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Measurement Sensitivity
Analysis of the Transient Hot
Source Technique Applied to
Flat and Cylindrical Samples
The transient source measurement technique is a nonintrusive, nondestructive method of
measuring the thermal properties of a given sample. The transient source technique has
been implemented using a wide variety of sensor shapes or configurations. The modern
transient plane source (TPS) sensor is a spiral-shaped sensor element which evolved
from transient line and transient hot strip (THS) source techniques. Commercially avail-
able sensors employ a flat interface that works well when test samples have a smooth, flat
surface. The present work provides the basis for a new, cylindrical strip (CS) sensor con-
figuration to be applied to cylindrical surfaces. Specifically, this work uses parameter
estimation theory to compare the performance of CS sensor configurations with a variety
of existing flat sensor geometries, including TPS and THS. A single-parameter model for
identifying thermal conductivity and a two-parameter model for identifying both thermal
conductivity as well as volumetric heat capacity are considered. Results indicate that
thermal property measurements may be carried out with greater measurement sensitivity
using the CS sensor configuration than similar configurations for flat geometries. In addi-
tion, this paper shows how the CS sensor may be modified to adjust the characteristic
time scale of the experiment, if needed. [DOI: 10.1115/1.4034178]

Keywords: thermal property measurement, transient source techniques, parameter
estimation, sensitivity analysis, thermal modeling

Introduction

The transient source method is a nonintrusive, nondestructive
technique for measurement of thermal transport properties of a
material [1–6]. The method is based on application of a known
heating rate to the surface of a sample and measurement of the
resulting temperature response at that surface. The heat source is
typically a thin metallic foil having a nonzero temperature coeffi-
cient of resistivity, such as nickel or platinum. Heat is generated
by supplying constant electrical current to the sensor. As the tem-
perature of the sensor increases, the electrical resistance of the
sensor increases proportionally. Since current is held constant, the
voltage across the sensor is proportional to its temperature, via
Ohm’s law. This voltage is recorded as a function of time and
compared with an appropriate model in order to identify the ther-
mal parameter(s) of the given material.

The transient source method is based on the work of numerous
researchers. The work by Gustafsson et al. [1–4] formed the basis
for the modern TPS sensor. The concept originated with the THS
sensor [2], which was essentially a long, thin sensor placed at the
interface between two identical samples. Advancements to the
original sensor resulted in the integration of an insulated backing
such that the sensor and backing formed a “probe” [3]. Addition-
ally, advancements in the shape of the sensor resulted in a bifilar
spiral pattern rather than a flat strip [4]. Mathis took a similar
approach, starting with a strip sensor [5]. However, one key dif-
ference is that Mathis installed guard heater strips on either side
of the main sensing element to enforce one-dimensional heat flow
normal to the measurement plane. This guarded hot strip design
will be referred to here as the guarded transient hot strip (GTHS)

sensor. Similar to the THS probe, the original GTHS design
evolved into a bifilar spiral with a guard ring surrounding the
main sensing element [6]. This approach is referred to as the
guarded TPS sensor (GTPS). The GTHS and GTPS approaches
simplify the analytical model relative to the THS/TPS probes due
to the one-dimensional nature of heat flow. However, the nature
of heat flow in the GTHS/GTPS probes prohibits the simultaneous
identification of two thermal parameters (thermal diffusivity and
thermal conductivity, for example). The TPS sensor, on the other
hand, can identify two thermal parameters from a single transient
recording.

With the wide variety in sensor configurations, the question of
optimality becomes important in order to select the best sensor
configuration for a given problem or a given material. Bohac et al.
[7] applied parameter estimation theory to the TPS sensor with the
goal of identifying the optimal experiment duration which maxi-
mizes measurement sensitivity. However, to the best of our
knowledge, there has been no overall comparison of the various
sensor configurations with regard to measurement sensitivity. This
paper applies the principles of parameter estimation theory to sev-
eral existing sensors (THS, TPS, GTHS, and GTPS) as well as to
several new sensors appropriate for cylindrical geometries. The
sensitivity of each sensor is compared for identifying thermal con-
ductivity, k, in a single-parameter model. Similarly, a two-
parameter model is considered for identifying volumetric heat
capacity, q�Cp, in addition to thermal conductivity, k. The results
illustrate the advantages of certain sensor configurations and pro-
vide the theoretical basis for a new class of sensors aimed at meas-
uring thermal properties from cylindrical surfaces.

In the Sensor Configurations section, several sensor geometries
are described along with their corresponding mathematical models
and analytical solutions. Model verification is then performed by
comparing analytical solutions with numerical solutions. Follow-
ing model verification, parameter estimation theory is discussed
for a single-parameter model to identify thermal conductivity as
well as a two-parameter model to identify thermal conductivity
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and volumetric heat capacity. The results and discussion include a

comparison of all the sensor configurations, flat and cylindrical, as

well as a detailed analysis of the cylindrical configurations.

Finally, the concluding section summarizes the work and dis-

cusses implications of the results.

Sensor Configurations

In this analysis, seven sensor configurations were considered as
shown in Fig. 1. Figure 1(a) shows the THS method developed by
Gustafsson et al. [2], where heat flow from the sensor is two-
dimensional in the x–y plane. The sensor length is typically much
greater than its width or thickness; therefore, heat transfer in the z-
direction may be neglected. The TPS sensor, developed by Gus-
tafsson et al. [4], is shown in Fig. 1(b). In this case, heat flow is
three-dimensional in Cartesian coordinates. Or, using symmetry
about the sensor axis, heat flow is two-dimensional in the r–z
plane in cylindrical coordinates. Figure 1(c) shows two sensors,

the GTHS, developed by Mathis [5], and the GTPS sensor,
described in the patent of Emmanuel et al. [6]. These two sensor
configurations are both shown in Fig. 1(c) because the mathemati-
cal model describing their heat flow is identical, as will be dis-
cussed shortly. For the GTHS and GTPS, guard heaters are used
to enforce one-dimensional flow in the y-direction. The GTHS
sensor uses two guard heater strips on either side of the main sen-
sor, and the GTPS sensor uses a guard heater ring surrounding the
main, spiral-shaped sensor. Figure 1(d) shows a one-dimensional,
finite slab. As with the GTHS/GTPS configurations, heat flow is
one-dimensional in the y-direction. The primary difference
between the slab and the GTHS/GTPS configurations is that the
slab domain is finite, having length L, as indicated in the figure.
The THS, TPS, GTHS, and GTPS configurations assume a semi-
infinite medium, as indicated in the figures.

Figures 1(e) and 1(f) show three additional heating/sensing con-
figurations particularly appropriate for cylindrical geometries that
have not been investigated in prior work. Figure 1(e) shows the
CS and spiral cylindrical strip (SCS) configurations. As with the

Fig. 1 Sketches of various transient heat source sensors. CS, GCS, and SCS sensor configu-
rations are unique to the present work. Also shown are the coordinate system definitions and
representative heat flow vectors depicting the mathematical model to be used for each sensor.
(a) Transient hot strip (THS), (b) transient plane source (TPS), (c) guarded THS, (d) 1D finite
slab, (e) cylindrical strip (CS), and (f) guarded CS.
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GTHS/GTPS sensors, the CS and SCS sensors are both shown in
Fig. 1(e) because the mathematical model is identical for the two
configurations. In both CS and SCS sensors, heat flow is assumed
to be axisymmetric, and thus two-dimensional in the r–z plane.
The axisymmetric assumption has the implication that the SCS
sensor neglects the pitch of the helical coil and, instead, may be
represented by a series of parallel CS strips, as indicated in Fig.
1(e). Figure 1(f) shows the guarded cylindrical strip method
(GCS), which features guard strips to ensure one-dimensional heat
flow in the r-direction. Note that this setup is analogous to enforc-
ing a constant heat flux across the entire outer radius of the cylin-
der, by wrapping a flat surface heater around the cylinder, for
example. This approach was taken by Drake et al. [8] to investi-
gate thermal properties of lithium-ion batteries.

The mathematical models for data analysis and thermal prop-
erty extraction for each sensor configuration are summarized in
Table 1. The models in Table 1 are labeled (a)–(f) corresponding
to the sensor configurations shown in Fig. 1. Table 1 includes the

governing heat conduction equations, simplified from their full
three-dimensional formulations according to the listed assump-
tions. The full, three-dimensional heat conduction equation for
Cartesian coordinate systems is

qCp
@h
@t

¼ kx
@2h
@x2

þ ky
@2h
@y2

þ kz
@2h
@z2

(1)

The dependent variable in Eq. (1) is temperature rise of the sensor,
h(t)¼ T(t)�T0. In Eq. (1), it is assumed that thermal conductivity
does not vary with temperature and it is assumed that the tempera-
ture everywhere in the domain is T0 at t¼ 0. Similarly, for cylin-
drical coordinates

qCp
@h
@t

¼ kr
r

@

@r
r
@h
@r

� �
þ k/

r2
@2h

@/2
þ kz

@2h
@z2

(2)

Table 1 Summary of sensor configurations and corresponding mathematical models

Description Simplified governing equation Boundary and initial conditions Assumptions

(a) THS 1

j
@h
@t

¼ @2h
@x2

þ @2h
@y2

h t; x; y; zð Þ ! 0 as x; y; z ! 1
@h t; x; 0; zð Þ

@y
¼ � q

00

k
for heated area

0 otherwise
@h t; 0; y; zð Þ

@x
¼ 0 ;

@h t; x; y; 0ð Þ
@z

¼ 0

h 0; x; y; zð Þ ¼ 0

Homogeneous and isotropic medium
Semi-infinite medium:
x¼ (�1,1), y¼ [0,1), z¼ (�1,1)
Symmetry about x¼ 0 and z¼ 0
At y¼ 0, constant heat flux in heated areas and
perfect insulation in nonheated areas
No heat flow in z-direction

(b) TPS 1

j
@h
@t

¼ @2h
@x2

þ @2h
@y2

þ @2h
@z2

h t; x; y; zð Þ ! 0 as x; y; z ! 1
@h t; x; 0; zð Þ

@y
¼ � q

00

k
for heated area

0 otherwise
@h t; 0; y; zð Þ

@x
¼ 0 ;

@h t; x; y; 0ð Þ
@z

¼ 0

h 0; x; y; zð Þ ¼ 0

Homogeneous and isotropic medium
Semi-infinite medium:
x¼ (�1,1), y¼ [0,1), z¼ (–1,1)
Symmetry about x¼ 0 and z¼ 0
At y¼ 0, constant heat flux in heated areas and
perfect insulation in nonheated areas

(c) GTHS, GTPS 1

j
@h
@t

¼ @2h
@y2

h t; yð Þ ! 0 as y ! 1
@h t; 0ð Þ

@y
¼ � q

00

k

h 0; yð Þ ¼ 0

Homogeneous and isotropic medium
Semi-infinite medium:
x¼ (–1,1), y¼ [0,1), z¼ (–1,1)
Constant heat flux at y¼ 0
One-dimensional heat flow

(d) One-dimensional finite slab 1

j
@h
@t

¼ @2h
@y2

@h t; 0ð Þ
@y

¼ � q
00

k

@h t; Lð Þ
@y

¼ 0

h 0; yð Þ ¼ 0

Homogeneous and isotropic medium
Constant heat flux at y¼ 0
One-dimensional heat flow

(e) CS, SCS 1

j
@h
@t

¼ 1

r

@

@r
r
@h
@r

� �
þ @2h

@z2
@h t; 0; zð Þ

@r
¼ 0

@h t;R; zð Þ
@r

¼
q
00

k
for heated area

0 otherwise
@h t; r;�H=2ð Þ

@z
¼ 0 ;

@h t; r;H=2ð Þ
@z

¼ 0

h 0; r; zð Þ ¼ 0

Homogeneous and isotropic medium
At r¼R, constant heat flux in heated area and
perfect insulation in nonheated areas
Symmetry about r¼ 0
No heat flow in /-direction
Perfect insulation at z¼�H/2 and H/2

(f) GCS 1

j
@h
@t

¼ 1

r

@

@r
r
@h
@r

� �
@h t; 0; zð Þ

@r
¼ 0

@h t;R; zð Þ
@r

¼ q
00

k

h 0; rð Þ ¼ 0

Homogeneous and isotropic medium
Constant heat flux at r¼R
Symmetry about r¼ 0
One-dimensional heat flow
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Boundary and initial conditions are also shown in Table 1, in
accordance with the list of assumptions for each sensor
configuration.

The solution methods and the corresponding analytical solutions
for each model are shown in Table 2. As with Table 1, the solutions
in Table 2 are labeled (a)–(f) corresponding to the sensor configura-
tions shown in Fig. 1. Most of the analytical solutions are available
in Carslaw and Jaeger [9]. Note that the analytical solutions in Table
2 are written for the spatially averaged sensor temperature as a func-
tion of time, denoted with an overbar on the temperature variable.
Also, note that the average sensor temperature varies as a function of
s, which is a nondimensional time scale proportional to the square
root of time. The one exception is the CS sensor model, which was
solved using Laplace transform, and the average sensor temperature
given in Table 2 is presented in the transform domain, where the
independent variable is s and the dependent variable is the Laplace-
transformed average sensor temperature, denoted by a double-
overbar. An inverse Laplace transform is performed numerically
using well-established numerical algorithms [10] to obtain the time-
domain solution, which can then be tabulated as a function of s.

Model Verification

The analytical solution for each sensor design was verified by
comparison with numerical solution. Numerical solutions were
obtained using ANSYS

TM

MECHANICAL APDL finite-element analysis
(FEA) software. A schematic of each model is shown in Fig. 2.
For each case, the material properties were assigned to represent
stainless steel. Thermal conductivity and thermal diffusivity were,
k¼ 16W/(m K) and j¼ 4.44 mm2/s, respectively. The numerical
and analytical solutions were carried out to 60 s, and the numerical

solution was advanced in time steps of 0.5 s. A constant heat flux
of q00 ¼ 1000W/m2 was applied to the sensor area. Quadratic ele-
ments, which use midside nodes, were used in favor of linear ele-
ments for improved convergence properties.

Several of the analytical models considered here assume that
heat is dissipated into an infinite medium (TPS, THS, GTPS, and
GTHS). In order to numerically model a domain of infinite extent,
the domain boundaries were set very far from the heat source, and
the solution duration was set to less than 0.1% of the approximate
diffusive time scale for heat to travel from the heat source to the
nearest boundary.

The resulting comparisons between numerical and analytical
solutions for each geometric configuration are shown in Fig. 2.
The verification plots in Fig. 2 are labeled (a)–(f) corresponding
to the sensor configurations in Fig. 1. As expected, good agree-
ment was observed between the two solution methods in each
case. Therefore, the analytical solutions were verified to be
derived and programed correctly.

Single-Parameter (p5 1), Nonlinear Model

The following analysis is based on the work of Beck and
Arnold [11] and uses parameter estimation theory to quantify
measurement sensitivity for a variety of transient source sensor
configurations. The sensor configurations investigated here are
summarized in Table 2 along with their corresponding analytical
solutions.

For the sensitivity analysis, the same material properties were
used as for the model verification study (k¼ 16W/(m K) and
j¼ 4.44 mm2/s). Similarly, the same heat flux was applied to the
sensor area (q00 ¼ 1000W/m2). The results are presented

Fig. 2 Schematic drawings (not to scale) of solution domain and boundary conditions and verification data comparing analyt-
ical solutions (lines) with numerical solutions (symbols). The analytical solutions used for each sensor configuration are indi-
cated in Table 2. (a) THS, (b) TPS, (c) GTHS, GTPS, (d) 1D finite slab, (e) CS, SCS, and (f) GCS.
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Fig. 3 Measurement sensitivity analysis for THS geometry: temperature rise (a), sensitivity coefficients (b), covar-
iance matrix components (c), and D-optimality criteria (d)

Fig. 4 Measurement sensitivity analysis for a 1D finite slab: temperature rise (a), sensitivity coefficients (b),
covariance matrix components (c), and D-optimality criteria (d)
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nondimensionally, however, such that they can be applied in a
general sense. In this analysis, the time duration was extended
beyond 60 s, to ensure that all the salient features relevant to the
sensitivity analysis were captured.

The expression for estimated parameter variance depends on
several assumptions regarding measurement errors. It is assumed
that measurement errors are additive, have zero-mean, have con-
stant variance, are uncorrelated, and have normal distribution.
Additional assumptions include errorless independent variables
and no prior information regarding the parameters of interest other
than that they are nonrandom. With these assumptions, the var-
iance of the estimated parameter, b, is

V bð Þ ffi r2

Dþ (3)

Dþ ¼ 1

s

ðs
0

Xþ� �2
hþm
� ��2

ds0 (4)

Xþ ¼ b
hnom

@�h
@b

(5)

hþm ¼
�h sð Þ
hnom

(6)

hnom ¼ q00L
k

� �
(7)

In Eq. (3), Dþ is the D-optimality criterion, and r2 is the variance
of the observation errors. In Eq. (4), s is the experiment duration,

Xþ is the nondimensional sensitivity coefficient, and hm
þ is the

maximum temperature rise. In Eq. (5), b is the parameter of inter-
est, and hnom is the nominal temperature rise. From Eq. (6), note
that hm

þ is a function of s, the limit of integration in Eq. (2), and
not the integration variable, s0. And, from Eq. (7), L is a character-
istic length scale.

As discussed by Beck and Arnold [11], Eq. (4) provides the
optimality criterion for a single-parameter, nonlinear model. Max-
imizing Dþ will minimize the variance in the estimated parameter.
The optimal duration of the experiment would be the time, s, at
which Dþ is a maximum.

Two-Parameter (p5 2), Nonlinear Model

For the single-parameter model, Eq. (3) shows that minimizing
the variance of the estimated parameter is accomplished through
maximizing Dþ, see Eq. (4). The same principle is true for the
two-parameter model, with the exception that the criterion is to
maximize the determinant of the cumulative sensitivity coefficient
matrix, Cij

þ

Cþ
ij ¼

1

s

ðs
0

Xþ
i X

þ
j hþm
� ��2

ds0 (8)

where i¼ 1 to p and j¼ 1 to p. For the two-parameter model, the
determinant of the Cij

þ matrix of order two is readily calculated

Dþ
2 ¼ Cþ

11C
þ
22 � ðCþ

12Þ2 (9)

Note that Eq. (8) is identical to Eq. (4) when i¼ j. In other words,
the terms on the primary diagonal of the Cij

þ matrix are equivalent

Fig. 5 Measurement sensitivity analysis for GTPS/GTHS configuration: temperature rise (a), sensitivity coefficients (b),
covariance matrix components (c), and D-optimality criteria (d)
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Fig. 6 Measurement sensitivity analysis for TPS geometry: temperature rise (a), sensitivity coefficients (b),
covariance matrix components (c), and D-optimality criteria (d)

Fig. 7 Measurement sensitivity analysis for CS geometry: temperature rise (a), sensitivity coefficients (b),
covariance matrix components (c), and D-optimality criteria (d)
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to the single-parameter D-optimality criterion for the p
parameters.

Comparison of Sensor Configurations

In this section, results are presented for each sensor configura-
tion in order to draw comparisons between various sensor shapes.
Figures 3–8 show the results of the sensitivity analysis for each
sensor. In each figure, the nondimensional temperature rise is
shown in (a), the sensitivity coefficients are shown in (b), the
cumulative sensitivity matrix components are shown in (c), and
the D-optimality criterion for the two-parameter model, D2

þ, is
shown in (d). The optimization criterion for estimating thermal
conductivity using the single-parameter model is shown in (c) of
each figure where C11

þ¼Dþ.
The results for the THS sensor are shown in Fig. 3. Note that

the characteristic length scale used in the definition of s was the
sensor half-width, W/2. When estimating the thermal conductivity
using a single-parameter model, the optimization criterion is Dþ is
shown in Fig. 3(c). From Fig. 3(c), Dþ is found to continually
increase with time. Theoretically, the experiment would be carried
out as long as possible to obtain an increasingly improved esti-
mate of k. It is not practical, however, to carry out the experiment
for very long times because heat will eventually reach the bound-
ary of the test sample and violate the semi-infinite assumptions of
the mathematical model. For the purpose of comparison with
other sensors, the limiting value was estimated to be Dþ ! 0.86
as s ! 1 (although not shown in Fig. 3(c)). For the two-
parameter model, the optimization criterion is obtained from Fig.
3(d). In this case, a maximum D2

þ of 5.5� 10�4 occurred at

s¼ 5.0 indicating the optimal experiment duration for identifying
the two parameters, k and q�Cp.

The results for the TPS sensor are shown in Fig. 4. The charac-
teristic length scale is the sensor radius, R. Similar to the THS
sensor, Fig. 4(c) shows that the optimization criterion for the
single-parameter model, C11

þ, increases continually. As time
approaches infinity, Dþ approaches 1.0 (not pictured). For the
two-parameter model, Fig. 4(d) shows a maximum D2

þ of
1.8� 10�3 occurring at s¼ 1.85. In comparison to the THS sen-
sor, the TPS sensor will have lower variance in estimated thermal
conductivity (better performance) when using the single-
parameter model. Similarly, the finite slab will have improved
sensitivity when identifying two parameters since the maximum
value of D2

þ is higher for the TPS sensor than for the THS sensor.
The GTPS and GTHS sensors each use the same model and

analytical solution. Figure 5, therefore, represents data for both
sensor configurations. Because the problem is set up as one-
dimensional heat flow in a semi-infinite domain, there is no char-
acteristic length scale. To preserve the dimensionless parameter,
s, unit length was used for the characteristic length scale. The sen-
sitivity coefficients shown in Fig. 5(b) are linearly dependent and
are, in fact, identical. As a result, the two-parameter model is not
applicable since there is no way to distinguish whether changes in
temperature are caused by changes in thermal conductivity or vol-
umetric heat capacity. As such, D2

þ¼ 0 for all times, as shown in
Fig. 5(d). Thus, the GTPS sensor [2–4,8] can only identify one
parameter at a time or a combination of the two parameters. The
optimization criterion for the single-parameter model, shown in
Fig. 5(c), is Dþ¼ 0.125 at all times. Continuing the experiment
will provide no greater advantage from the standpoint of the Dþ

optimization criterion. Experiment duration may be selected based

Fig. 8 Measurement sensitivity analysis for GCS geometry: temperature rise (a), sensitivity coefficients (b), covariance
matrix components (c), and D-optimality criteria (d)
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on other reasons, such as achieving a given level of confidence in
the measured data through increasing the sample size.

The results for the one-dimensional finite slab are shown in Fig.
6. Note that the slab thickness, L, was used as the characteristic
length scale in the definition of s. For the single-parameter model,
Dþ starts at a value of 0.125 and drops off sharply at s¼ 0.41. For
the two-parameter model, a maximum D2

þ of 9.6� 10�4 occurs at
s¼ 1.1. This result is similar to the GTHS/GTPS configuration
with the exception that reflectance of the thermal wave at the
finite boundary becomes important in the finite slab configuration
at s¼ 0.41. This can be shown by comparing Fig. 5(c) with
Fig. 6(c).

Of the four flat sensors investigated (THS, TPS, GTHS/GTPS,
and 1D finite slab), the TPS sensor showed the largest values of
Dþ and D2

þ indicating highest sensitivity for both single- and two-
parameter models.

The CS sensor results are shown in Fig. 7. The cylinder dimen-
sions were the same as used in the model verification section:
R¼ 20mm, H¼ 60mm, and W¼ 4mm. This configuration could
be described using two nondimensional length scales, H/W¼ 15
and H/R¼ 3. In the case of the CS sensor, there are several length
scales from which to choose in the definition of s. Here, s was
defined using the sensor half-width, W/2. Figure 7(c) shows a
maximum Dþ of 0.35 occurring at s¼ 4.8; therefore, measure-
ment sensitivity for thermal conductivity is highest for the CS sen-
sor among all the sensors investigated in this work, including the
TPS sensor. Figure 7(d) shows two local maxima:
D2
þ¼ 3.6� 10�4 at s¼ 1.83 and D2

þ¼ 2.5� 10�3 at s¼ 17.2. The
second peak in D2

þ shows that the CS sensor will also have highest
sensitivity for the two-parameter model of all the sensors
investigated.

Finally, the GCS sensor results are shown in Fig. 8. The charac-
teristic length scale was the sample radius, R. In Fig. 8(c), the
optimization criterion for identifying thermal conductivity showed
its maximum at early times, as s approaches zero where Dþ

approaches 0.125. A maximum was observed in the optimization
criterion for the two-parameter model, where D2

þ¼ 5.7� 10�4 at
s¼ 0.75.

The results from this analysis are tabulated in Table 3, where
the optimization criterion is given for each model in addition to
the nondimensional times at which the maximum values occur.
By comparing maximum values of Dþ and D2

þ, the TPS sensor
showed best performance among the flat sensors and the CS sen-
sor showed best performance among all the sensors considered.
However, the time scales at which the maximum values of Dþ and
D2
þ occur must also be considered in the experimental design. For

example, the CS sensor showed optimal performance at s¼ 17.2
for the two-parameter model while the TPS sensor showed opti-
mal performance at s¼ 1.85. To maintain a given nondimensional
time scale, s, the experiment duration is increased for reduced dif-
fusivity and/or increased sample length scale. For samples of low
diffusivity and/or large length scales, s¼ 17.2 for the CS sensor
may not be practical because the required experiment duration

would be too long. The converse is also true, where the CS sensor
may be more practical for samples of high diffusivity and/or
smaller length scale.

Sensor Optimization for Cylindrical Configurations

In the previous section, the performance of various sensor con-
figurations was quantified using Dþ for single-parameter estimates
of k and using D2

þ for two-parameter estimates of k and q�Cp. In
the present section, geometrical variations of the CS sensor are
considered. Unlike the other sensor configurations considered in
this paper (THS, 1D finite slab, GTHS/GTPS, and TPS), there are
multiple length scales to consider with the CS sensor configura-
tion. Specifically, the portion of heated area on the curved surface
of the sample (r¼R) is varied to determine the effect on optimiza-
tion criteria.

As with previous analyses, the sample being considered is rep-
resentative of stainless steel, where k¼ 16W/(m K) and j¼ 4.44
mm2/s. The applied heat flux is q00 ¼ 1000W/m2. The sample
radius and sensor width are held constant at R¼ 20mm and
W¼ 4mm, respectively. The height of the sample is varied to rep-
resent four different sensor configurations, as shown in Fig. 9.
Note that there is a perfectly insulated boundary condition at the
ends of the cylindrical sample (z¼�H/2 and z¼H/2), which
implies symmetry about these two planes. The CS sensor configu-
ration is modeled as a single strip sensor on a single cylindrical
sample, where H � W. The SCS sensor, on the other hand, is
modeled as multiple parallel strips on the cylindrical sample
where H is still greater than W but their ratio H/W is on the order
of 1. Therefore, by keeping R and W constant, adjusting the height
parameter in the CS model allows a transition between the CS and
SCS configurations. In this analysis, the CS configuration has
H¼ 60 mm such that H/W¼ 15. Two SCS configurations were
considered, H¼ 16mm (H/W¼ 4) and H¼ 8mm (H/W¼ 2). The
GCS configuration is described as the configuration where
H/W¼ 1. In this manner, by moving from CS to SCS to GCS, the
portion of heated area on the sample radius is systematically
increased.

Figure 10(a) shows the optimization criterion, Dþ, for single-
parameter estimation of k, and Fig. 10(b) shows the optimization
criterion, D2

þ, for the estimation of k and q�Cp using a two-
parameter model. Note that the sample radius, R, is used in the
definition of s, to be consistent between reporting different config-
urations. In contrast, previous plots used the sensor width, W, for
reporting CS sensor data. For the single-parameter model,
Fig. 10(a) shows that decreasing the sample height results in
decreasing maximum values of Dþ. Another way to interpret this
data is that by reducing the distance between adjacent strips on a
cylindrical specimen, the measurement sensitivity will decrease.
In the limit when there is no unheated area, H/W¼ 1, the GCS
sensor configuration shows the lowest performance of the sensors
considered. Additionally, the optimal experiment duration is
reduced as the sensor strips are moved closer together. Figure

Table 3 Comparison of sensor geometry showing sensitivity to thermal conductivity (single-parameter model) and sensitivity to
conductivity and volumetric heat capacity (two-parameter model)

Sensor Length scale Dimensionless
time scale

Single-parameter
model (k)

Two-parameter model
(k and qCp)

THS Sensor half-width, W/2 s ¼ ffiffiffiffi
jt

p
=ð0:5WÞ As s !1, Dþ ! 0.86 At s¼ 5.0, D2

þ¼ 5.5� 10�4

One-dimensional finite slab Slab thickness, L s ¼ ffiffiffiffi
jt

p
=L For s< 0.41, Dþ¼ 0.125 At s¼ 1.1, D2

þ¼ 9.6� 10�4

GTPS/GTHS Unit length, L¼ 1m s ¼ ffiffiffiffi
jt

p
=L For all s, Dþ¼ 0.125 For all s, D2

þ¼ 0 (cannot independently
measure two parameters)

TPS Sensor radius, R s ¼ ffiffiffiffi
jt

p
=R As s !1, Dþ ! 1 At s¼ 1.85, D2

þ¼ 1.8� 10�3

CS where H/R¼ 3 and H/W¼ 15 Sensor half-width, W/2 s ¼ ffiffiffiffi
jt

p
=ð0:5WÞ At s¼ 4.8, Dþ¼ 0.35 At s¼ 1.83, D2

þ¼ 3.6� 10–4 and
At s¼ 17.2, D2

þ¼ 2.5� 10–3

GCS Sample radius, R s ¼ ffiffiffiffi
jt

p
=R As s !1, Dþ ! 0 At s¼ 0.78, D2

þ¼ 5.7� 10�4

At s¼ 0, Dþ¼ 0.125
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10(b) shows similar results for the optimization criterion, D2
þ, for

estimation of k and q�Cp. Reducing separation distance between
adjacent strips has the effect of reducing the maximum value of
D2
þ and reducing the time scale at which the maximum value of

D2
þ occurs.
One interesting implication of Fig. 10 is in the design of experi-

ments for different materials or different size samples. For test
samples of high thermal diffusivity or small length scale, it may
be practical to carry out the experiment to the optimal time scale
for the CS configuration, s¼ 1.7 as shown in Fig. 10(b). This
would provide highest sensitivity for measuring both k and q�Cp

of a cylindrical test sample. As the sample thermal diffusivity is
reduced and/or length scale is increased, the experiment duration
must be increased to maintain the nondimensional time scale, s.
In such circumstances, the experiment duration may be reduced
by changing the sensor geometry. The GCS configuration, for
example, reaches a maximum sensitivity at s¼ 0.8 in Fig. 10(b).
Extending this concept to very low diffusivity samples or very
large length scales, the time scale may be further reduced to
s¼ 0.19 by making use of the local maximum in the CS sensitiv-
ity curve in Fig. 10(b). Although this local maximum has reduced
measurement sensitivity compared to the global maximum at
s¼ 1.7, the reduced experiment duration may be of greater impor-
tance, depending on the objectives of the experiment.

Fig. 9 Comparison of CS, SCS, and GCS sensors, showing the
progression of increasing the portion of heated area (shaded).
CS sensor with H/W5 15 (a), SCS1 with H/W5 4 (b), SCS2 with
H/W5 2 (c), and GCS with H/W5 1 (d).

Fig. 10 Effect of separation distance between adjacent heater
strips using the CS/SCS sensor. Decreasing separation dis-
tance results in reduced sensitivity to k (a) as well as reduced
sensitivity to simultaneous estimation of k and q�Cp (b). (a)
Single-parameter model and (b) two-parameter model.
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Conclusions

Parameter estimation theory has been applied to characterize
the performance of several new transient source based thermal
property measurement approaches for cylindrical surfaces, and to
compare against well-established sensor configurations for inter-
rogation based on flat surfaces. The optimization criteria for both
single- and two-parameter models are calculated and compared
among the various sensors. Among the flat sensors, the TPS sen-
sor shows the highest measurement sensitivity. However, the CS
sensor showed the highest measurements sensitivity of all the con-
figurations considered.

Furthermore, variations on the CS sensor are investigated,
including the SCS and the GCS. Although these alternate configu-
rations do not improve measurement sensitivity, the optimal time
scale of the experiment may be reduced or the optimal length
scale may be increased by increasing the ratio of heated to
unheated area on the sample. The experimenter is, therefore, pre-
sented with a family of sensors to apply to cylindrical surfaces
which provide tradeoffs in model performance versus experiment
duration or length scale. The results from this paper are expected
to facilitate the application of the transient source method to cylin-
drical geometries.
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Nomenclature

Cp ¼ specific heat capacity
Cij
þ ¼ cumulative sensitivity coefficient matrix

CS ¼ cylindrical strip sensor
GCS ¼ guarded cylindrical strip sensor

GTHS ¼ guarded transient hot strip sensor
GTPS ¼ guarded transient plane source sensor

H ¼ height of cylindrical test sample
L ¼ length scale; thickness of 1D finite slab
p ¼ number of parameters to identify
q00 ¼ heat flux
r ¼ position along r-axis
R ¼ electrical resistance; radius
s ¼ Laplace transform variable

SCS ¼ spiral cylindrical strip sensor
t ¼ time

T ¼ temperature
THS ¼ transient hot source sensor
TPS ¼ transient plane source sensor
W ¼ width of sensor strip
x ¼ position along x-axis

Xi
þ ¼ sensitivity coefficient vector
y ¼ position along y-axis
z ¼ position along z-axis

Greek Symbols

b ¼ thermal parameter of interest
Dþ ¼ D-optimality criterion, single-parameter model
D2
þ ¼ D-optimality criterion, two-parameter model
h ¼ temperature rise
�h ¼ spatially averaged sensor temperature rise
��h ¼ Laplace-transformed average sensor temperature
j ¼ thermal diffusivity
k ¼ thermal conductivity
q ¼ density
s ¼ nondimensional time
/ ¼ angular position
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