat transfer problem in the PCM is a
Stefan problem with time-dependent temperature boundary condition,
for which, a perturbation method based approach is used [20]. Given a
time-dependent temperature distribution T,(t), the heat absorbed as a
function of time is given by

R 1 pt or
Qavg (£) = T f() . kA(a)X:OdT

(Ste)?
360y (1)

0

25—
_l/“_ | 1O, f(l)[f(f)+ ())
=7 Jo kA (T ref. — e

() 6y (1)

[fm[m[’; “)] G2 + 8570 L0 E‘; v+ 19720+ 5L ))zf(l)yz(l)]] dr

17
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where

Tw(t) - Tm
)= m
1o Tn = Ty (18)

whereas the phase change propagation front is given by

y(© = [2<sre>a fo’f(n(l - iy 4 IS

1

f (T)Z)df]

(19

Note that expressions for y(t) and T(x,t) are taken from [20]. Fur-

ther, since the wall temperature is not constant any more, the Stefan

number cannot be defined using the wall temperature. Instead,

Ste = M, where T, is a reference temperature. Using Eqs. (17)
and (19), the energy storage density is given by

Qug() X t

Q0= xa (20)

2.2.2. Cylindrical heat source

Fig. 2(b) shows a schematic of a phase change energy storage system
in cylindrical coordinate system, in which the wall temperature is now
considered to be a function of time T,(t). Similar to the Cartesian
problem, perturbation method is used to solve this time-dependent
boundary condition problem. Following the substitution of t with y(t) in
the governing equations and separation of terms based on the power of
Ste, temperature distribution in the PCM is given by

T(r, 1) = (8 + Ste-6, + Ste*6,)(Ty = T) = T 1)
where
logi — logy (t
6=~ (t)(g—_gy())
logp (1) o
O - )
6= (4@([))2(109(0)4)(f(l)logr f(t)logy

F Oy | f (1 (1)(logy())*
0 0

JogF — FOIOPUom®? _ f O3©P oy _ f (09 Ologr logy (1))
0 10 H0)

f (OF(©)logFlogy (1)
0]

F Oy Ologhogy (1), f (0P (DlogF (logy (1))? ]

10 7@©

o+ + P (Dlogy () — F(O)Y*f (1)

— f(¢)PPlogFlogy (t) + f (t)y*logFlogy

® -

23

Due to the long and cumbersome nature of the expression for 65, it is
being included in Appendix 1.

Once the temperature profile is determined, the rate of change of
phase change front with time can be found from the boundary condi-
tion, Eq. (9) given by
dy (Ste)f (£) A (T _

— = —— 128y (¢ ! 1))° — 32(St t £))?
i 128@(0)5(10@_)(0)7( @) (logy (1)) (Ste)f @)
(logy (1))* 2 (1))*(logy (1))* — 2(7(1))logy + (F())* = 1)
+ (SIP( (D)) (48 (logr (1)* — 112(logy (1))*
+ 146(logy (¢))? — 111logy(t) + 40) — 16(F(¢))*(2(logy (¢))?
— Slogy (1)) + 10(logy (£))? + 31logy(t) + 40)) 24

Due to the considerable complexity of Eq. (24), analytical integration in
order to derive an expression for y(t) similar to Eq. (10) in the case of
constant T,, may not be possible. Therefore, phase change front as a function
of time is determined in this case by numerical time-stepping based on the
time derivative provided by Eq. (24) and using the initial condition of zero
melting at t = 0. Note that Eq. (24) has a singularity at t = 0, which presents
a difficulty in initiation of the timestepping approach. In order to address this
problem, it is assumed that for a sufficiently small period from t =0 to
t = t*, change in the imposed wall temperature f(t) is negligible. This re-
duces the problem to the cylindrical phase change with constant wall
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Fig. 2. Comparison of the perturbation method based solutions and a finite element simulation for constant temperature boundary condition: (a) Phase change front,
y(© as a function of time for a constant temperature boundary condition T,, — T,, = 50K for the Cartesian problem; (b) Temperature rise as a function of x for the

same problem at t = 1000s.

temperature, which has been discussed in Section 2.1.2. Therefore, between
t = 0 and t = t*, the phase change front is given approximately by Eq. (10).
Once y(t) is calculated at t = t*, timestepping is carried out for the remaining
time period using the derivative provided by Eq. (24). For ensuring minimal
impact of this approximation on accuracy, the value of t* must be chosen to
be small. In this work, t* is chosen to be 0.01% of the total time of interest.

Once y(t) has been determined in this manner, the average rate of
energy stored can be easily found. Due to its cumbersome nature, the
expression for Q,, for this case is presented in Appendix 1.

Based on this, the energy storage density can be determined from
Eq. (16).

This completes the solution that describes the two key performance
parameters of phase change based energy storage in the cylindrical co-
ordinate system for the case of time-dependent temperature boundary
condition.

3. Results and discussion
3.1. Model validation

While the constant temperature Cartesian problem discussed in Section
2.1.1 has a well-established solution, validation is desirable for the other
solutions discussed in the previous section. This is carried out by com-
parison with results from a variable time-step finite difference method for
phase change problems [18], in which, the space domain is discretized
into equal intervals Ax, whereas the time domain is discretized in such a
way that during each successive time interval At; the phase change front y
(t) propagates by Ax [18]. This results in a set of discretized linear alge-
braic equations, which are solved using the implicit method.

A phase change material with k=02Wm K™} G, =
2250Jkg K™Y, p = 810kgm 2 and L = 270700 Jkg ! is considered
for comparison between the results derived in Section 2 and the nu-
merical method. Fig. 2(a) shows a comparison of phase change front, y(t)
as a function of time determined from Eq. (10) and the variable time-step
method for the cylindrical coordinate system, with T,, — T,,, = 50 °C and
R = 0.01 m. The analytical model is found to be in very good agreement
with the numerical solution. Fig. 2(b) plots temperature rise as a function
of x for the same problem at t = 1500 s, showing similarly good agree-
ment between analytical and numerical solutions.

Fig. 3 presents results from similar validation for the analytical
models for time-dependent boundary conditions for the two coordinate
systems discussed in Section 2.2. Progression of the phase change front
is plotted in Fig. 3(a) and (b) for Cartesian and cylindrical systems,
respectively. In each case, wall temperature is assumed to vary as
T, (t) — T, = 50 + 0.03t. Good agreement between the two is observed,
similar to the results for constant temperature boundary conditions.
Figs. 2 and 3 provide validation of the theoretical models for phase

change processes discussed in Section 2.

3.2. Effect of k on PCM performance parameters

The effect of thermal conductivity, k on total energy absorbed by the
PCM and energy storage density in a Cartesian body is investigated first.
Fig. 4(a) and (b) present plots of the average rate of energy stored up to
t = 1000 s as a function of thermal conductivity for Cartesian and cylindrical
bodies, respectively. T,, — T,, = 50 °C in each case and R = 0.01 m for the
cylindrical system. Similar plots for the energy storage density at t = 1000 s
are presented in Fig. 5(a) and (b). Fig. 4 shows that the total rate of energy
storage increases with increasing k for both geometries. For the Cartesian
system, this originates from the Jk dependence of Qavg, as shown in Eq. (10).
Expressions for the cylindrical system, Eq. (15), while more complicated, also
show that Q,,, increases with k. Physically, this occurs because greater k
results in greater heat diffusion into the PCM. and consequently greater rate
of energy stored in the system. As shown in Fig. 4, this effect is much
stronger in Cartesian bodies due to the larger surface area from which heat
can be absorbed by the PCM. As shown in Fig. 6, the energy storage density
remains constant with increasing k for the Cartesian system, and actually
reduces for cylindrical system. This occurs because while increasing PCM
thermal conductivity results in greater energy absorbed, it also increases the
melted PCM volume. For the Cartesian problem, both Q,,, and y exhibit a
Jk dependence, and therefore, these effects exactly cancel each other when
determining the energy storage density Q™. On the other hand, for the cy-
lindrical problem, the effect of increased melting rate dominates over the
effect of increased rate of energy stored, thereby resulting in a reduction in
energy storage density with increasing thermal conductivity. This shows that
while increasing thermal conductivity of PCM improves a key performance
parameter — rate of energy absorbed —the other key performance parameter,
energy storage density remains the same for the Cartesian system and ac-
tually decreases for a cylindrical energy storage system.

This trade-off between the rate of energy stored and energy storage
density highlighted by Figs. 4 and 5 is important to recognize because the
relative importance of these two performance parameters differs from one
application to the other. In applications where it is important to absorb a
large amount of energy very rapidly without regard to storage density,
increasing k is clearly helpful, regardless of whether the energy storage
system is Cartesian or cylindrical. However, when energy storage density
is important, for example when energy must be stored compactly, in-
creasing k is not likely to be effective, and in fact, may adversely affect
energy storage density for cylindrical energy storage. This happens be-
cause in the Cartesian system, the volume of PCM melted has a vk de-
pendence due to linear scaling with y(t), as shown in Eq. (1), whereas in
cylindrical system, the dependence is much stronger due to the quadratic
dependence of volume of PCM melted on y(t) respectively. Thus, for a
Cartesian body, thermal conductivity can be increased in order to increase
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Fig. 3. Comparison of the perturbation method based solutions and a finite element simulation for time-varying temperature boundary condition: (a) Phase change
front, y(t) as a function of time for a time-dependent temperature boundary condition T,, (t) — T, = 50 + 0.03¢ for the Cartesian problem; (b) Phase change front, y(t)
as a function of time for a constant temperature boundary condition T,, (t) — T,, = 50 + 0.03¢ for the cylindrical problem.

the rate of heat absorbed without negatively impacting the energy storage
density. However, in cylindrical body, such an approach will result in
reduced energy storage density. In such a case, optimal system design
using the approach presented here may be critical.

For a more comprehensive analysis of how thermal properties affect
energy storage performance, colormaps of Q,,, and Q" are plotted in Fig. 6
for T,, — T,, = 50 °C and t = 1000 s for a Cartesian system. Latent heat of
the PCM is assumed to be L= 270700Jkg’1. Fig. 6(a) shows much
stronger dependence of Q,,, on k than on C,, indicating that small changes
in k are more likely to affect Qm,g than changes of similar relative mag-
nitude in C,. However, the impact of these thermal properties on Q" is
quite different, as shown in Fig. 6(b). Q" remains invariant with changes
in k, whereas it increases with increasing C,. Fig. 6 can be used for per-
formance comparison between different candidate PCMs. For example,
three candidate PCMs A, B and C are marked on the colorplots in Fig. 6(a)
and (b) in terms of their thermal properties. PCM A has higher k but lower
C, than PCM B. PCM C lies somewhat in the middle of A and B in terms of
both k and C,. The colorplots in Fig. 6(a) and (b) show that while A is
expected to have greater rate of energy stored, its performance in terms of
energy storage density is poorer than that of B. Further, comparing A and
C, it is seen that due to curvature in the color contours in Fig. 6(a), A and C
are expected to result in the same rate of energy stored, while, based on
Fig. 6(b), C is expected to store this energy much more compactly than A.
The superior performance of C is despite its lower thermal conductivity
than A, and shows that in some conditions, a material may be an attractive
PCM despite relatively lower thermal conductivity.

Similar colorplots of Qg and Q" for a cylindrical energy storage
system are presented in Fig. 7(a) and (b) respectively. Similar to the
Cartesian case, it is seen that the rate of energy stored increases with k.
However, the energy storage density actually reduces with increasing k.
This has several interesting consequences in the choice of thermal
properties of candidate PCMs. For example, three candidate PCMs D, E

and F are shown in Fig. 7(a) and (b). It is seen that while D has greater
rate of energy stored compared to E due to greater thermal conductivity,
its energy storage density is actually lower. On the other hand, F, which
has the same k as D but greater heat capacity, resulting in a high rate of
energy stored as well as a high energy storage density.

These examples illustrate the importance of colorplots such as Figs. 6
and 7 in understanding the trade-offs between thermal conductivity and
heat capacity in terms of the performance parameters, and in choosing the
correct PCM. In general, this choice depends on whether the rate of energy
stored or the energy storage density is more critical, as well as on whether
the energy storage system is in Cartesian or cylindrical geometry. Results
from this section enable quantification of this trade-off, and help choose
the best material corresponding to system-level objectives.

3.3. Results with time-dependent boundary conditions

The key results discussed in Section 3.2 pertain to a constant wall
temperature boundary condition. However, for practical scenarios where
the hot source generates heat at a certain rate, the temperature at the wall
may not be constant and may increase over time. This is also true for
scenarios where time-varying heat flux impinges on the wall. In such
cases, variation in the wall temperature with time must be accounted for
using models presented in Section 2.2. This section discusses results on this
practical  scenario. A linearly increasing wall temperature
T, (t) — T, = 50 + 0.03¢ is assumed. Fig. 8(a) and (b) plot the average rate
of energy stored as a function of k for Cartesian and cylindrical energy
storage systems respectively. Similar plots for energy storage density are
presented in Fig. 9(a) and (b). For both Cartesian and cylindrical cases, the
rate of energy stored increases with k, similar to the results for constant
wall temperature case discussed in the previous section. The energy sto-
rage density remains invariant with k in the Cartesian case, whereas it
actually reduces with k for the cylindrical case. This is also similar to the
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Fig. 4. Effect of thermal conductivity, k on average rate of energy stored per unit area of the source-PCM interface in (a) Cartesian and (b) cylindricalsystemsfor a
constant temperature boundary condition T,, — T,, = 50K over a 1000 s time period.
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Fig. 6. Colorplots of (a) average rate of energy absorbed by the PCM and (b) energy storage density as function of thermal conductivity and heat capacity in a

Cartesian system.

constant wall temperature case. Both Qavg and y(t) for the Cartesian case,
shown in Eqgs. (17) and (19) respectively continue to have a +/k depen-
dence, resulting in Q" remaining independent of k, just like the constant
T,, case. These relationships for cylindrical case are more difficult to in-
terpret due to the complexity of the equations.

These plots show that the key results discussed for the constant wall
temperature case also hold for the more realistic, time-varying wall
temperature case. The method presented here is valid for quantifying
the effect of improving PCM thermal conductivity on critical perfor-
mance parameters in practical engineering applications.

In order to further understand the nature of energy storage perfor-
mance parameters in case of time-dependent boundary conditions,
Fig. 10(a) and (b) plot rate of energy stored and energy storage density
as functions of k. Plots are presented for both Cartesian and cylindrical

(a) Quog » (Wm™?)

4000

1000 2000 3000
C,, Jkg 1K1

energy storage systems for different expressions for T,,(t). Specifically,
linearly increasing wall temperature with different values of slopes
T, (t) — T,, = A + Bt is assumed where A = 50 K and B = 0.01, 0.03,
0.05, 0.07 and 0.09Ks™'. A time period up to while t = 1000s is
considered. Fig. 10(a) indicates that in both Cartesian and cylindrical
coordinates, the rate of energy absorbed increases with k, which is
consistent with results obtained from Fig. 8. Further, the greater the
value of slope B, the larger is the rate of energy absorbed, which is
along expected lines due to greater temperature gradient between the
wall and PCM. Fig. 10(b) shows that in the Cartesian system, energy
storage density is not a function of k, similar to previous results, and
also increases with increasing value of B. Increasing the value of B af-
fects increases the rate of heat absorbed as well as the phase change
front propagation. The impact on the former is weaker, due to which,

(b) Q", (Jm™) .
20 56
2.8

-1 2.7
N 25
< 5 24
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—

13000 4000
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Fig. 7. Colorplots of (a) average rate of energy absorbed by the PCM and (b) energy storage density as function of thermal conductivity and heat capacity in a

cylindrical system.
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the energy storage density increases with increase in B. In contrast,
energy storage density decreases with increasing k for the cylindrical
system, which is consistent with previous results. The energy storage
density increases with increasing B, which is explained by the greater
impact on the rate of energy stored compared to phase change propa-
gation, similar to the Cartesian result.

4. Conclusions

Understanding the impact of thermophysical properties on perfor-
mance of phase change energy storage systems is very important for the

design and optimization of several engineering systems. In the past,
several papers have presented strategies for improving thermal con-
ductivity of commonly used PCMs. The present work shows that while
improving thermal conductivity is helpful for increasing the rate of
energy stored, it is not similarly helpful for improving the energy sto-
rage density, which may be an important performance parameter in
several applications. Using well-establised theoretical models, the pre-
sent work helps fully understand the impact of previously reported
thermal conductivity enhancement on performance of phase change
energy storage systems. Based on the theoretical model, the perfor-
mance of various PCMs can be compared with each other, and the
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optimal PCM can be chosen, depending of the relative importance of Acknowledgments
rate of energy stored and energy storage density, as well the geometry
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Appendix 1. Equations for 8, and Q,, in Section 2.2.2

2
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